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Abstract

Canonical Wnt signaling plays a rate-limiting role in regulating self-renewal and differentiation in mouse embryonic stem
cells (ESCs). We have previously shown that mutation in the Apc (adenomatous polyposis coli) tumor suppressor gene
constitutively activates Wnt signaling in ESCs and inhibits their capacity to differentiate towards ecto-, meso-, and
endodermal lineages. However, the underlying molecular and cellular mechanisms through which Wnt regulates lineage
differentiation in mouse ESCs remain to date largely unknown. To this aim, we have derived and studied the gene
expression profiles of several Apc-mutant ESC lines encoding for different levels of Wnt signaling activation. We found that
down-regulation of Tcf3, a member of the Tcf/Lef family and a key player in the control of self-renewal and pluripotency,
represents a specific and primary response to Wnt activation in ESCs. Accordingly, rescuing Tcf3 expression partially
restored the neural defects observed in Apc-mutant ESCs, suggesting that Tcf3 down-regulation is a necessary step towards
Wnt-mediated suppression of neural differentiation. We found that Tcf3 down-regulation in the context of constitutively
active Wnt signaling does not result from promoter DNA methylation but is likely to be caused by a plethora of mechanisms
at both the RNA and protein level as shown by the observed decrease in activating histone marks (H3K4me3 and H3-
acetylation) and the upregulation of miR-211, a novel Wnt-regulated microRNA that targets Tcf3 and attenuates early neural
differentiation in mouse ESCs. Our data show for the first time that Wnt signaling down-regulates Tcf3 expression, possibly
at both the transcriptional and post-transcriptional levels, and thus highlight a novel mechanism through which Wnt
signaling inhibits neuro-ectodermal lineage differentiation in mouse embryonic stem cells.
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Introduction

Embryonic stem cells (ESCs) are in vitro cultured cells derived

from the preimplantation-stage embryo, which possess unconfined

capacity for self-renewal and multi-lineage differentiation towards

different embryonic germ layers. Pluripotency and self-renewal are

two essential features of ESCs, which make them not only a very

robust and suitable model for stem cell research, but also a

promising source for regenerative medicine. Also, with the

emergence of induced pluripotent stem cells (iPS) technology,

understanding the basic mechanisms governing the embryonic

stem state becomes of great interest for safe clinical applications in

regenerative medicine and stem cell programming.

Among different signaling pathways, Wnt/b-catenin signaling

has been shown to play a major role in maintaining self-renewal as

well as in regulating ESCs differentiation [1,2,3,4,5,6]. The

canonical Wnt/b-catenin signaling pathway is controlled by

post-translational modifications of b-catenin leading to its differ-

ential protein stability and sub-cellular localization. In the absence

of active Wnt signaling, b-catenin is negatively regulated by the so-

called ‘‘destruction complex’’, consisting of the Apc and Axin

scaffolding proteins and the glycogen synthase and casein kinases

(GSK and CK1), resulting in proteolytic degradation and low

levels of cytoplasmic b-catenin. Ligand-mediated Wnt signaling

activation leads to nuclear translocation of b-catenin where it

binds to members of the Tcf/Lef family of transcriptional factors

thus modulating the expression of a broad spectrum of

downstream target genes [7,8,9].

In vertebrates, the Tcf/Lef family encompasses four functionally

specialized members including Tcf1 (also known as Tcf7), Tcf3
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(also known as Tcf7l1), Tcf4 (also known as Tcf7l2) and Lef1 [10].

Whereas Tcf1, Tcf4 and Lef1 are known to activate different Wnt

target genes in the context of active Wnt signaling, Tcf3 primarily

functions as a transcriptional repressor [5,11,12,13,14,15,16]. Tcf3

is the most abundant Tcf/Lef member in mouse ES cells [14] and

is an integral component of the core pluripotency circuit, co-

occupying Oct4, Nanog and Sox2 DNA binding sites

[17,18,19,20]. Loss of function experiments have shown that

Tcf3 down-regulation enhances self-renewal and confers differen-

tiation resistance in mouse ESCs [14,17,19,20,21,22]. In fact, both

the zebrafish headless/tcf3 mutant and the Xenopus embryo depleted

of TCF3 reveal anterior head defects resembling the Wnt-gain of

function phenotype [11,15,16]. Similarly, Tcf3 ablation in mice

resulted in expanded axial mesoderm and loss of anterior neural

tissues [21]. Tcf3 is ubiquitously expressed through the mouse

embryo at embryonic day 6.5 (E6.5) and is gradually localized in

the anterior part of the embryo at E7.5 and the anterior

neuroectoderm at E8.5 [23,24].

Although several studies have demonstrated the key role played

by Wnt signaling in regulating self-renewal and differentiation of

both mouse and human ESCs, the downstream effects through

which Wnt exerts these functions have been a matter of

controversy. To date, three models have been suggested in this

regard: a. Tcf-independent, b-catenin/Oct4 signaling [25]; b.

Tcf3 antagonism by nuclear b-catenin which relieves Tcf3

repression and enhances self-renewal. A minimal role for the

canonical Tcf/b-catenin signaling has been suggested in this

model [6]; and c. synergistic action of Tcf3 antagonism and the

canonical b-catenin/Tcf1 signaling [5]. Although these studies

have shed some light on the underlying mechanisms through

which Wnt signaling controls self-renewal, none of the above-

mentioned models explains how this signaling pathway regulates

the lineage differentiation potential of ESCs.

In order to elucidate the downstream effects of Wnt signaling on

lineage commitment and differentiation in embryonic stem cells,

we examined several Apc-mutant ESCs harboring different levels

of Wnt signaling and compared their gene expression profiles with

wild type ESCs. We show that activation of Wnt signaling down-

regulates Tcf3 expression in mouse ESCs. We provide evidence

that Tcf3 down-regulation represents a main downstream effect

through which Wnt signaling directs the differentiation of

pluripotent ESCs towards non-neuroectodermal lineages. More-

over, we show that Wnt-mediated repression of Tcf3 involves

epigenetic regulation associated with histone modifications and

Wnt-mediated induction of miR-211. Our data demonstrate that

Wnt signaling counteracts Tcf3 function at multiple levels, which

ultimately ensures the delicate balance between self-renewal and

differentiation in mouse ESCs.

Results

Lineage differentiation in Apc-mutant ESCs correlates
with the level of Wnt signaling

To attempt the elucidation of the mechanisms underlying

lineage differentiation in the context of Wnt activation, we have

derived several ES clones from pre-implantation blastocysts

carrying different hypomorphic Apc alleles: Apc1638T/1638T (ApcTT),

Apc1638N/1638T (ApcNT), Apc1638N/1638N (ApcNN) [26,27], together

with Apc+/+ as wild type controls. As previously reported, ApcTT,

ApcNT, and ApcNN encode for a gradient of different Wnt

signaling dosages [1,26], as also confirmed by TOP-Flash reporter

assay [28] with ApcNN showing the highest Wnt activity

(ApcNN&ApcNT.ApcTT.Apc+/+)(Figure 1A). The potential of

the Apc-mutant ES cells to differentiate into ecto-, meso- and

endodermal lineages was also evaluated and confirmed by the

teratoma formation assay followed by immunohistochemistry

(IHC) analysis, matching our previous results obtained with ES

clones obtained by two rounds of gene targeting by homologous

recombination [1]. As expected, no expression of neuroectodermal

markers (GFAP, SV2, and neurofilaments) was observed in

teratomas derived from ApcNN ES cells (Figure 1B).

ES cells can be cultured in serum-free medium supplemented

with LIF, GSK inhibitor (CHIRON) and Mek inhibitor (PD), the

so-called 2i medium [29]. Using the serum-free culture supple-

mented with a single inhibitor, we found that ApcNN cells have the

highest colony-forming capacity when cultured in LIF+Mek

inhibitor, suggesting that their constitutive Wnt signaling activity

replaces the need for additional pathway activation by the GSK

inhibitor (Figure 1C). Of note, culturing ApcNN ESCs in medium

supplemented with CHIRON reduced the colony formation

capacity of these cells suggesting that a very high dosage of Wnt

signaling can compromise the growth of ApcNN cells. We also

observed that ApcTT and ApcNT cells formed similar number of

colonies in different culture conditions independently of CHIRON

supplementation, possibly pointing to the Wnt-independent effects

of Apc mutations in these cells (Figure 1C).

Wnt signaling down-regulates Tcf3 expression in mouse
ESCs

To elucidate the molecular mechanisms underlying the altered

cell fate decision in Apc-mutant ES cells, genome-wide transcrip-

tional analysis was performed on the newly derived cells.

Unsupervised hierarchical clustering analysis showed that global

gene expression in ApcNN ESCs is already influenced before

differentiation is induced, resolving ApcNN from WT expression

profiles in different branches of the dendogram (Figure 1D).

Among the genes differentially expressed between ApcNN ES cells

and their wild type counterparts (Table S1), we found that, unlike

other pluripotency markers (e.g. Oct4, Nanog, and Sox2), Tcf3 was

specifically down-regulated in ApcNN ES cells, an observation

Author Summary

The future successes of regenerative medicine largely rely
on our knowledge of, and our capacity to manipulate, the
cellular and molecular mechanisms governing stem cell
differentiation. A growing body of evidence suggests that,
in mouse embryonic stem cells, canonical Wnt/b-catenin
signaling not only enhances self-renewal but also directs
the cell fate decision towards non-neuroectodermal
lineages. However, little is known about the mechanisms
underlying the differentiation defects caused by constitu-
tive active Wnt signaling. Using a set of Apc-mutant ESCs
harbouring different levels of Wnt signaling, we found
that, among others, down-regulation of Tcf3, a key
member of the pluripotency circuit, as well as induction
of a novel Wnt-regulated microRNA, miR-211, represent
two important downstream effects through which Wnt
signaling inhibits neural differentiation in mouse ESCs. We
also provide a more detailed picture on how Wnt signaling
counteracts Tcf3 function in stem cells by showing that
Tcf3 repression, in the context of active Wnt signaling,
involves histone modifications at the Tcf3 promoter and
the activation of miR-211, which post-transcriptionally
stabilizes Tcf3 downregulation. Understanding the down-
stream effects of Wnt signaling in ESCs is of both
fundamental and translational relevance, as it may be
exploited to manipulate ESC differentiation towards
specific cell lineages.

Wnt-Mediated Tcf3 Down-Regulation in Mouse ESCs
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which was further confirmed by qRT-PCR and western blot

analysis (Figure 2A and 2B; and Figure S1). Further qRT-PCR

analysis revealed that the observed downregulation is specific for

Tcf3 but not for other members of the Tcf/Lef family (Figure

S2A). Whereas Tcf3 was down-regulated in both ApcNN and

ApcMin/Min ESCs, the latter encode for the most severely truncated

Apc mutant allele and therefore for a very high level of Wnt

signaling, other members of the Tcf/Lef family were exclusively

up-regulated in ApcMin/Min ESCs.

Accordingly, Wnt activation achieved in wild type cells either by

Wnt3a conditioned medium or by a GSK3-small molecule

inhibitor (SB-216763), confirmed that Tcf3 down-regulation is a

specific response to canonical Wnt signaling in mouse ESCs

(Figure 2C, 2D, and 2E, and Figure S2B and S2C). Moreover,

using a gradient of the GSK inhibitor SB-216763, we observed

that unlike the canonical Wnt targets Axin2 and Cdx1, downreg-

ulation of Tcf3 required a higher Wnt signaling level, possibly

explaining why Tcf3 downregulation is observed in ApcNN cells

but not ApcTT or ApcNT ESCs (Figure 2F and Figure S1).

Rescuing Tcf3 expression in ApcNN ESCs partially restores
neural differentiation

It has been previously shown that Tcf3 not only functions as a

controller of self-renewal in wild type ESCs, but it is also required

for proper neurogenesis in zebrafish, xenopus and mice

[11,16,21]. We therefore hypothesized that Tcf3 down-regulation

in ApcNN ESCs might mediate the neural differentiation defects

observed in these cells. To test this hypothesis, we rescued Tcf3

expression by stably over-expressing its full-length cDNA in

ApcNN ES cells (Figure 3A, 3B). Tcf3 over-expression decreased

TOP-Flash reporter activity (Figure 3C) and, accordingly, reduced

the transcript levels of Cdx1 and Brachyury (T), two well-known Wnt

downstream targets. Gene expression profiling of Tcf3-expressing

ApcNN cells confirmed that Tcf3 effectively reverses the expression

pattern of several genes differentially expressed in ApcNN when

compared to wild type ESCs (Figure S3).

Since it has been previously reported that Tcf3 over-expression

in wild type ESCs induces differentiation under self-renewing

conditions [5], we first assessed whether over expressing Tcf3 in

ApcNN ESCs induces similar effects in these cells. As reported

above, ApcNN cells can grow in 1i medium (i.e. in LIF+Mek

inhibitor) in the absence of GSK inhibitor (Figure 1C). To

investigate whether Tcf3 can restore their dependency on the

GSK inhibitor in serum-free culture, Tcf3-over expressing ApcNN

cells were seeded at clonal density under different conditions and

subsequently stained for alkaline phosphatase (AP) to evaluate the

percentage of undifferentiated colonies. We found that, similar to

the parental ApcNN cells, Tcf3-rescued clones show the highest

Figure 1. Wnt signaling regulates the differentiation potential of mouse ESCs in a dosage-dependent manner. A. b-catenin/TCF
reporter assay in wild type and Apc-mutant ESCs. Measurements are reported as the average luciferase units performed in triplicate for the TOP (filled
bars) and FOP (empty bars) reporter constructs (data reported is mean6SD). Numbers in the histogram represent the calculated TOP/FOP ratios. B.
Table summarizing the results obtained by teratoma differentiation assay from different Apc-mutant ESCs and their wild type controls. Tissue sections
were stained with hematoxylin and eosin (H&E) or used in immunohistochemical analysis using specific antibodies against the neural markers: GFAP,
neurofilaments and synaptic vesicles. Adult myosin was used as a mesodermal marker to stain the striated muscle differentiation. Cartilage
differentiation was assessed either by H&E or theonin staining. Two independent clones were used for each genotype and differentiation was scored
as: (2) not present, (+) weakly present, and (++) present. C. Histogram showing the percent of colonies formed after plating 500 FACS-sorted cells in
N2B27 medium supplemented with different combinations of LIF, Mek inhibitor (PD) and GSK-inhibitor (CHIRON). Bars represent mean 6 SD, n = 3. D.
Dendrogram derived from unsupervised hierarchical clustering of global gene expression in wild type, ApcTT, ApcNT and ApcNN ES cells. Pearson’s
correlation coefficient and Ward’s method were used after MAS 5.0 normalization of all probe sets.
doi:10.1371/journal.pgen.1003424.g001

Wnt-Mediated Tcf3 Down-Regulation in Mouse ESCs
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colony forming capacity in the presence of LIF and Mek inhibitor

(Figure 3D). Moreover, by applying the short term differentiation

assay in N2B27 medium, we found that both ApcNN and their

Tcf3-rescued counterparts retain expression of the pluripotency

markers Nanog while fail to express the early differentiation

markers Fgf5 (Figure 3E). Hence, constitutive Wnt signaling

prevents differentiation in a short-term assay despite the ectopic

Tcf3 expression.

We then asked whether rescuing Tcf3 expression in ApcNN cells

could affect the neural differentiation potential of these cells. To

this aim, we applied the in vitro neural differentiation assay

previously described by Bibel et al. [30]. We found that, whereas

wild type ESCs readily gave rise to Tuj1-positive cells, no staining

could be detected in ApcNN cells, while only few dispersed Tuj1-

expressing cells were observed in the Tcf3 rescued clones

(Figure 3F). In contrast, a clear increase in Nestin expression was

observed in Tcf3 over-expressing cells (Figure 3G and Figure S4).

This suggests that, although Tcf3 could not restore the formation

of fully mature Tuj1-proficient neurons, it does affect neural

differentiation in vitro in a more subtle fashion towards neural

Figure 2. Wnt signaling downregulates Tcf3 expression in mouse ESCs. A. qRT-PCR analysis of Tcf3 in wild type, ApcNN and ApcMin/Min ESCs.
Actb was used as an internal control; bars represent n = 2 6 SD. B. Western blot analysis of the core pluripotency markers Oct4, Nanog, Sox2 and Tcf3
on protein lysates isolated from two independent ApcNN clones and wild type control ESCs. Actb and Tubulin were used as an internal control. C–D.
qRT-PCR analysis of Tcf3 in wild type ESCs treated for different time intervals with Wnt3a conditioned medium (C), or with the GSK-inhibitor SB-
216763 (D). L-medium and DMSO were employed as controls, respectively. Actb was used as an internal control; bars represent n = 2 6 SD. E. Time
course western blot analysis of Tcf3 expression in wild type ESCs treated with Wnt3a conditioned medium (Wnt3a CM) or control L-medium (LM).
Actb was used as an internal control. F. qRT-PCR analysis of Tcf3 and Wnt target genes Axin2 and Cdx1 in wild type ESC treated for 48 h with different
concentrations of GSK-inhibitor SB-216763 or DMSO as control. Actb was used as an internal control; bars represent n = 2 6 SD.
doi:10.1371/journal.pgen.1003424.g002

Wnt-Mediated Tcf3 Down-Regulation in Mouse ESCs
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Figure 3. Characterization of Tcf3 over expressing ESCs. A–B. qRT-PCR (A) and western blot (B) analysis of Tcf3 in ApcNN ESCs stably
expressing Tcf3. Wild type and Tcf32/2 ESCs were used for comparison. Actb was used as an internal control. C. Histogram showing reduction of
b-catenin/Tcf reporter activity in ApcNN cells stably expressing Tcf3 (Tcf3 OE) compared to parental ApcNN cells and cells expressing the
corresponding empty vector. Luciferase signal from TOP or FOP reporter constructs were measured and TOP/FOP ratios are shown in the graph. Bars
represent n = 3 6 SD. D. Histogram showing the percent of alkaline phosphatase (AP) positive colonies formed by plating 500 FACS-sorted cells in
N2B27 medium after 7 days. N2B27 medium was supplemented with different combinations of LIF, PD and CHIRON. Two independent ApcNN ESC
clones (parental clone and transfected with empty vector) and three independent ApcNN ESC clones expressing Tcf3 (Tcf3 OE) were used. Bars
represent n = 3 6 SD. E. Histograms showing relative expression of the pluripotency markers Nanog and the early differentiation markers Fgf5 in
different ESCs cultured for 48 h in N2B27 medium. F. Confocal analysis of ES cells stained with Tuj-1-Alexa 488 and counterstained with the far-red
nuclear stain DRAQ5. Wild type, ApcNN and ApcNN expressing Tcf3 (Tcf3 OE) ESCs were used in 24/+4 neural differentiation assay and analyzed by

Wnt-Mediated Tcf3 Down-Regulation in Mouse ESCs
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progenitor-like cells. Next, we examined the differentiation

potential of Tcf3-rescued ES cells in vivo by teratoma assay. We

injected the newly generated clones into recipient isogenic mice to

generate teratomas and analyzed them for the expression of

different neuroectodermal markers by IHC. Interestingly, in

contrast to the control ApcNN teratomas which did not express

any neuroectodermal marker (0/20 analyzed teratomas), approx-

imately 50% of all teratomas generated from different Tcf3 over-

expressing ES clones were positive for the same set of markers (6/

10, 6/10, and 4/10 teratomas originated from clones 1, 2 and 3,

respectively)(Figure 4). However, the extent of neural differenti-

ation was lower compared to teratomas originated from wild type

ESCs. Unlike neuroectodermal lineages, Tcf3 did not rescue the

mesodermal cartilage-differentiation defect.

The observed difference in the results obtained by in vivo and in

vitro differentiation assay might reflect the presence of different

microenvironmental factors and the longer period of differentia-

tion in vivo, which result in a larger extent of neural differentiation

in teratomas.

Overall, these results indicate that Tcf3 expression in ApcNN

cells can partially rescue the neural differentiation defect

characteristic of these cells. Next, we then asked whether Tcf3

down-regulation in wild type embryonic stem cells is sufficient to

induce neural differentiation defects, characteristic of Wnt-high

ESCs. To this aim, teratomas were obtained by subcutaneous

transplantation of Tcf32/2 ESCs [14] followed by IHC and qRT-

PCR analysis of different neural markers. We observed reduced

neural differentiation in Tcf32/2 teratomas when compared to

wild type controls (Figure 5). However, high expression of the

pluripotency markers Oct4 and Nanog was also observed in Tcf32/2

teratomas (Figure 5). IHC analysis of Oct4 also showed that

Tcf32/2 teratomas are largely composed of undifferentiated,

embryonic carcinoma (EC) -like cells, confirming their undiffer-

entiated nature. This is in contrast with ApcNN teratomas where

pluripotency markers were down-regulated. These results suggest

that Tcf3 down-regulation in wild type ES cells is necessary but

insufficient to fully inhibit neural differentiation, and that

canonical Wnt signaling is still required for redirecting the

differentiation towards non-neuroectodermal lineages.

Tcf3 down-regulation in ApcNN ESCs is associated with
histone modifications

To elucidate the mechanisms underlying Wnt-driven repression

of Tcf3 expression, we first analyzed its promoter activity in ApcNN

and wild type ESCs to localize the responsible regulatory elements.

We employed luciferase reporter constructs containing a 6.7 kb

genomic fragment upstream of the mouse Tcf3 ATG translation

start site as well as a series of different deletion constructs spanning

4.5 kb, 3.5 kb, 2.2 kb, 1.2 kb and 176 bp fragments of the same

region (Figure S5A) [31]. The 4.5 kb fragment was previously

shown to resemble endogenous Tcf3 expression in mouse embryo

as well as embryonic derived neural stem cells [31]. To test

whether Wnt signaling affects Tcf3 promoter activity, we

transfected the different Tcf3 promoter constructs in ApcNN and

wild type ESCs. Likewise, transfected wild type ESCs were also

treated with Wnt3a conditioned medium or L-control medium to

examine Tcf3 promoter activity. Using both approaches, we found

that the Wnt-mediated repression of Tcf3 is not regulated by

elements located within the 6.7 kb promoter region (Figure S5A).

However, we cannot exclude the possibility that long-range

enhancer elements located outside the 6.7 kb promoter region

might still contribute to the observed Tcf3 repression in Wnt

context.

The mouse Tcf3 promoter contains a large CpG island

extending over exon 1, 2 and 3. This indicates that DNA

methylation may play a role in the regulation of Tcf3 expression

[32]. To test whether the observed Tcf3 down-regulation in ApcNN

ESCs results from DNA methylation, we employed the bisulfite-

conversion method followed by sequencing and methylation-

specific PCR to analyze the Tcf3 promoter in ApcNN cells and

compare its methylation pattern to wild type ESCs. As depicted in

Figure S5B, we found that similar to wild type ESCs, the Tcf3

promoter is unmethylated in ApcNN cells thus suggesting that

DNA methylation is unlikely to represent the mechanism

underlying Wnt-driven Tcf3 down-regulation in mouse ESCs.

Active and repressed promoters are thought to be associated

with histone marks, which reflect the gene expression status of the

corresponding genes. To test whether Tcf3 down-regulation in

ApcNN cells is regulated via chromatin modifications, we

performed chromatin immunoprecipitation (ChIP) to analyze

post-translational histone modifications associated with active and

repressed promoters. We studied the active-chromatin marks

H3K4me3 and H3-acetylation as well as the repressed-chromatin

marks H3K27me3 and H3K9me3 in the Tcf3 promoter and

compared the histone modification patterns between ApcNN and

wild type ESCs. The immunoprecipitated chromatin was then

assessed by qPCR analysis with a panel of specific primers

covering a region encompassed between 22 kb to +2 kb from the

transcription start site (TSS), as well as 20 kb of the gene body

within the Tcf3 locus. In accordance with the observed Tcf3

downregulation in ApcNN cells, we found a decrease in the

activating marks H3K4me3 and H3Ac and, to a lesser extent, a

slight increase in the repressive marks H3K27me3 and H3K9me3

(Figure 6). Similarly, 12 h treatment of wild type ESCs with

Wnt3a conditioned medium significantly reduced the H3Ac and

H3K4me3 activating marks but had no effect on the H3K27me3

and H3K9me3 repressing marks (Figure S6). These data

demonstrate a correlation between Tcf3 expression and histone

modifications in its promoter suggesting that Wnt signaling might

regulate Tcf3 expression through epigenetic mechanisms. How-

ever, the mediator of this regulation still remains elusive.

miR-211, a novel Wnt-regulated microRNA, targets Tcf3
and attenuates early neural differentiation in wild-type
ESCs

It has been previously shown that members of the core

pluripotency circuit are fine-tuned via microRNA-mediated

regulation in embryonic stem cells [33,34,35,36,37]. Therefore

we tested the idea whether Wnt-driven repression of Tcf3

expression might also be mediated, post-transcriptionally, by

Wnt-induced miRNAs. To this aim, we profiled the different Apc-

mutant ESCs for microRNA expression by using a miRNA array

immunofluorescence after 13 days of culture. G. Flow cytometric analysis showing expression of the neural progenitor marker Nestin in ApcNN ESCs
stably expressing Tcf3 (Tcf3 OE) and their control cells (parental ApcNN clone and ApcNN transfected with the corresponding empty vector) or wild
type ESCs. Cells were analyzed by the 24/+4 neural differentiation assay and stained with specific antibody against Nestin and Tuj1 after 13 days of
culture. Wild type (WT) ESCs are shown as control to indicate the Tuj1 positive population which is absent in other genotypes (0.1% in average in Tcf3
OE clones). Numbers in the graph represent the percent of Nestin-positive cells. For wild type ESCs the Nestin-positive populations before and after
excluding the mature neurons are shown. See also Figure S4 for defining different FACS gates.
doi:10.1371/journal.pgen.1003424.g003

Wnt-Mediated Tcf3 Down-Regulation in Mouse ESCs
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encompassing specific probes for all known mouse miRNAs [38]

(data not shown). Of the different candidate miRNAs induced

upon Wnt activation, mmu-miR-211 showed a Wnt dosage-

dependent up-regulation among the different Apc-mutant ESCs

(Figure 7A). Accordingly, activation of Wnt signaling in wild type

ESCs either by Wnt3a conditioned medium (CM) or by GSK3

inhibition, confirmed that miR-211 is a novel Wnt-regulated

microRNA in mouse embryonic stem cells (Figure 7B and 7C).

In silico analysis with three software packages, namely Miranda

[39], Targetscan [40] and PicTar [41], pointed to several potential

Figure 4. Rescue of Tcf3 expression in Apc NN ESCs partially restores in vivo neural differentiation. Teratoma samples were obtained
from wild type, ApcNN and ApcNN stably expressing Tcf3 (Tcf3 OE) ESCs. Tissue sections were stained by H&E, thionin (marker of cartilage
differentiation), and by IHC with specific antibodies against the neural differentiation markers GFAP, 2H3 (neurofilaments) and SV2 (synaptic vesicles).
Oct4 IHC analysis was used to asses the presence of undifferentiated EC-like cells in the teratomas.
doi:10.1371/journal.pgen.1003424.g004

Wnt-Mediated Tcf3 Down-Regulation in Mouse ESCs
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miR-211 target genes predicted by all three programs. To narrow

down the list of potential targets, qRT-PCR analysis was performed

on wild type ESCs compared with ApcNN (Figure S7A) as well as on

wild type ESCs treated with Wnt3a CM (Figure S7B). We excluded

those predicted targets that showed up-regulation upon Wnt

signaling. Based on these results Sox11, Sf3b1 and Tcf3 were

selected for further analysis. Several stable ESC clones were

generated which ectopically over-express miR-211 in an otherwise

Figure 5. Tcf3 downregulation in wild-type ES cells impairs but does not fully inhibit neural differentiation. A. Immunohistochemistry
analysis was used to evaluate the neural differentiation in teratoma samples derived from Tcf32/2 or their wild type control (GS1) ESCs.
Immunostaining with specific antibodies revealed retention of the pluripotency marker Oct4 and expression of the neural markers GFAP,
neurofilaments (2H3) and synaptic vesicles (SV2) in Tcf32/2 teratomas. Thionin staining was used to evaluate cartilage differentiation. B. RNAs were
isolated from different teratoma samples and analyzed by qRT-PCR for differentiation markers. Dot plots show normalized qRT-PCR values for the
neural markers Map2, b-III-Tubulin and GFAP and for the pluripotency markers Oct4 and Nanog among the different teratoma samples. Each dot
represents one sample.
doi:10.1371/journal.pgen.1003424.g005
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wild type background (Figure S7C). Western blot analysis showed

that, unlike Sox11 and Sf3b1 (Figure S7D), Tcf3 protein level was

decreased upon miR-211 ectopic expression (Figure 7D). To

confirm that miR-211 directly targets Tcf3, we cloned the 39

untranslated region (39UTR) of the mouse Tcf3 gene in the

pmirGLO reporter plasmid (Figure 7E) and performed a luciferase-

based reporter assay. Transfection of HEK293 cells with the Tcf3-

39UTR reporter plasmid confirmed that Tcf3 is a direct target of

miR-211 (Figure 7F). The inhibitory effects of miR-211 were not

observed when mutant forms of the 39UTR, i.e. lacking 7 or 4

nucleotides of the miRNA seed sequence target (MTR1 and MTR2

respectively) were used (Figure 7F).

We next assessed the differentiation potential of miR-211 over-

expressing clones using in vitro neural differentiation assay as well

as in vivo teratoma formation. FACS analysis for Tuj1, a marker for

mature neurons and Nestin, revealed that both miR-211 over-

expressing ES cells and their wild type controls give rise to similar

number of neurons and neural progenitor cells after 13 days of in

vitro differentiation, thus suggesting that miR-211 does not affect

terminal neural differentiation. As expected, ApcNN cells show a

dramatic reduction in mature, Tuj1-proficient neurons

(Figure 7G). Teratoma formation assay also confirmed that miR-

211 does not suffice to inhibit neural differentiation (data not

shown).

To evaluate the role of miR-211 at earlier stages of differen-

tiation, we derived embryoid bodies (EBs) from miR-211 over-

expressing cells and their wild type controls and analyzed lineage

differentiation at different time points. EBs derived from wild type

ES cells encompass differentiated lineages from the three germ

layers, thus providing an in vitro assay recapitulating the early steps

of embryonic development. qRT-PCR analysis for different

lineage-specific markers indicated that, unlike mesodermal,

endodermal and pluripotency markers (data not shown), early

neuroectodermal differentiation was specifically attenuated by

miR-211. We found that expression of the primitive ectoderm

marker Fgf5 and of the neural progenitor markers Nestin and Pax6

as well as the early neural differentiation marker Sfrp2 were

repressed at day 3 of EB formation. Notably, these effects could

not be detected at later time points (day 6, 9 or 12; data not

shown). Similar results were obtained at early time points (i.e. after

24 h) in N2B27 culture medium, previously described to induce

neural differentiation in mESCs [42] (Figure 7H and 7I). These

results suggest that miR-211 functions at early stages of neural

differentiation and its ectopic expression in wild type ES cells is not

sufficient to inhibit further neural commitment as differentiation

proceeds.

Altogether, our results indicate that miR-211, a novel Wnt-

regulated miRNA, can fine-tune Tcf3 expression and attenuate

early neural differentiation in wild type ESCs.

Discussion

The role of Wnt/b-catenin signaling in controlling self-renewal

and lineage differentiation in pluripotent embryonic stem cells has

Figure 6. Regulation of Tcf3 in ApcNN ESCs is associated with histone modifications. Schematic representation of mouse Tcf3 locus and
the different amplicons (P1–P8) analyzed by QPCR in chromatin immunoprecipitation experiment. Chromatin was isolated from ApcNN and wild type
ESCs and was immunoprecipitated with specific antibodies against the activating histone marks (H3K4me3 and H3Ac) and the repression histone
marks (H3k27me3 and H3K9me3). The input DNA (chromatin before immunoprecipitation) and immunoprecipitated DNA was quantified by QPCR
and using specific primers as described in materials and methods. Values from each amplicon were normalized to input chromatin and fold change
was calculated relative to the corresponding negative region (P1). Bars represent n = 26SD.
doi:10.1371/journal.pgen.1003424.g006
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Figure 7. The Wnt-regulated miR-211 targets Tcf3 in mouse ESCs. A. qRT-PCR analysis showing a dosage-dependent up-regulation of miR-
211 in different Apc-mutant ESCs. SnoRNA-234 was used as an internal control; bars represent n = 26SD. B–C. Time course analysis of wild type ESCs
treated with Wnt3a conditioned medium (B) or with the GSK-inhibitor SB-216763 (C). L-medium and DMSO were used as controls, respectively. RNAs
were isolated at different time points and were subjected to qRT-PCR analysis of miR-211 or snoRNA-234 as an internal control. Bars represent
n = 26SD. D. Western blot analysis of Tcf3 expression in protein lysates isolated from independent clones of wild type ESCs stably expressing miR-211
(miR-211 OE) or the corresponding empty vector (control). Two independent ApcNN clones were included for comparison. E. Schematic
representation of the Tcf3-39-UTR luciferase vector derived from the pmirGLO construct (Promega). Sequence alignment between miR-211 and its
target site on Tcf3-39-UTR. Site directed mutagenesis was used to introduce 7-bp or 4-bp mutations in Tcf3-39-UTR. F. HEK-293 cells were
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been a matter of controversy. Although both GSK3 inhibitors and

Wnt ligands are essential to support ESCs self-renewal, it is yet

unclear whether this occurs through b-catenin- and TCF-

dependent mechanisms [43]. Among the members of the Tcf/

Lef family of transcription factors, Tcf3 and Tcf1 are the most

abundant in ES cells. This is of relevance as, while Tcf1 appears to

function as a canonical transcriptional activator upon association

with b-catenin, Tcf3 acts as a b-catenin-independent transcrip-

tional repressor of self-renewal, suppressing genes such as Nanog,

Oct4 and other members of the core pluripotency circuitry [17,19].

In this scenario, it is yet unclear how canonical Wnt signaling

controls the balance between Tcf1- and Tcf3-mediated gene

activation and repression in the regulation of self-renewal and

differentiation in ESCs.

During the last few months, several studies have been published

on the specific roles of b-catenin and Tcf3 in these processes

[4,5,6,44]. In the classical Wnt model, Tcf factors bind DNA and

repress gene expression in the absence of active Wnt signaling.

Activating the signaling pathway leads to the binding of b-catenin

to Tcf proteins thus converting them from transcriptional

repressors to transcriptional activators. Among the four members

of Tcf/Lef family, Tcf3 seems to be different as its repressor

function is not directly affected by Wnt signaling. In this

perspective, two modes of action have been described for the

relief of Tcf3 repression by Wnt signaling: 1) Tcf3 phosphorylation

by homeodomain interacting protein kinase 2 (HIPK2) which is

mediated by b-catenin and results in displacement of Tcf3 from its

target sites [45]; and 2) direct physical interaction between b-

catenin and Tcf3 which displaces Tcf3 and inhibits its repressive

role in the context of active Wnt signaling [6,46]. Recently, using a

knock-in mouse model lacking the b-catenin-interaction domain of

Tcf3, Wu et al have demonstrated that counteracting Tcf3

function is not mediated by the physical interaction between b-

catenin and Tcf3 during the first stages of embryonic development

[47]. In view of these models, our data suggest that transcriptional

and post-transcriptional down-regulation of Tcf3 expression might

be yet another mechanism by which Wnt signaling inhibits Tcf3

function. It is worthwhile mentioning, however, that Wnt signaling

does not seem to fully suppress Tcf3 expression and that residual

levels of Tcf3 are retained even in the most severely truncated Apc

mutant alleles (i.e. ApcMin/Min ESCs; Figure 2A) which encode for

extremely high Wnt signaling dosages. Altogether these observa-

tions suggest that Wnt/b-catenin signaling regulates Tcf3 at

several levels and by a combination of multiple mechanisms

during different stages of embryonic development.

Although over-expression of a dominant negative form of Tcf1

or Tcf4 reduced the canonical Wnt reporter activity (TOP-Flash),

it failed to rescue the neural differentiation in GSK-null ESCs

[25]. Inhibition of b-catenin in GSK3b-null ESCs, however, was

sufficient to rescue the neural differentiation defect thus confirm-

ing the central role of b-catenin-dependent mechanisms in this

process [25]. The partial rescue of neural differentiation by Tcf3

expression in ApcNN cells, as shown here, highlights the distinct

role of Tcf3 from other members of the Tcf/Lef family and

suggests that a plethora of Tcf3-dependent and -independent

mechanisms underlie the Wnt-regulated lineage differentiation in

embryonic stem cells.

As for self-renewal maintenance in ES cells, Wray et al have

shown that a mutant form of b-catenin where the trans-activating

domain was deleted, can still maintain self-renewal in mESCs

cultured in 2i medium [6]. This suggests that maintenance of self-

renewal is mediated by Tcf3 displacement rather than b-catenin

signaling in 2i culture. Based on this, one can hypothesize that

forced overexpression of Tcf3 in Wnt context could restore the

dependency on CHIRON in serum-free culture. Our data show

that Tcf3 overexpression in ApcNN cells does not induce

differentiation in 2i culture, highlighting the dominant role of

Wnt signaling in this process. This is in line with the report by Yi

et al. which showed that over expressing Tcf3 in the context of

Wnt signaling activation has minimal effect on self-renewal

suggestive of a synergistic action of Tcf3 antagonism and b-

catenin/Tcf1 signaling [5].

In an attempt to elucidate the mechanisms underlying Tcf3

downregulation in the context of active Wnt signaling, we found

that Tcf3 down-regulation does not require DNA methylation but

is associated with alterations in histone marks at the core Tcf3

promoter region which are likely to regulate Tcf3 expression.

Notably, these modifications occur shortly after Wnt stimulation

and it is plausible to think that the chromatin modifications within

the Tcf3 locus can trigger the downregulation process of Tcf3

expression which can be stabilized further on via miR-211

function. Epigenetic regulation through histone modification or

DNA methylation was also shown previously for other antagonists

of Wnt signaling such as DACT3, sFRPs, WIF1 and DKK-1 in

different cancer cells [48,49,50,51]. Further experiments are

required to clarify whether this mode of gene repression is a

general mechanism for Wnt-induced gene silencing in embryonic

stem cells and tumor cells. Although the mediator of the observed

chromatin modifications downstream of Wnt signaling remains

elusive, we found that the putative cis-acting element, if any, is not

located in the 6.7 kb promoter region which was previously

described to regulate Tcf3 expression in different cell types [31].

Further work is needed to identify and study these cis-acting

elements which might be of potential interest for providing further

insight into the transcriptional repression downstream of Wnt

signaling.

As an additional regulatory mechanism, we also described a

novel Wnt-induced micro RNA, miR-211, and demonstrated that

it targets Tcf3 in ApcNN ESCs. However, miR-211 over-

expression in wild type ESCs does not reduce Tcf3 levels to the

same degree as observed in ApcNN ES cells thus suggesting that

multiple Wnt-mediated mechanisms are likely to exist. On the

other hand, microRNAs usually exert their function by targeting

multiple genes and it is plausible that miR-211 inhibits early

neural differentiation in mESCs by repressing target genes other

than Tcf3. Further experiments are required to characterize the

loss of miR-211 function phenotype in mouse ESCs in order to

evaluate the long-term effects on neural differentiation. The

co-transfected with the Tcf3-39-UTR luciferase vector, and either with miR-211 or a non-targeting miRNA. Luciferase activity was measured 24 h post-
transfection and normalized to Renilla luciferase signal. The same experiment was repeated with the mutant luciferase vectors, MTR1 and MTR2.
Asterix represent P-value,0.01 and bars represent n = 36SEM. G. Flow cytometric analysis of Tuj1 and Nestin in miR-211 over expressing ESCs (miR-
211 OE) and their controls (Emp) after 13 days of neural differentiation. Two independent clones were used for each genotype and representative
example of each genotype is shown. Numbers in the graph represent the percent of cells in neural (green), progenitor (red) or negative (blue)
populations. H. Histogram showing the relative expression of early neural markers Fgf5, Nestin, Pax6 and Sfrp2 in embryoid bodies derived from
independent wild type ESCs clones stably expressing miR-211 or the corresponding empty vector. RNAs were isolated at different time points and
were analyzed by qRT-PCR for different lineage markers. Bars represent n = 26SD. I. qRT-PCR analysis of Fgf5, Nestin, Pax6 and Sfrp2 in wild type ESCs
stably expressing miR-211 or the corresponding empty vector, cultured for 24 h in N2B27 medium. Bars represent n = 26SD.
doi:10.1371/journal.pgen.1003424.g007
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observation that Wnt signaling induces miR-211 expression might

also be of interest for other disciplines of research and in particular

cancer. In line with our observation, a tumor promoting function

has recently been described for miR-211 in colorectal cancer cells

[52]. Accordingly, miR-211 has also been shown to play a key role

in melanoma tumor formation and metastasis, as well as

mesenchymal to epithelial transition (MET) [53,54,55]

Taken together, we have revealed two downstream effects of

Wnt signaling which contribute to the differentiation defects

observed upon constitutive activation of canonical Wnt signaling,

namely downregulation of Tcf3 expression and induction of miR-

211. These cooperatively contribute to the inhibition of neural

differentiation previously observed in Apc-mutant mouse ESCs

[1]. We suggest that Wnt signaling represses Tcf3 expression

possibly by altering the histone marks at the Tcf3 promoter and

by activating miR-211 expression, thus extending our under-

standing of Tcf3 regulation in stem cells. In the future, additional

studies are required to elucidate how these mechanisms

contribute to the regulation of Tcf3 expression and, more in

general, how Wnt signaling regulates stemness in embryonic and

adult stem cells.

Materials and Methods

Ethics statement
This study was carried out in strict accordance with the

recommendations in the Guide for the Care and Use of

Laboratory Animals of the National Institutes of Health. The

protocol was approved by the Committee on the Ethics of Animal

Experiments of the Erasmus Medical Center (DEC permit

numbers EMC 2351). All efforts were made to minimize suffering.

ES cell cultures and expression vectors
Apc1638N/+ and Apc1638T/+ animals, kept on an inbred C57Bl6/J

background, were bred to derive ES cells from pre-implantation

blastocyts according to previously described protocols [56]. Cells

were cultured on MEFs inactivated by Mitomycin-C (Sigma) in

Dulbecco’s Modified Eagle’s Medium (DMEM, Gibco) supple-

mented with 10% fetal calf serum (FCS, Gibco), L-glutamine

(2 nM, Gibco), Na-Pyruvate (1 mM, Gibco), non essential amino

acids (0.1 mM each, Gibco), 2-mercaptoethanol (55 mM, Gibco)

and LIF (1000 U/ml, Milipore). Bruce 4 ESCs were purchased

from American Type Culture Collection (ATCC) and Tcf32/2

and their wild type control GS1 ESCs were obtained as previously

decribed [14]. To stimulate Wnt signaling in wild type ESCs, cells

were cultured on gelatin coated dishes and treated with Wnt3a-

conditioned medium (collected from L-cells expressing Wnt3a

plasmid) or L-control medium (collected from parental L-cells).

Conditioned media were diluted 1:1 with ES medium and added

to wild type ESCs for different time points. The Gsk-inhibitor SB-

216763 was purchased from Sigma, dissolved in DMSO and used

at 10 mM final concentration. DMSO was used as control in all

the experiments.

Stable clones over expressing mmu-miR-211 were generated by

transfecting Bruce4 wild type ESCs with miR-211 expressing

plasmid pEZX-MR01 (Genecopoeia), or the corresponding empty

vector. Several G418 resistant clones (200 mg/ml) were selected

and validated for miRNA expression. In order to generate Tcf3

over expressing ESCs, ApcNN ESCs were co-transfected with

pCAG-HA-Tcf3-IRES-EGFP (gift of Dr. Bing Lim, National

University of Singapore, Singapore,) and Hygromycin resistance

plasmid. Transfected ES cells were selected for Hygromycin

(150 mg/ml). GFP expression in resistant clones was employed for

validation purposes. Several independent clones were isolated and,

upon validation by qPCR and western blot analysis for Tcf3

expression, employed for subsequent experiments.

The Tcf3-39-UTR plasmid was obtained by PCR amplification

from mouse genomic DNA of a 565 bp fragment encompassing

the Tcf3-39-UTR inclusive of the miR-211 target site (forward

primer 59-AAATTGAGCTCTCCCCTTGCGCTGTGGTG-39;

reverse primer 59-AAAAACTCGAGGGTGGGGGAAGGGG-

CAGA-39). PCR products were digested with SacI and XhoI and

ligated into SacI and XhoI-cut pmirGlo plasmid (Promega). All

constructs were sequenced to verify their authenticity.

Microarray analysis
RNA was isolated using the RNeasy Mini Kit (QIAGEN) from

cells lysed directly on the plate; a DNase step on the column was

performed according to manufacturer’s instructions. RNA quality

was controlled by RNA 6000 Nano LabChip kit (Agilent

Technologies). RNA was labeled using the GeneChip One-Cycle

Target Labeling kit, hybridized to MOE430 2.0 arrays (Affyme-

trix) according to manufacturer’s instructions. For data analysis,

CEL files were uploaded and normalized using MAS 5.0

algorithm in Expression Console software (Affymetrix, Inc).

Expression analysis was performed using Partek Genomics Suite

6.5 ((Partek Inc., St. Louis, MO) and Excel 2010 (Microsoft). A

robust empirical method coupled with a validation step using

qRT-PCR was used to confirm the modulation of gene expressions

between different genotypes. A modulation of gene expression was

validated when the observed fold-change is $1.5 and correspond-

ing to none overlapping individual values, not present in the

background. The unsupervised hierarchical clustering was per-

formed after MAS 5.0 normalization, using Pearson’s dissimilarity

as distance measure and Ward’s method for linkage analysis.

DNA methylation analysis
ESCs were cultured on 0.1% gelatin-coated dishes without

MEFs for 2 passages and genomic DNA was isolated using

DNeasy Blood & Tissue Kit (Qiagen). 1 mg of genomic DNA was

used in bisulfite conversion reaction using EZ DNA Methylation

Kit (Zymo Research) according to the manufacturer’s instructions.

Converted DNA was amplified by PCR using specific primers

(Table S2) designed with Methyl Primer Express Software 1.0

(Applied Biosystems) or MethPrimer software [57].

The PCR amplification was carried out using KAPA2G Robust

HotStart Taq DNA polymerase (Kapa biosystems) and PCR

conditions were: 95uC for 3 min and 39 cycles of 95uC for 15 s, 57

or 53uC for 15 sec and 72uC for 15 sec, followed by 10 min at

72uC. PCR products from Region A, B and D were employed in

direct sequencing using ABI BigDye Terminator and ABI 31306l

genetic analyzer (Applied Biosystems).

Embryoid body formation
ESCs were trypsinized, re-suspended in ES medium and plated

on gelatin-coated culture dishes for 30 min to remove MEFs. Non-

attached ESCs were resuspended in EB medium (ESCs medium

without LIF) at a cell density of 26105 cells/ml and plated on a

non-adherent bacterial dish to initiate EB formation. EBs were

collected by centrifugation (800 rpm for 5 min) every three days

and re-suspended in fresh medium. 1/5 volume of EBs suspension

was used for RNA extraction while the remaining EBs were kept in

culture until day 12.

N2B27 short term differentiation
Differentiation assays were performed as previously described

[42]. Shortly, cells were trypsinized and plated on gelatine-coated
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dishes in N2B27 medium consisting of DMEM/F12:Neurobasal

medium (1:1, Gibco) supplemented with N2 and B27 (Gibco).

Cells were harvested after 24 h or 48 h of differentiation for

further analysis.

24/+4 neural differentiation assay
Neuronal differentiation of ESCs was induced as previously

described [30]. Briefly, ESCs were trypsinized and incubated in

ES medium on gelatine-coated dishes for 30 min. to allow

attachment of MEFs. Non attached cells were collected and

36106 cells were cultured in 10 cm. non-adherent bacterial dishes

(Greiner Bio-One) in EB medium for 8 days. Medium was

refreshed every 2 days and 5 mM all-trans retinoic acid (Sigma)

was added at day 4 and 6. On day 8 cells were trypsinized and

plated on poly-L-ornithine/laminin-coated dishes at a density of

26105 cells/cm2 in N2 medium. Poly-L-ornithine (Sigma) and

laminin (Roche) were used at final concentrations of 0.1 mg/ml

and 20 mg/ml, respectively.

N2 medium was refreshed after 2 and 24 hrs. from cell plating

to remove dead cells. The N2 medium consisted of: DMEM/F12

(Gibco) supplemented with L-glutamine (Gibco), Nonessential

amino acids (GIBCO), Insulin (25 ug/ml, Sigma), Progesterone

(20 nM, Sigma), Putrescine (100 nM, Sigma), Transferrin (50 mg/

ml, Sigma), Bovine serum albumin (50 mg/ml, Sigma), Sodium

selenite (30 nM, Sigma) and Penicillin-Sterptomycin (Gibco).

After 48 h from cell plating, medium was changed to N2B27

and refreshed every 2 days. Cells were collected after 5 days of

plating for further analysis.

Colony forming assay and alkaline phosphatase staining
Cells were trypsinized and plated on 0.1% gelatin-coated dishes

for 30 min to remove MEFs. 500 FACS sorted cells were plated on

each well of a gelatinized 24-well plate in N2B27 medium

supplemented with different combinations of CHIR99021 (3 mM,

Stemgent), PD0325901 (1 mM, Stemgent) and LIF (1000 U/ml,

Milipore). Total number of colonies were counted after 5 days

from plating upon staining with alkaline phosphatise (Milipore)

according to manufacture’s instructions.

Teratoma formation
Teratomas were obtained upon subcutaneous injection of

56106 cells (in PBS) into C57Bl6/J, for Apc-mutant ESCs (and

their wild type controls), and NOD/SCID, for Tcf32/2 ESCs (and

their wild type controls), recipient mice. Teratomas were collected

after 2–3 weeks and used for further experiments.

RNA isolation, cDNA synthesis, and qRT–PCR
RNA was isolated using Trizol (Invitrogen) or RNeasy Mini

Kit (QIAGEN) and treated with DNase (Ambion) to remove

contaminating genomic DNA. For gene expression analysis

cDNA was synthesized using 1 mg RNA and the RevertAid H

Minus First Strand cDNA Synthesis Kit (Thermo). microRNA

expression analysis was performed using 40 ng of total RNA

isolated by Trizol and employed in cDNA synthesis reaction

using TaqMan MicroRNA Reverse Transcription kit (ABI). Real-

time RT-PCR was performed using Applied Biosystems inven-

toried assays or TaqMan MicroRNA Assays on a 7900HT ABI

real-time PCR system (Applied Biosystems). The Delta-Ct

method was used to quantify the mRNA or miRNA relative

gene expressions. Actb or snoRNA234 were used for normalization,

respectively. qPCR analysis of the selected genes were performed

using Fast SYBR Green Master Mix (ABI) and the primers listed

in Table S2.

Immunohistochemistry
Isolated teratomas were fixed in PFA (4%) and embedded in

paraffin. Five mm sections were mounted on slides stained by H&E

for routine histology. Antibodies employed for IHC analysis

included: rabbit anti-GFAP (1:5000, Z0334, DAKO,); mouse 2H3

against Neurofilaments (1:50, Developmental Studies Hybridoma

Bank); mouse SV2 against Synaptic vesicles (1:50, Developmental

Studies Hybridoma Bank); mouse A4.1025 against Adult myosin

(1:50, Developmental Studies Hybridoma Bank); goat anti-Oct3/4

(1:100, sc-8629, Santa Cruz). Signal detection was performed

using HRP-conjugated Goat anti mouse (1:250, Jackson Immu-

noResearch), rabbit-anti-Goat-HRP (Dako) or Rabbit Envision kit

(Dako).

Immunofluorescence and confocal microscopy
Cells were harvested and fixed in 2% PFA for 20 min, washed

with PBS, and permeabilized with 0.1% triton X-100 in PBS for

15 minutes. Cells were then incubated in Blocking solution (PBS,

4% FCS) for 30 min., stained overnight at 4uC with the primary

antibody, washed and finally incubated with the secondary

antibody for 2 h. Confocal analysis was performed with a Zeiss

LSM510 confocal microscope. Tuj-1-Alexa488 was detected using

a 488 nm laser and BP 500–550 emission filter. DRAQ5 was

detected using a 633 nm laser and LP650 nm emission filter. Alexa

488-conjugated monoclonal anti-Tuj-1 was from Covance (A488-

435L) and was used at 1:4000 dilution.

Flow cytometry analysis
Flow cytometric analysis was performed with a BD FACSAria

III, using a yellow-green laser at 561 nm and a BP582/15

emission filter to detect anti-Nestin-PE antibodies, and 488 nm

laser and LP502 and BP530/30 emission filters for Tuj-Alexa-488

antibodies. A Live-Dead-Fixable red staining (Invitrogen) was

performed before fixation, to exclude dead cells and was detected

using a 633 nm laser and BP660/20 emission filter.

Alexa 488-conjugated anti-Tuj-1 antibody was used at a 1:4000

dilution and the mouse anti-nestin antibody was from BD (556309)

and was used at a 1:500 dilution together with a 2nd Rat-anti-

mouse PE-conjugated antibody (BD; 1:1000). DRAQ5 was from

Biostatus and was used as recommended by the manufacturer.

Luciferase reporter assays
For the b-catenin/TCF reporter assay, 56105 ES cells were

plated on 24-well plates seeded with MEFs and subsequently

transfected by Fugene HD (Roche) with 250 ng of the TOP-Flash

or FOP-Flash reporter constructs [28] together with 25 ng of the

Renilla luciferase vector for normalization purposes. Luciferase

activity was measured by Dual–Luciferase Reporter Assay System

(Promega). Tcf3 promoter activity was evaluated in ApcNN and

wild type ESCs similar to b-catenin/TCF reporter assay, as

mentioned above and by using Tcf3-promoter constructs (kindly

provided by Nina Solberg, SCI-CAST Innovation Center, Nor-

way) and pGL3 empty vector a control. To examine the effect of

Wnt3a treatment on Tcf3 promoter activity, cells were transfected

with luciferase constructs and treated with Wnt3a condition

medium or L-control medium for 48 h and luciferase activity was

measured using Dual–Luciferase Reporter Assay System (Pro-

mega).

For the 39UTR-Luciferase reporter assay, HEK293 cells were

plated in 24-well plates at a density of 0.56105 cells per well. Cells

were co-transfected with 250 ng of UTR (or MTR) reporter

plasmid and either mmu-miR-211 mimic or non-targetting

oligos (40 nM, Dharmacon) using lipofectamin 2000 (Invitrogen).
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Twenty-four hrs. after transfection, firefly-luciferase activity was

measured by Dual–Luciferase Reporter Assay System (Promega)

and normalized to the co-expressed Renilla luciferase signal.

Western blot analysis
ES cells were lysed using Cell Lysis Buffer (9803, Cell Signaling)

and a cocktail of protease inhibitors (11836170001, Roche).

Subsequently, NuPage LDS Sample Buffer (NP0008, Invitrogen)

and DTT (1 mM) were added. Primary antibodies employed in

western blot analysis included: Tcf3 (sc-8635, Santa Cruz); Sox2

(AF2018, R&D Systems); Sox11 (sc-20096, Santa Cruz); Oct4 (sc-

5279, Santa Cruz); Dyrk1A G-19 (G2905, Santa Cruz); Sap155/

Sf3b1 (D138-3, MBL); Nanog (AB5731, Milipore); b-actin (A5441,

Sigma); b-tubulin (ab6046, Abcam). Lysates were loaded on 10%

SDS-PAGE (BIO-RAD System), and transferred onto Immobilon-

FL PVDF membrane (IPFL00010, Millipore). Blocking was

performed at room temperature using LI-COR Blocking buffer

(Part#927-40000) diluted 1:1 with PBS. Incubation with the first

antibody was performed overnight at 4uC. Blots were subsequently

incubated with fluorescent-labeled secondary antibodies for

30 min. at room temperature. Goat anti-mouse IgG – IRDye

680 (1:5000, LI-COR Biosiences), Goat anti-rabbit IgG – IRDye

800CW (1:5000, LI-COR Biosiences) and Donkey anti-goat-

IRDye 800CW (1:5000, LI-COR Biosiences) were used as

secondary antibodies. Fluorescent signal was detected using LI-

COR scanner (LI-COR Biosiences).

Site-directed mutagenesis
Two mutant forms of the Tcf3-39UTR-luc plasmid were

generated using QuikChange Lightning Site-Directed Mutagene-

sis Kit (Agilent, 210518). We introduced either 7 bp substitutions

in the miRNA binding site (AAAGGGA into CCCTTTC) to

generate the MTR1-Luc plasmid, or 4 bp (AAAGGGA into

cAcGtGc) to generate the MTR2-Luc plasmid. The following

mutagenesis primers were employed in the reaction:

For MTR1, sense primer is 59-tctgaaatggtccccccccctgcatttccctttcct-

caaggtgcctaccactgccttc-39 and antisense primer is 59-gaaggcagtgg-

taggcaccttgaggaaagggaaatgcagggggggggaccatttcaga-39. For MTR2

plasmid the sense primer is 59-gtccccccccctgcatttcacgtgcctcaaggtgcc-

tacc-39 and the antisense primer is 59-ggtaggcaccttgaggcacgtgaaatg-

cagggggggggac-39.

The mutagenesis reaction was performed according to manu-

facture’s instruction. Briefly, mutant strands were synthesized

using the described primers followed by DpnI digestion of the

amplification products to remove the parental methylated strands.

Digestion reactions were transformed in XL10-Gold Ultracom-

petent cells and bacterial clones with correct nucleotide substitu-

tions were used for further plasmid extraction.

Chromatin immunoprecipitation (ChIP)
ChIP was performed on wild type and ApcNN ESCs or on wild

type ESCs treated for 12 h with Wnt3a conditioned medium or L-

control medium (1:1 dilluted with ES medium). Briefly, cells were

fixed in 1% PFA for 30 minutes at room temperature and PFA

was quenched afterwards with 125 mM glycine. Cells were

washed with buffer B (0.25% Triton-X 100, 1 mM EDTA,

0.5 mM EGTA, 20 mM Hepes, pH 7.6), buffer C (150 mM

NaCl, 1 mM EDTA, 0.5 mM EGTA, 20 mM Hepes, pH 7.6).

Cells were then sonicated in ChIP incubation buffer (0.3% SDS,

1% Triton-X 100, 0.15 M NaCl, 1 mM EDTA, 0.5 mM EGTA,

20 mM Hepes, pH 7.6) using a BioRuptor sonicator (Cosmo Bio

Co., Ltd) to obtain DNA fragments 200–700 base pairs.

Chromatin was diluted in ChIP dilution buffer (with 0.15%

SDS) and incubated with BSA-blocked protein-A/G Sepharose

beads (Amersham) and 5 mg antibody overnight at 4uC. Antibod-

ies used in this study include: H3K4me3 (Abcam, Ab8580-50),

H3K27me3 (Upstate, 07-449), H3K9me3 (Abcam, Ab8898-100),

H3Ac (Millipore #06-599)

Beads were washed with buffer 1 (0.1% SDS, 0.1% deoxycho-

late, 1% Triton-X 100, 150 mM NaCl, 1 mM EDTA, 0.5 mM

EGTA, 20 mM Hepes pH 7.6), buffer 2 (0.1% SDS, 0.1%

deoxycholate, 1% Triton-X 100, 0.5 M NaCl, 1 mM EDTA,

0.5 mM EGTA, 20 mM Hepes pH 7.6), buffer 3 (250 mM LiCl,

0.5% deoxycholate, 0.5% NP-40, 1 mM EDTA, 0.5 mM EGTA,

20 mM Hepes, pH 7.6), and buffer 4 (1 mM EDTA, 0.5 mM

EGTA, 20 mM Hepes, pH 7.6). Chromatin was eluted for 30 min

at room temperature in elution buffer (1% SDS, 0.1 M NaHCO3)

and together with input chromatin, decrosslinked overnight at

65uC in the presence of 200 mM NaCl. DNA was extracted using

QIAquick PCR Purification Kit and was used in QPCR analysis

using Fast SYBR Green Master Mix (ABI) and primers indicated

in Table S2.

Supporting Information

Figure S1 qRT-PCR validation of microarray results. Selected

differentially expressed genes include Wnt and pluripotency-

related genes. Measurements were performed in duplicates and

using two independent cell lines per genotype. Actb was used for

normalization. Plots represent average 6 SD of normalized qRT-

PCR values for two independent clones of each genotype.

(TIF)

Figure S2 A. Histogram showing relative expression of Axin2

and of members of the Tcf/Lef family in wild type, ApcNN and

ApcMin/Min ESCs. Actb was used for normalization. Bars represent

n = 26SD. B–C. qRT-PCR analysis of Axin2 and of members of

the Tcf/Lef family in wild type ESCs treated for different time

intervals with Wnt3a conditioned medium (B) and with the GSK

inhibitor SB-216763 (C). L-medium and DMSO were used as

control media. Actb was used for normalization. Bars represent

n = 26SD.

(TIF)

Figure S3 Heat map showing the results of the qRT-PCR

validation of microarray data relative to selected genes. Genes

differentially expressed between ApcNN and wild type ESCs were

compared to the list of genes differentially expressed between

ApcNN and Tcf3OE cells (Table S3). Among several genes

overlapping between the two microarray studies, 15 were selected

for QPCR validation. The heat map shows the fold change values

obtained from the microarray (M) and qRT-PCR (Q) data.

ApcNN/WT values represent the average fold change of 2 ApcNN

versus 2 WT ES clones for each gene. Tcf3 OE/ApcNN values

represent the average fold change of three Tcf3 OE versus three

ApcNN clones (parental cells as well as empty vector transfected

cells) for each gene. Scale represents log2 values.

(TIF)

Figure S4 Supporting data to Figure 3. Flow cytometric analysis

of wild type (WT) ESCs cells stained with isotype controls or

Nestin and Tuj1 specific antibodies. The double staining allows

the identification of Nestin positive neural progenitors and Nestin-

negative/Tuj-positive mature neurons (highlighted in green). The

left panel shows the Nestin-PE versus Tuj1 and the right panel

indicate the Nestin-PE against forward scattering (FSC) of the

same sample. Since Tcf3 over expressing clones gave rise to 0.1%

mature neurons in average, the Nestin-PE versus FSC has been

used in Figure 3.

(TIF)
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Figure S5 A. Tcf3 promoter activity in Wnt high and Wnt low

ESCs. Luciferase constructs containing different Tcf3 promoter

fragments were co-transfected with Renilla luciferase and the

relative promoter activity is shown after normalization to Renilla-

luciferase values. To monitor the effect of Wnt signaling on Tcf3

promoter activity, luciferase constructs were transfected in wild

type ESCs, followed by 24 h treatment with Wnt3a-condition

medium (Wnt3a) or L-control medium (LM). Similarly, luciferase

constructs were transfected in 2 independent clones of ApcNN or

wild type ESCs and promoter activity was measured after 48 h of

transfection. The genomic location of different Tcf3 promoter

fragments is depicted in the scheme. Bars represent n = 26SD. B.

DNA methylation analysis of Tcf3 promoter. Schematic repre-

sentation of the mouse Tcf3 promoter defined by the 59UTR and

,2 kb large CpG island extending into exons 1–3. For the

purpose of methylation analysis, the CpG island was subdivided

into regions A, B, C and D. Genomic DNA was first bisulfite-

converted and the individual regions either employed in bisulfite-

specific PCR followed by DNA sequencing (region A, B and D), or

used in methylation-specific PCR assays (region C). Arrows

represent methylated (and un-methylated) specific primers for

region C. PCR products from regions A, B and D were obtained

from ApcNN, wild type and ApcN/+ (Apc1638N/+) ESCs and directly

sequenced. ApcN/+ ESCs were employed as controls since they

express similar Tcf3 levels compared to wild type ESCs (data not

shown). The sequencing results are depicted as open and solid

circles for unmethylated and methylated CpG dinucleotides,

respectively. Dashed circles represent CpGs which were not

included in the PCR products. Because of its extremely GC-rich

sequence, PCR amplification of region C was carried out using

methylated- and unmethylated-specific primers (MSP and USP)

covering 4 different CpG dinucleotides. Control DNA (mouse

genomic DNA where all CpGs sites are enzymatically methylated

by means of CpG Methylase) was used in all bisulfite reactions as a

positive control.

(TIF)

Figure S6 Transient activation of Wnt signaling in wild type

ESCs reduces H3Ac and H3K4me3 activating marks in Tcf3

promoter. Bruce 4 wild type ESCs were cultured on gelatin-coated

dishes and treated with Wnt3a condition medium or L-control

medium for 12 h. Cells were used for ChIP-QPCR as described

before. Values from each amplicon were normalized to input

chromatin. Since no amplification was detected at the negative

region (P1) from some of the immunoprecipitated chromatin,

values are shown as percent of input DNA. Bars represent

n = 26SD.

(TIF)

Figure S7 A. Histogram showing relative expression of selected

miR-211 predicted targets in ApcNN and wild type ESCs. Two

independent clones were used for each genotype. Actb was used for

normalization. Bars represent n = 26SD. B. Histogram showing

relative expression of selected miR-211 predicted targets in wild

type ESCs treated with Wnt3a condition medium or L-medium

for different time intervals. The ratios of Wnt3a CM/L-medium

are shown in the graphs. Bars represent n = 26SD. C. qRT-PCR

analysis of miR-211 expression in wild type ESCs stably expressing

miR-211 or the corresponding empty vector. Two independent

ApcNN ESC clones were included for comparison. snoRNA-234

was used for normalization.Bars represent n = 26SD. D. Western

blot analysis of the miR-211 predicted targets Sox11 and Sf3b1 in

miR-211 over expressing cells and their wild type controls.

(TIF)

Table S1 Differentially expressed genes between WT, ApcTT,

ApcNT and ApcNN ESCs.

(ZIP)

Table S2 Primer sequences used in QPCR and DNA methyl-

ation analysis

(XLS)

Table S3 Differentially expressed genes between ApcNN and

ApcNN-over expressing Tcf3 (Tcf3 OE) ESCs.

(XLS)
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