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Abstract

With the amount of chemical data being produced and reported in the literature growing at a fast pace, it is increasingly
important to efficiently retrieve this information. To tackle this issue text mining tools have been applied, but despite their
good performance they still provide many errors that we believe can be filtered by using semantic similarity. Thus, this
paper proposes a novel method that receives the results of chemical entity identification systems, such as Whatizit, and
exploits the semantic relationships in ChEBI to measure the similarity between the entities found in the text. The method
assigns a single validation score to each entity based on its similarities with the other entities also identified in the text.
Then, by using a given threshold, the method selects a set of validated entities and a set of outlier entities. We evaluated our
method using the results of two state-of-the-art chemical entity identification tools, three semantic similarity measures and
two text window sizes. The method was able to increase precision without filtering a significant number of correctly
identified entities. This means that the method can effectively discriminate the correctly identified chemical entities, while
discarding a significant number of identification errors. For example, selecting a validation set with 75% of all identified
entities, we were able to increase the precision by 28% for one of the chemical entity identification tools (Whatizit),
maintaining in that subset 97% the correctly identified entities. Our method can be directly used as an add-on by any state-
of-the-art entity identification tool that provides mappings to a database, in order to improve their results. The proposed
method is included in a freely accessible web tool at www.lasige.di.fc.ul.pt/webtools/ice/.
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Introduction

Areas such as genomics and proteomics have embraced large-

scale experimental surveys and free and openly accessible

reference databases, which contain structured information about

biomedical entities such as genes and proteins. In chemistry this is

not always the case, since large-scale experimentation has been

conducted primarily by the pharmaceutical industry, and thus a

vast amount of data is proprietary and not openly accessible.

Because of this, scientific literature is still a common way to report

chemical data. However, chemical data recently started to be

publicly available with the release of database resources such as

PubChem [1], ChEBI [2] and even combined ones [3,4]. These

databases mostly represent a structured version of a part of the

knowledge present in chemical literature, such as scientific

research papers and patent documents. Thus, the process of

automatically retrieving and extracting chemical knowledge is of

great importance to aid the development and growth of chemical

databases.

This process of gathering data from the literature for compiling

information in databases usually requires expert curators to

manually analyze and annotate the literature [5], and is being

used in diverse fields including protein interaction networks [6],

neuroanatomy [7] and has been the standard in the chemical

domain [8] although this is a tedious, time consuming and costly

process [9]. Fortunately, text mining systems have already shown

to be helpful in speeding up some of the steps of this process,

namely performing named entity recognition and linking the

recognized entities to a reference database [10–12]. Text mining

for entities such as genes and proteins has been extensively

evaluated with promising results [13], and some tools such as

Textpresso [14] and Geneways [15] have been successfully used in

support of database curation tasks. Chemical text mining is

gathering increasing interest by the community, but despite the

potential gains still faces significant challenges [16,17]. Most

common methodologies applied to the problem of chemical

named entity recognition include dictionary and machine learning

based methods.

Dictionary based approaches require domain terminologies to

find matching entities in the text and depend on the availability

and completeness of these terminologies. An advantage of this

approach is that entity resolution is directly obtained by the name

entity recognition task, since each entity recognized is inherently

linked to an individual term of the terminology. However

recognition is limited to the data that exists in the used

terminology and given the vast amount of possible chemical

compounds, the terminologies are always incomplete. A popular

text processing system that uses a dictionary based approach for
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identifying a wide variety of biomedical terms, including

chemicals, is Whatizit [18]. This system finds the entities by

dictionary-lookup using pipelines, each based on a specific

terminology. One of the available pipelines is based on ChEBI

and allows for the recognition and resolution of ChEBI terms.

Machine learning based approaches require an annotated

corpus which is used to build a model that can be applied in the

named entity recognition of new text. Systems using this approach

use named entity recognition as a classification task that tries to

predict if a set of words represent an entity or not. The bottleneck

of this approach is the availability of an annotated corpus large

enough to enable the creation of an accurate classification model,

and the need for an entity resolution module for mapping the

recognized entities to database entries. An example of a machine-

learning based chemical entity recognition system uses CRF

models to locate the chemical terms [19] and a lexical similarity

method to perform resolution of those terms to ChEBI [20].

The existing fully automated tools are still far from providing

perfect results to fulfill the requirements and expectations of

databases curators [21,22]. This paper is a step forward in

improving the results provided by any text mining system trying to

identify chemical entities in literature. This improvement is

achieved by our novel validation method that takes the outcome

of a text mining system and checks its coherence in terms of

ontological annotation [23]. The underlying assumption behind

our method is that a text (e.g. paragraph, abstract, document) will

have a specific scope and context, i.e. the entities mentioned in

that text have a semantic relationship between them. This

assumption is based on the fact that authors only mention two

chemical entities in the same fragment of text if they share a

semantic relationship between them. The implementation of our

validation method is then based on measuring the chemical

semantic similarity of the identified chemical compounds as a

means to discriminate validated entities from outliers, i.e. entities

unrelated to the other entities also identified nearby.

Semantic similarity has been extensively applied using several

biomedical ontologies, notably the Gene Ontology (GO), for

which several semantic measures have been developed and

discussed [24]. While GO contains terms for describing proteins,

ChEBI contains terms that describe chemical compounds.

Proteins can be described as a set of GO terms the same way a

compound can be described as a set of ChEBI terms. One concept

frequently used in semantic similarity measures is the information

content (IC), which provides a measure of how specific and

informative a term is. The IC of a term c is quantified as the

negative log likelihood:

IC(c)~{ log p(c)

where p(c) is the probability of occurrence of c in a specific corpus,

estimated by its frequency.

Resnik’s similarity measure [25] is a commonly used node-based

measure where the similarity between two term is given simply by

the IC of their most informative common ancestor (MICA):

Resnik(c1,c2)~IC(cMICA)

The measure simUI is an example of a edge-based measure

[14]. Given two compounds c1 and c2, the set of all ancestral terms

up to the root node from and including c1 and c2 are asc(c1) and
asc(c2) respectively, simUI is defined as the number of terms in the

intersection of asc(c1) with asc(c2) divided by the number of terms

in their union:

simUI (c1,c2)~
COUNTt[asc(c1)\asc(c2)

COUNTt[asc(c1)|asc(c2)

The measure simGIC [26] is a hybrid measure that uses IC in

addition to the graph structure and is defined as the sum of the IC

of each term in the intersection of asc(c1) with asc(c2) divided by

the sum of the IC of each term in their union:

simGIC(c1,c2)~

P
t[asc(c1)\asc(c2)

IC(t)
P

t[asc(c1)|asc(c2)
IC(t)

Chemical semantic similarity was previously adopted with

success in a work that aimed to improve compound classification

[27].

We applied our validation method to the annotations provided

by two text mining tools, representing two distinct approaches,

when applied to a gold standard patent document corpus. The

entities found by those tools in the text were used as input to our

method. The idea was to verify if our method was able to improve

the precision by filtering the outlier entities and by validating the

entities with strong semantic relationships. The results show the

feasibility of our method, since it significantly increased precision

with a small impact on recall. For example, it was able to increase

precision in more than 25% by only discarding 6% of the correctly

identified entities.

We will start by detailing and discussing the results obtained by

the proposed method and in the following section we describe the

tools, data and methods applied.

Results and Discussion

Patent Corpus
Manually annotated documents are essential for the develop-

ment and evaluation of text mining systems. Thankfully, a corpus

of forty patent documents was manually annotated with ChEBI

concepts by a team of curators from ChEBI and the European

Patent Office in an effort to promote the development of chemical

text mining tools (http://chebi.cvs.sourceforge.net/viewvc/chebi/

chapati/patentsGoldStandard/). This gold standard was after-

wards enriched with mappings of the manually annotated

chemical entities due to the fast growing of the ChEBI database

[7] and the enriched version of the corpus can be found in the

website of the web tool that includes our method (www.lasige.di.fc.

ul.pt/webtools/ice/).

Text Mining Results
Two distinct methods for entity recognition and resolution were

applied to this patent corpus. One of them is a dictionary method,

Whatizit [18], that performs ChEBI term lookup in input text.

The other is a machine-learning method that uses an implemen-

tation of CRF (Conditional Random Fields) [20.

The output of chemical text mining systems consists of chemical

entities recognized and mapped to ChEBI (automatic annota-

tions). These automatic chemical annotations are the input for our

validation method. Table 1 presents an outline of the entity

recognition and resolution results obtained for both text mining

systems in the patent corpus. We can see that for the same corpus

the dictionary-lookup method recognized and mapped to ChEBI

almost 18,700 putative chemical entities, while the CRF-based

Validation of Chemical Entity Identification
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method only recognized and mapped to ChEBI about 10,700

putative chemical entities. However, the amount of identified

entities that turned out to be true positives is similar for both

methods (about 4,600 entities) when considering an exact

matching assessment. This means that the CRF-based method

has a higher precision, having for instance for exact matching a

44.8% precision while the dictionary-lookup method only obtains

24.3%.

Validation Results
The list of ChEBI concepts identified by a text mining system in

a given fragment of text is the input of our validation method. For

each input ChEBI concept, our method measures the semantic

similarity between it and all the other ChEBI concepts in that list.

We used different semantic similarity measures, namely Resnik,

SimGIC and SimUI. Our method then returns for each concept

the list of most similar concepts sorted by their similarity value. We

defined the validation score of a given concept as the similarity

value of the most similar concept returned by our method. The

validation score measures our confidence that the concept has

been correctly identified by the text mining system. Next, our

method ranks the input list of ChEBI concepts using their

validation score, and a threshold can be defined in order to split

the ChEBI concepts in consistent entities (when its validation score

is higher than the defined threshold) and outlier entities (when the

validation score is below the defined threshold).

The subset of consistent annotations can now be evaluated

against the gold standard annotations, and new values for

precision and recall can be calculated for this subset that misses

the outlier annotations. In Figures 1 and 2 we show the effect of

the variation of the validation threshold (i.e. the size of the

validated entity subset, that ranges from all entities validated when

the threshold is low to none when its large) and the precision

evaluation measure for that validated entity subset, as well as the

ratio of true positives still present in that subset. Figure 1 presents

the results obtained using the dictionary-based entity identification

method (Whatizit) and Figure 2 the results using the CRF-based

method. For both Figures the semantic similarity measure being

used is, as an example, Resnik’s measure.

If we were to randomly select a subset from the entities provided

by an entity identification system, the amount of true positives in

that random selection would decay linearly. Similarly, the

precision of entity recognition for a random selection would be

constant and equal to the full set of annotations. Unlike in a

random subset selection, using our validation score significantly

increases the precision as we select a subset of entities with higher

validation score. Also, the true positive ratio for a selection using

our validation score is higher than for a random selection, which

means our method is being able to discern between true chemical

entities and entities that have mistakenly been annotated as

chemical, preferentially maintaining the true positives and

discarding the false ones.

Table 2 provides the results using different validation score

thresholds, corresponding to subsets of validated entities consisting

of 25%, 50% and 75% of the total automatic annotations, for each

one of the three tested semantic similarity measures. We can see

that the precision for the subsets using our method is higher than

the precision of the entire set of annotations before our method

was applied (results in Table 1). Analyzing the results presented in

Table 2 we conclude that several semantic similarity measures

may be successfully used. Both the Resnik and simGIC measures

are dependent upon Information Content (IC) calculations while

simUI is a more straightforward measure, however the three tested

measures provided similar results.

The dictionary method ranges from a precision of 24% for the

total of annotations to about 30% precision when a quarter of the

annotations that have lower validation score are discarded (a

subset selection of 75% of the automatic annotations). This means

an absolute increase of 6% precision, which corresponds to an

increase of 25% relative to the original precision, without our

method. The cost for this precision increase was the loss of 5% of

the true positive annotations identified. Note that a random

selection of 75% of the automatic annotation would maintain the

precision at the same values (no relative increase) while the

amount of true positives would decay by 25%.

For the CRF-based method, and when using a validated subset

of the same size (75% of the automatic annotations), we see that

the gain in precision is in the order of 5%, which corresponds to a

relative precision increase of 11%. The cost in terms of true

positive loss is in this case about 17%. The validation results in

terms of ratio of true positives and increase of precision relative to

the baseline results presented in Table 1 are provided in Table 3.

We can clearly observe that the dictionary method benefits more

from the validation method than the CRF-based method. This is

most probably due to the starting precision of the two methods,

which is higher for the CRF-based method, making it harder to

discriminate correct annotations from annotation errors.

In addition to the automatic annotations provided by the two

entity recognition and resolution systems, we have also the manual

annotations in the patent document gold standard, which are

considered the ground truth. We applied our method to those

annotations and compared their validation score distribution with

that of the automatic annotation obtained by the two entity

recognition systems. Figure 3 provides a boxplot with such

comparison, where it can be observed that the manual annotations

obtained higher validation scores than the automatic annotations.

Between the automatic annotations, the dictionary-based method

obtained lower validation score values than the CRF-based

method. This indicates that the quality of the starting annotations

has an impact in the obtained validation scores, which are higher

for better quality starting annotations. The validation method

proved efficient with different degrees of quality of the starting

annotation, and good starting results can still profit from our

method.

The validation results presented until now have considered the

entire document as text window for validation score calculation,

and each instance of a compound had a single validation score that

was the similarity of the most similar compound in the document.

However there might be large documents that change its scope in

different sections, and thus the same compound should have

different validation scores according to its position. This is why the

calculation of the validation scores can be made using not only

document-wide text windows, but also smaller ones such as

paragraph-wide or even sentence-wide text windows. In this case a

Table 1. Automatic entity identification results.

Method Annotations TP Precision Recall

Dictionary 18,683 4,530 24.3 46.7

CRF-based 10,681 4,783 44.8 49.3

Results of entity identification (recognition and resolution to ChEBI) obtained
by the two used tools in the patent corpus. An exact matching assessment was
considered. Annotations indicate the total amount of entities recognized, TP
indicates how many were in accordance to the gold standard.
doi:10.1371/journal.pone.0062984.t001

Validation of Chemical Entity Identification

PLOS ONE | www.plosone.org 3 May 2013 | Volume 8 | Issue 5 | e62984



Figure 1. Validation of Whatizit annotation results. Shows the variation in precision and recall with the validation score threshold, using the
Resnik measure with a document as text window. Straight dots represent the expected behavior of a random validation system.
doi:10.1371/journal.pone.0062984.g001

Figure 2. Validation of CRF-based annotation results. Shows the variation in precision and recall with the validation score threshold, using the
Resnik measure with a document as text window. Straight dots represent the expected behavior of a random validation system.
doi:10.1371/journal.pone.0062984.g002
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document will not be represented by single set of compounds, but

a set of compounds for each text window and the validation scores

are calculated comparing the entities in each of these windows.

In Table 4 we show the results using a paragraph-wide

validation. We see that in this case there is usually a loss in

performance when comparing with the document-wide validation,

with the exception of a an increase from 34% precision to 38%

when using a subset of 25% of the entities and the simGIC

similarity measure for the dictionary-based annotations.

The method here presented has been implemented in a freely

available web tool (www.lasige.di.fc.ul.pt/webtools/ice/) which

integrates the CRF-based entity recognition method and the

lexical similarity entity resolution method together with the

presented validation method. A screenshot of the tool is presented

in Figure 4.

Examples
We analyzed the annotations with high validation scores, which

are expected to be true positives, and found that most of them

were in fact true positives. The entities with highest validation

score are usually very related pairs and far from the root of the

ontology. Examples are for instance ‘‘sodium hydroxide’’ and

‘‘potassium hydroxide’’, ‘‘trichloroethanol’’ and ‘‘2-chloroethanol’’

or ‘‘chloroform’’ and ‘‘dichloromethane’’ that have been correctly

validated with a high validation score. Some related entities such

as ‘‘cetoleic acid’’ and ‘‘erucic acid’’ that not only have similar

structures but also similar roles have obtained very high validation

scores, while other structurally very similar entities such as ‘‘D-

amino acids’’ and ‘‘L-amino acids’’ had lower validation scores.

Missing in ChEBI. Although most of the high validation

score annotations were true positives, some did not match the gold

standard manual annotations. For instance, we found that for both

automatic entity identifications systems the terms ‘‘cyfluthrin’’,

‘‘transfluthrin’’, ‘‘flucythrinate’’, ‘‘bioallethrin’’ and some others,

all located in the same sentence of the patent document

WO2007005470, contained a high validation score and were true

positives. Analyzing that sentence we find that it is listing a series of

pyrethroid insecticides, and its also because of that matching

biological role that the validation score is very high for those

entities.

However, an opposite example can also be found in that same

sentence. The terms ‘‘bifenthrin’’, ‘‘cyperaiethrin’’, ‘‘methothrin’’

and ‘‘metofluthrin’’ have also been annotated as being chemical

terms by the CRF-based method but failed to be mapped to

ChEBI. Investigating those compounds we found that they were

also pyrethroid insecticides, but had not yet been included in

ChEBI. This is an example of an interesting aid our method can

provide to curators or other users of chemical name recognizers

that provide identification of putative chemical entities, not

included yet in databases.

Missing in gold standard. Most of the entities identified as

chemicals with a very high validation score and that were not

tagged as chemicals in the gold standard (and thus were considered

false positives) were found to be in fact chemical entities that for

Table 2. Validation results, using the document as text window.

Subset 25% entities validated 50% entities validated 75% entities validated

Measure Method TP Precision TP Precision TP Precision

2*SimGIC Dict 1,584 34.0 3,117 33.7 4,186 30.0

CRF 1,361 51.1 2,781 52.1 3,761 46.9

2*SimUI Dict 1,424 30.0 2,782 29.5 4,017 28.1

CRF 1,335 49.8 2,632 49.3 3,781 47.6

2*Resnik Dict 1,443 30.4 3,334 35.5 4,371 31.2

CRF 1,449 55.0 2,633 49.0 3,968 49.6

Amount of True Positives (TP) and Precision obtained at selected subsets of validated entities corresponding to 25%, 50% and 75% of the total amount on annotations
performed by each tool (Method), using validation calculated using the semantic similarity measure indicated in Measure. For this evaluation was used the document-
wide as text window.
doi:10.1371/journal.pone.0062984.t002

Table 3. Relative validation results, using the document as text window.

Subset 25% entities validated 50% entities validated 75% entities validated

Measure Method TP Ratio P Increase TP Ratio P Increase TP Ratio P Increase

2*SimGIC Dict 35.0 39.9 68.8 38.7 92.4 23.5

CRF 28.5 14.1 58.1 16.3 78.6 4.7

2*SimUI Dict 31.4 23.5 61.4 21.4 88.7 15.6

CRF 27.9 11.2 55.0 10.0 79.1 6.3

2*Resnik Dict 31.8 25.1 73.6 46.1 96.5 28.4

CRF 30.3 22.8 55.0 9.4 83.0 10.7

For selected subsets of validated entities corresponding to 25%, 50% and 75% of the total amount on annotations performed by each tool (Method), we present the
True Positive ratio (TP Ratio), which corresponds to the percentage of True Positives remaining in the subset, and the Precision increase relative to the Precision for the
total amount on annotations (P Increase). For this evaluation was used the document-wide as text window.
doi:10.1371/journal.pone.0062984.t003
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some reason had escaped manual annotation of the gold standard

corpus. Examples of terms in this situation include ‘‘amino acid’’,

‘‘peptide’’ and ‘‘aryl’’. It is also interesting to note that usually the

terms in this situation have been found multiple times in the same

patent document. For instance, ‘‘amino acid’’ in the patent

document WO2007041240, ‘‘peptide’’ in the patent document

WO2007002913, and ‘‘aryl’’ in the document WO2007004952.

Among the annotation errors detected within high similarity

score terms, we also found as an example the following sentence in

the patent document WO2007045478 of the corpus:

‘‘Compounds of the invention may further be useful for the

treatment of withdrawal symptoms caused by termination of

the use of addictive substances, like heroin, cocaine, tobacco,

nicotine, opioids, benzodiazepines and alcohol.’’

In this sentence, the dictionary method annotates heroin,

cocaine, nicotine and alcohol. The CRF-based method annotates

benzodiazepines in addition to those terms found by Whatizit. The

similarity score of the terms is high, because the terms are closely

related in ChEBI, but they are considered annotation errors. The

reason is that the manual annotation of the corpus did not

consider those terms. This is another example that shows that the

gold standard might have been under annotated by the curators,

and many false positive automatic annotations might in fact be

correct annotations that have not been considered in the process of

manual annotation of the corpus.

Adverse context. On the other end, for low validation score

terms we find examples of situations where low score terms are in

fact correctly identified. For instance, in the following sentence of

the patent document WO2007041479:

‘‘A pharmaceutical composition comprising (i) talnetant, (ii)

povidone, (iii) mannitol and (iv) a surfactant, wherein: (a) the

ratio of povidone to mannitol is 0.45:1 or higher.’’

Figure 3. Comparison of the validation scores. Boxplot of the validation score obtained for the manual annotations in the gold standard, and
the automatic annotations provided by the dictionary-based method and the CRF-based method.
doi:10.1371/journal.pone.0062984.g003

Table 4. Validation results, using the paragraph as text window.

Subset 25% entities validated 50% entities validated 75% entities validated

Measure Method TP Precision TP Precision TP Precision

2*SimGIC Dict 1,650 36.6 2,871 31.6 3,879 28.3

CRF 1,349 53.6 2,617 51.2 3,722 48.8

2*SimUI Dict 1,644 36.0 2,820 30.6 3,858 28.2

CRF 1,363 55.3 2,593 51.1 3,531 46.7

2*Resnik Dict 1,606 35.3 3,075 34.5 4,047 29.6

CRF 1,520 60.1 2,696 52.9 3,799 49.5

Amount of True Positives (TP) and Precision obtained at selected subsets of validated entities corresponding to 25%, 50% and 75% of the total amount on annotations
performed by each tool (Method), using validation calculated using the semantic similarity measure indicated in Measure. The text window used for this evaluation was
a paragraph-wide text window.
doi:10.1371/journal.pone.0062984.t004
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Several terms were correctly identified as chemical, and the

resolution to ChEBI has been correctly performed, but the terms

simply had a low semantic similarity between them. This occurs

because in this sentence the author was listing a pharmaceutical

composition, and the compounds did not need to have any

relationship between them other than being part of that

composition. This type of error will tend to be less frequent as

the size of the comparison window increases.

Also, the presence of words such as ‘‘comprise’’, ‘‘compose’’,

‘‘constitute’’ or other synonyms, might be used to assume a

relation between the mentioned chemical entities even if their base

validation score is low, so that validation score can be tweaked to

allow for a correct validation of the entities.

Conclusions
In this paper we proposed a method for validation of automatic

chemical entity identification results that improves the precision of

chemical entity identification tasks for state-of-the-art tools. This is

because our method uses the fact that chemical entities named

nearby, in a text window, have an intrinsic relationship that may

be found on an ontology such as ChEBI. Text mining tools do not

consider this by themselves, and thus our method can aid in their

task of efficiently identifying chemical entities.

To demonstrate the feasibility of our method we have used the

results of two distinct chemical entity identification methods, using

a corpus that had also been manually annotated. Applying our

method to the results of those two chemical identification methods,

we were able to efficiently discern between true and false positive

entities, enriching the precision obtained for entity identification in

Figure 4. Web tool screenshot. Our validation method was implemented in a web tool containing the CRF-based chemical identification method.
A sample sentence from patent document WO2007041564 is shown with some chemical entities, and their validation score. Validated entities
(validation score above the defined validation threshold, selected in this example as 75%) are presented in green, while outliers are presented in
yellow.
doi:10.1371/journal.pone.0062984.g004

Validation of Chemical Entity Identification
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subsets of consistent entities. This is done by using semantic

similarity measures in the ChEBI ontology to compare the

chemical entities found in the text, and assign them a validation

score. The high scoring entities are considered consistent while the

low scoring entities are considered outliers and not validated.

The size of the set of validated entities is tunable by a validation

threshold, and also by the type of semantic similarity measure and

aggregate function implemented. This allows for fine tuning by

manual curators that can use our method as a tool to give them

assistance.

There are still some improvements that can be included in our

method. For instance, we found that in some sentences that list

components of a mixture, the individual compounds of that

mixture do not need to be related, and thus the validation score is

low for those compounds even though they are true positives. This

issue can be dealt by detecting keywords such as ‘‘constitute’’ or

‘‘compose’’ that are an indication that the compounds in the

vicinity do not need to be related, and tune their validation score

with this fact in mind.

Our method can be applied to all chemical entity recognition

tools that perform resolution to ChEBI, and has been implement-

ed in a web tool on top of the CRF-based entity recognition

method here used. Furthermore, our method can be easily

adapted to other entity types than chemicals, given that there is an

ontology available to compare those entity types and recognition

tools that provide mappings to that ontology.

Beyond entity recognition we believe that our validation method

can also be useful for relation extraction, since high semantic

similarity in ChEBI for pairs of recognized entities may provide a

strong evidence for predicting a relation between them. For

example, in the sentence ‘‘paracetamol acts as a COX inhibitor’’,

the terms paracetamol (CHEBI:46195) and COX inhibitor

(CHEBI:35544) are strongly connected in the in the role branch

of ChEBI, thus our validation method would have provided a high

score for this pair.

We used a system that uses CRF models based on a manually

annotated patent document corpus to locate the chemical terms

[19]and a lexical similarity method to perform resolution of those

terms to ChEBI [20].

Methods

We developed a validation method that receives as input the

result of any chemical entity recognition tool that performs

resolution to ChEBI. To test our method we used two systems that

were previously presented: the dictionary-based method Whatizit

[18] and a machine-learning approach that uses CRF models

based on a manually annotated patent document corpus to locate

the chemical terms [19] and a lexical similarity method to perform

resolution of those terms to ChEBI [20]. However, any system that

can provide chemical entity recognition and resolution to ChEBI

may be used.

The output of our method is the list of the chemical entities

ranked by their validation score that is calculated through its

semantic similarity to the other chemical entities identified in a

given text window. This score corresponds to a measure of

similarity between the target entity and those found nearby. Thus,

the basic idea behind the method is that related entities found

together have a bigger chance of being true positive annotations

than entities that do not have any significant relatedness with other

entities found in the same text window.

Entity Annotations
The input of our method is the text processed by any chemical

entity identification tool that can provide resolution to ChEBI.

The text can correspond to a full document, or be smaller text

windows such as paragraphs or sentences. The text used represents

the window where the similarity of one concept with the others in

that window will be calculated.

Thus, the input for our method is the set of concepts of a

reference database, e.g. ChEBI, that are mapped with the entities

identified in a given text window text:

concepts(text)

~fc : c[ChEBI ^ resolution(e,ChEBI )

~c ^ e[recognition(text)g

ChEBI Semantic Similarity
Chemical Entities of Biological Interest (ChEBI) is a freely

available dictionary and ontology of small molecular entities [2].

The ChEBI ontology structure comprises three separate sub-

ontologies: the Chemical Entity sub-ontology provides a structural

relationship between terms; the Role ontology provides a

functional relationship between terms; the Subatomic Particle

contains the entities which are smaller than the atom and its

relations. ChEBI contains however several cyclic relationship types

(such as ‘‘is enantiomer of’’) that had to be removed from the

ontology, remaining only non-cyclical relationships. The result is a

directed acyclic graph (DAG) structure similar to that of GO and

that supports the calculation of semantic similarities in a similar

fashion.

Our method requires the ChEBI ontology for the calculation of

the semantic similarity between two concepts:

sim(c1, c2)~n, n[½0,1� ^ c1, c2[ChEBI

In our study, the January 2013 version of ChEBI was used, and

we selected the Resnik, simUI and simGIC semantic similarity

measures [26] given their previous successful application in ChEBI

[27]. To avoid a bias to any given corpus, we used an intrinsic IC

measure where the frequency of a term is proportional to the

number of child terms it has in the ontology. Thus, the root term

which is the most generic term will have the lowest IC while leaf

terms far from the root are the most specific and have the highest

IC. This IC calculation allows for independence upon a corpus

and will adapt as the ontology grows.

Validation Scores
For each concept our method calculates the similarity between

it and all the other concepts in the given text window. Thus, an

aggregate function is required to return a single score value from

all its similarities:

aggregateFunction(fn1,:::, nmg)~k, k[½0,1�

In this paper, the function used to aggregate the similarity

measures of a concept with the other concepts in the text window

is the maximum. Thus, k in this case corresponds to

MAXfn1,:::, nmg which represents the value of semantic similar-
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ity between a concept c and the most similar concept to c in the

text window.

This is a straightforward approach that provides high values of

k for concepts that have at least one similar concept in the text

window, and low score for those that do not have at least one

similar concept in the text window. However in some situations

different ways to calculate the validation score might be beneficial

and thus different aggregate functions can be used. As an example,

other functions different from the maximum similarity measure

may include the average of the similarity measures of one concept

with all the others in the text window, or the average of the top 3

similarity measures for a concept in the text window.

Thus, a validation score can be calculated for each concept c in
the input text as follows:

score(c)~aggregateFunctionfsim(c,ci)

: ci[concepts(text) ^ ci=cg

Validation Threshold
With the validation score for each concept in a text window our

method must decide which concepts (mapped entities) are to be

validated and which are to be considered outliers.

The idea is that the top scoring entities are better candidates of

being true positive annotations, while the lower scoring ones are

better candidates to be false positives. Thus, our method ranks the

entities according to their validation score.

The user can then provide a validation threshold t which is used

to validate the entities for which the similarity score is higher than

the given validation threshold. The remaining entities that contain

a validation score lower than the validation threshold are

considered outliers, because those entities do not present a

significant semantic relationship to at least one other concept:

validated~f(c,score(c)) : c[concepts(text) ^ score(c)w~tg

outlier~f(c,score(c)) : c[concepts(text) ^ score(c)vtg

The validation threshold can also be automatically selected by

deciding the number of entities to be validated. For example, if the

user wants 25% of the entities to be validated the threshold t is

given by the concept with the minimum score that is higher than

75% (p~0:75) of all the other scores calculated:

t~MINfscore(c1) : c1[concepts(text)

^#fc2 : c2[concepts(text) ^ score(c1)w~score(c2)g
#concepts(text)

w~pg,

p[½0,1�
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