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Abstract
A large number of rare genetic variants have been discovered with the development in sequencing
technology and the lowering of sequencing costs. Rare variant analysis may help identify novel
genes associated with diseases and quantitative traits, adding to our knowledge of explaining
heritability of these phenotypes. Many statistical methods for rare variant analysis have been
developed in recent years, but some of them require the strong assumption that all rare variants in
the analysis share the same direction of effect, and others requiring permutation to calculate the p-
values are computer intensive. Among these methods, the sequence kernel association test
(SKAT) is a powerful method under many different scenarios. It does not require any assumption
on the directionality of effects, and statistical significance is computed analytically. In this paper,
we extend SKAT to be applicable to family data. The family-based SKAT (famSKAT) has a
different test statistic and null distribution compared to SKAT, but is equivalent to SKAT when
there is no familial correlation. Our simulation studies show that SKAT has inflated type I error if
familial correlation is inappropriately ignored, but has appropriate type I error if applied to a
single individual per family to obtain an unrelated subset. In the contrast, famSKAT has the
correct type I error when analyzing correlated observations, and it has higher power than
competing methods in many different scenarios. We illustrate our approach to analyze the
association of rare genetic variants using glycemic traits from the Framingham Heart Study.
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INTRODUCTION
In recent years, with the advances in whole-genome sequencing technology, assessing the
association of rare genetic variants with complex diseases and quantitative traits has become
of great interest. Rare genetic variants may account for some of the missing heritability
unexplained by genetic loci identified by genome-wide association studies (GWAS) [Eichler
et al., 2010], as single variant tests used in GWAS are underpowered for rare genetic
variants [Li and Leal, 2008]. To increase power, burden tests have been proposed [Li and
Leal, 2008; Morgenthaler and Thilly, 2007; Madsen and Browning, 2009; Morris and
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Zeggini, 2010]; these tests are based on collapsing rare genetic variants in a predefined
genomic region with either a rare variant indicator or a weighted score. These methods
implicitly assume that all rare genetic variants in the region have the same direction of effect
and even the same effect size, which may not be true. Alternatively, the data-adaptive sum
test [Han and Pan, 2010] and step-up approach [Hoffmann, Marini and Witte, 2010] do not
require such an assumption and use the signs from single marker test to determine the
direction of effects, but both of these approaches require permutation to evaluate statistical
significance.

The sequence kernel association test (SKAT) [Wu et al., 2011] proposed recently is a
flexible and computationally efficient regression-based approach for rare genetic variants
analysis. No assumptions about the directions of effect or the effect sizes of rare genetic
variants in the region are required for SKAT. Instead of requiring permutation for the p-
value computation, Davies’ method [Davies, 1980] is used to compute the p-values
analytically for SKAT. SKAT has been shown to be much more powerful than traditional
burden tests in many different scenarios. SKAT can be used in the association analysis of
both dichotomous and continuous phenotypes.

Family-based study designs have been widely used in linkage analysis of diseases and
quantitative traits [Falk and Rubinstein, 1987; Ott, 1989; Terwilliger and Ott, 1992;
Spielman, McGinnis and Ewens, 1993]. In GWAS, ordinary regression approaches are not
applicable to family data, because inflated type I error is observed when familial correlation
is not appropriately modeled. For quantitative traits, instead of ordinary linear regressions,
linear mixed effects models that take familial correlation as a random effect with covariance
proportional to the kinship matrix is commonly used for single marker tests in GWAS
[Almasy and Blangero, 1998; Rabinowitz and Laird, 2000]. However, burden tests and other
methods for joint analysis of rare genetic variants in family samples have not been well
established.

In this paper, we use the framework of linear mixed effects models to extend SKAT for rare
genetic variants association analysis with quantitative traits in family data. The family-based
SKAT (famSKAT) has a different form of test statistic and distribution under the null
hypothesis, but has the same rationale as SKAT. When there is no familial correlation,
famSKAT is equivalent to SKAT. P-values for famSKAT are also calculated analytically
without requiring permutation.

We demonstrate in our simulation studies that SKAT has inflated type I error in family
samples when familial correlation is not appropriately considered. By contrast, famSKAT
does not suffer from this issue and has correct type I error. We also show that famSKAT is
more powerful than applying SKAT to an unrelated subset of the sample. For mixed datasets
with both unrelated and related individuals, as the proportion of unrelated individuals
decreases, the difference in power between SKAT and famSKAT increases, with famSKAT
being always the more powerful approach of the two. Thus, by using famSKAT there is no
need to reduce sample size by selecting an unrelated subset of individuals. Finally, we
illustrate our approach by assessing the association between rare genetic variants using two
glycemic traits in the Framingham Heart Study.

METHODS
Sequence Kernel Association Test for Quantitative Traits in Family Samples

We first define notation and assumptions before we derive the SKAT statistic that accounts
for familial correlation. Assuming a sample size of n, let the n × 1 vector of the quantitative
trait y follow a linear mixed effects model
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where X is an n × p covariate matrix, β is a p × 1 vector consisting of fixed effects
parameters (an intercept and p − 1 coefficients for covariates), G is an n × q genotype matrix
for q rare genetic variants of interest, γ is a q × 1 vector for the random effects of rare
variants, δ is an n × 1 vector for the random effects of familial correlation, which is added to
the SKAT model, and ε is an n × 1 vector for the error. The vector of error ε and the random
effects γ and δ are assumed normally distributed and uncorrelated with each other:

where W is the pre-specified diagonal weight matrix for the rare variants of q × q, Φ is twice
the kinship matrix of size n × n obtained from family information only, I is the identity

matrix of size n × n, and τ, ,  are corresponding variance component parameters. In this
parameter setting, we are interested in testing H0: τ = 0 versus H1: τ > 0, which is equivalent
to testing H0: γ = 0 versus H1: γ ≠ 0. This is a variance component score test in the linear
mixed effects model, which is a locally most powerful test [Wu et al., 2011; Lin, 1997].

Under these assumptions, the phenotypic variance can be written as

The log likelihood for the linear mixed effects model is

To derive a score test for H0:τ = 0, we first take the derivative with respect to τ to get

If we use the restricted maximum likelihood instead of the maximum likelihood method, we
would get a different first term, but the same second term. In both cases, if we replace Σ by
its consistent estimator, and treat genotype matrix G as fixed, then the first term in the score
function is fixed and independent of phenotype data y. Following the same rationale in the
derivation of the SKAT score statistic [Liu, Lin and Ghosh, 2007; Kwee et al., 2008], we
take twice the second term to be derived as our test statistic.

Under the null hypothesis τ = 0, we can estimate
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by fitting the null linear mixed effects model

The maximum likelihood estimators can be obtained using the function lmekin from R

package kinship. We replace β,  and  (and hence Σ) by their maximum likelihood
estimators and take

as the famSKAT test statistic. Under the null hypothesis, the variance of the residuals is

Thus

where λi are the eigenvalues of the matrix . The p-value can be
computed analytically by Davies’ method [Davies, 1980] or Kuonen’s saddlepoint method
[Kuonen, 1999].

We note that even though the null model, test statistic, residual variance and null distribution
of famSKAT have different forms compared to those of SKAT, they are directly connected.

Actually, if we add a restriction  on the model, famSKAT is equivalent to SKAT. Then

where  is estimated from the null linear model

and famSKAT statistic becomes
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with distribution under the null hypothesis

where λi are the eigenvalues of the matrix . They are proportional to

SKAT statistic and null distribution matrix with the coefficient . We favor this form of
null distribution matrix, rather than the form proposed in Wu et al. [2011], because usually
the sample size n is larger than the number of genetic variants of interest q, the non-zero

eigenvalues of  and  are the same, but the first matrix is of size q ×
q, while the second matrix is of size n × n; and taking the square root of the diagonal matrix
W is computationally much easier than taking the square root of P0.

We note that famSKAT can also be used when we want to provide a known heritability
coefficient h2 externally, rather than estimating it from the data. By the reparametrization

when h2 is known, we can use the generalized least square method to estimate only σ2 under
the null model. Then we can follow the rest of the famSKAT procedure to perform the test.

Simulations
Type I Error Simulations—To evaluate the type I error, we performed several simulation
studies under the null hypothesis of no genetic association. We compared four approaches:
famSKAT, burden test accounting for familial correlation (famBT), SKAT which only takes
the unrelated subset of the sample (unrSKAT) and SKAT. We used Kuonen’s saddlepoint
method [Kuonen, 1999] to compute the p-values for famSKAT, unrSKAT and SKAT. For
famBT, we fit the linear mixed effects model

where wj is the jth element on the diagonal of the pre-specified weight matrix W, Gj is the
jth column of the genotype matrix G, the scalar γ is the fixed effect for the weighted genetic
score, and y, X, β, δ, ε are defined in the same parameter setting as in famSKAT. The
genotype effect in this model can be tested as fixed effect test H0: γ = 0 versus H1: γ ≠ 0.
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We set the heritability of the trait

For each parameter setting, we simulated 100 genotype datasets with a total sample size of
1000 and 20 single nucleotide polymorphisms (SNP) with minor allele frequency (MAF) in
the founders randomly sampled from a uniform distribution of 0.005 to 0.05, and with low (r
= 0.1), moderate (r = 0.5), or high (r = 0.7) linkage disequilibrium (LD) between adjacent
SNPs in the founders. The LD correlation between farther SNPs decays as an autoregressive
model with order 1. We simulated haplotypes for unrelated founders with desired MAF and
LD structure using the same procedure as HapSim [Montana, 2005], then we passed down
the haplotypes to the next generation to simulate sib pairs, and took the remaining founders
as unrelated individuals. Thus we created genotype datasets mixed with unrelated
individuals and sib pairs, and let the proportion of unrelated individuals decrease from 75%
to 50%, 25%, 0%. For each genotype dataset, 10,000 phenotype datasets including
covariates were simulated by using the model

where age is a vector of continuous covariate generated from a normal distribution with
mean 50 and standard deviation 5, sex is a vector of dichotomous covariate generated from a
Bernoulli distribution with probability 0.5, ε follows a multivariate normal distribution with
means 0 and covariance matrix Σ, where

We calculated the p-values of famSKAT, famBT, unrSKAT and SKAT by using the Wu
weights [Wu et al., 2011], corresponding to the square of a beta density function of the
observed MAF in the founders with parameters 1 and 25. We computed the empirical type I
error at α levels of 0.01, 0.001 and 0.0001 by counting the proportion of p-values less than
or equal to the corresponding α level in the 1 million genotype-phenotype datasets.

Power Simulations—To evaluate the power of famSKAT, famBT and unrSKAT, we set
the heritability of phenotype h2 = 0.5 and LD between adjacent SNPs in the founders r = 0.5,
and performed simulations under different scenarios. For each parameter setting, we
simulated 100 genotype datasets with a total sample size 1000 and 20 SNPs with MAF in
the founders randomly sampled from a uniform distribution of 0.005 to 0.05. Similar to the
null simulation setting, we simulated genotype datasets mixed with unrelated individuals
and sib pairs, and changed the proportion of unrelated individuals from 75% to 50%, 25%,
0%. For each genotype dataset G, 10,000 phenotype datasets including covariates were
simulated by using the model

where age, sex and ε are generated in the same way as in the type I error simulations, γ is a
vector consisting of the effect sizes of the causal SNPs. We varied the proportion of causal
SNPs from 20% to 50% and 80%, and we simulated both same and opposite directions of
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effects. Causal SNPs were randomly selected out of the 20 SNPs for each phenotype
replicate, and in each parameter setting the effect sizes of causal SNPs were determined by

where MAFi is the MAF used to generate the genotype dataset for causal SNP i, and c is a
constant for all causal SNPs in each phenotype replicate, calculated as

where R2, the total proportion of variance explained by all causal SNPs, was fixed at 1% for
scenarios when all causal SNPs had effects in the same direction, and 5% for scenarios when
50% of the causal SNPs had positive effects and 50% had negative effects. D is the LD
correlation matrix for the 20 SNPs, and ν is a vector indicating the directions of causal SNP
effects in each replicate. We used the same weights for famSKAT, unrSKAT and famBT,
which were the Wu weights calculated from the observed MAF in founders. The empirical
power was evaluated at the α level of 0.001.

RESULTS
Type I Error Simulations

Table 1 shows the empirical type I errors of famSKAT, famBT, unrSKAT and SKAT at
different α levels in 3 LD scenarios and 4 scenarios for the proportion of unrelated
individuals. The results suggest that when SKAT is directly applied to the full sample with
correlated individuals, it has inflated type I error at all α levels. The empirical type I error
tends to be higher when LD decays. In the contrast, famSKAT, famBT and unrSKAT retain
the correct type I errors. Thus, in subsequent power simulations we only investigated these
three approaches. The distributions of the p-values from the four approaches for the scenario
of LD between adjacent SNPs r = 0.5 and proportion of unrelated individuals 0% were
shown in Figure 1. We found that famSKAT, famBT and unrSKAT all had uniform
distribution of the p-values, while the distribution of the pvalues from SKAT was more
likely to be small, explaining the inflated type I error.

Power Simulations
Power simulation results of famSKAT, famBT and unrSKAT are shown in Figure 2. In all
scenarios, 20 SNPs were analyzed. We simulated scenarios in which the proportion of causal
SNPs was 20%, 50% or 80%, with effects in the same or opposite directions. As the
proportion of unrelated individuals decreases from 75% to 50%, 25% and 0%, the sample
size for unrSKAT also decreases from 875 to 750, 625 and 500. As a result, the power of
unrSKAT also drops. In contrast, the power of famSKAT and famBT remains almost
constant, regardless of the proportion of unrelated individuals. FamBT has higher power
than famSKAT when the proportion of causal SNPs is greater than or equal to 50% and all
causal SNPs have the same direction of effects, but it has almost no power in scenarios when
causal SNPs have opposite directions of effects. Generally, famSKAT performs well in all
these scenarios, suggesting that famSKAT is an omnibus method which does not have
compromised power for different mixtures of related and unrelated individuals.
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Analysis of Framingham Heart Study Data
We used genotype data from Framingham SNP Health Association Resource (SHARe) and
phenotype data from the Framingham Heart Study to analyze the association with two
glycemic traits: fasting glucose and log-transformed fasting insulin. We restricted our
analyses to SNPs with MAF less than 5% within 100kb of 16 gene regions selected for the
prior association with fasting glucose, and 2 genes reported to be associated with log-
transformed fasting insulin [Dupuis et al., 2010]. We adjusted the fasting glucose analysis
for age and sex, and logtransformed insulin was additionally adjusted for body mass index.
We performed famSKAT and famBT for all individuals with both genotype and phenotype
available, and performed SKAT for only a subset of unrelated individuals. For comparison
purpose, we calculated the MAF using a subset of unrelated individuals and applied Wu
weights to all three methods.

We investigated the association between fasting glucose and rare genetic variants in 16 gene
regions previously shown to be associated in large scale GWAS [Dupuis et al., 2010]:
ADCY5, ADRA2A, C2CD4B, CRY2, DGKB-AGMO, FADS1, G6PC2, GCK, GCKR,
GLIS3, MADD, MTNR1B, PROX1, SLC2A2, SLC30A8, and TCF7L2. The results are
shown in Table 2. After adjusting for multiple testing using a Bonferroni correction, we
detected no association between fasting glucose and rare genetic variants in the selected
gene regions at the family-wise α level of 0.05, for all three methods. CRY2 reaches the
nominal significance level with a p-value of 0.0381 using famSKAT and 0.0085 using
famBT, and G6PC2 reaches the nominal significance level with a p-value of 0.0418 using
famSKAT, but none of these gene regions reaches nominal statistical significance when
evaluated using unrSKAT.

We also investigated the association between log-transformed fasting insulin and rare
genetic variants in 2 gene regions previously shown to be associated in large scale GWAS
[Dupuis et al., 2010]: GCKR and IGF1. After adjusting for multiple testing using a
Bonferroni correction, IGF1 shows association with log transformed fasting insulin with a
nominal p-value of 0.0232 using famSKAT and 0.0234 using famBT. Neither gene reaches
even the nominal significance level using SKAT.

Table 2 also shows that the sample size for unrSKAT is much smaller than that for
famSKAT and famBT, because even though the Framingham Heart Study is not a family-
based cohort, there are many families in the study. Thus, by selecting unrelated individuals
we greatly reduced the sample size. Because some SNPs with rare minor alleles may not be
polymorphic in the subset of unrelated individuals, for some gene regions the number of
SNPs for unrSKAT is smaller than the number of SNPs for famSKAT and famBT.

We also performed a genome-wide sliding window analysis on these two traits, as well as
logtransformed HOMA-IR and HOMA-B, using SHARe genotype data. We only included
SNPs with MAF less than 5% and ran the analysis using a sliding window of 500kb, with
250kb overlap each with previous and subsequent windows. We removed windows with 0 or
1 SNP, resulting in 10,546 windows for all autosomes with the number of SNPs ranging
from 2 to 76 with median 18. No window reached the genome-wide significance using
famSKAT, famBT or unrSKAT. The Q-Q plots for famSKAT are shown in Figure 3. There
is minimal inflation of the p-values from this genome-wide analysis.

Computation Time
The computation time of famSKAT depends on both the sample size and the number of
SNPs. The empirical run time of famSKAT, famBT and SKAT in analyzing sib pairs with
indicated total sample sizes on a single computing node with 2.33 GHz CPU and 4 GB
memory is shown in Figure 4. With a small sample size, the limiting step in famSKAT is
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fitting the null linear mixed effects model, so the computation time is comparable to that of
famBT, which also requires fitting a linear mixed effects model. As the sample size
increases, all three methods require more computation time, and the time of famSKAT and
SKAT increases dramatically. Both famSKAT and SKAT require matrix calculation, and the
limiting step in famSKAT becomes inverting the matrix , which takes about 90% of the
computation time when the sample size is 5000. The genome-wide sliding window analysis
of SHARe genotype data using a sliding window of 500kb takes about 5 hours for
chromosome 1 on a single computing node with 2.33 GHz CPU and 4 GB memory.

DISCUSSION
In this paper, we propose famSKAT as an extension of SKAT which can be applied to data
with familial correlation. We demonstrate that famSKAT is a general and flexible variance
component score test approach, which is equivalent to SKAT when the familial variance
component is set to 0. It can be applied to quantitative traits with unknown or known
heritability.

Compared with famBT, famSKAT is advantageous in power when the proportion of causal
SNPs in a genomic region is small, and when not all causal SNPs have the same direction of
effects. As expected, famBT outperforms famSKAT when the proportion of causal SNPs is
greater than or equal to 50% and all these SNPs have positive effects, but the performance of
famSKAT in these scenarios is still satisfactory. In real data analysis, when we do not have
sufficient a priori information about the proportion of causal SNPs or the directions of
effects, famSKAT would be a better choice over famBT.

We show that when SKAT is inappropriately applied to correlated data, it has inflated type I
error. Thus, the best we can do for SKAT is to select unrelated individuals from the whole
sample. However, our power simulations demonstrate that this strategy is not in favor of
power in many scenarios. In the contrast, we do not need to reduce our sample size if we use
famSKAT. Our real data example from the Framingham Heart Study also shows that SKAT
does not even have an observation which reaches the nominal significance level of 0.05.

Common genetic variants at 16 gene regions we chose for fasting glucose and 2 gene
regions we chose for log-transformed fasting insulin have been shown to be associated with
either trait in large GWAS [Dupuis et al., 2010]. However, we do not have solid evidence to
show that there is strong association between either trait and the rare genetic variants in
these regions. We noticed that the sample size in this analysis was far smaller than in Dupuis
et al. [2010], which reduced the power. In addition, the SHARe project was not specifically
designed for rare variants analysis, so most SNPs in our genotype dataset are common SNPs
which were excluded from the analysis. With the progress of sequencing studies, we should
be able to identify much more rare variants and perform the candidate gene or even genome-
wide analysis again using the new genotype dataset with dense rare genetic variants. On the
other hand, some gene regions may be truly associated with the trait only through common
SNPs, so we do not expect to identify the association with rare genetic variants for all these
gene regions we selected.

With the development in sequencing technology and the lowering of the cost, sequencing
data which contain a lot of rare genetic variants have become available, not only for case-
control studies, but also for cohorts that include family members. Based on SKAT, one of
the most powerful rare genetic variants analysis methods to date, we developed famSKAT in
the hope of facilitating rare genetic variants analysis to identify novel genes associated with
quantitative traits. With famSKAT, cohorts with family data can perform the association
analysis with rare genetic variants, using as much data as possible, without having to select
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unrelated individuals from the pedigree. FamSKAT has been implemented in R, and source
code is available at http://www.bumc.bu.edu/linga/research/publications/famskat/.

For calculating the p-values, we recommend using Kuonen’s saddlepoint method [Kuonen,
1999] instead of Davies’ method [Davies, 1980]. As a method based on numerical
integration, Davies’ method requires specifying the accuracy. When the p-value is expected
to be very small, Davies’ method cannot calculate it accurately. Table 3 shows this
numerical issue in a power simulation context. Davies’ method suffers from negative and
zero p-values (and possibly significant roundoff error) regardless of the accuracy specified.
In the contrast, Kuonen’s method does not have such issues. Thus, if we perform a genome-
wide rare variants analysis using sequence data, from which we expect extreme low p-
values, Kuonen’s method might be a better choice over Davies’ method.

Even though famSKAT was developed for analyzing rare genetic variants, it can also be
used for common variant analysis, combined common and rare variant analysis or
conditional association analyses. Depending on the research hypothesis, common variants
can be treated as fixed effects in the model, or random effects along with the rare genetic
variants. During the review of this paper, we became aware that Schifano et al. [2012] had
recently developed a SNP set association analysis approach for common variants analysis in
family data, which is essentially equivalent to our method. The use of famSKAT combined
with the collapsing of some very rare genetic variants such as singletons is also possible.
Similar with SKAT, external weights based on annotation information or functional
prediction can be incorporated to further boost the power.
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Figure 1.
Distribution of the p-values for famSKAT, famBT, unrSKAT and SKAT from the null
simulation with LD between adjacent SNPs 0.5 and proportion of unrelated individuals 0%.
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Figure 2.
Power comparisons of famSKAT, famBT and unrSKAT. Empirical power calculated at
level of 0.001. The sample consists of sib pairs and unrelated individuals. The total sample
size in each scenario is 1000, and the total number of SNPs analyzed is 20. In each panel, +/
−/0 indicates the proportion of SNPs with positive effects, negative effects and no effects.
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Figure 3.
Q-Q plots for famSKAT in the genome-wide sliding window analysis on four glycemic
traits. The p-values were plotted as minus log base 10 p-values. The genomic control factor
λGC was computed as the ratio of median chi-square statistics with 1 df corresponding to
observed and expected p-values.
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Figure 4.
Run time of famSKAT, famBT and SKAT in analyzing 20 SNPs.
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