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Synthesis of phospholipids, sterols and sphingolipids is thought to
occur at contact sites between the endoplasmic reticulum (ER)
and other organelles because many lipid-synthesizing enzymes
are enriched in these contacts. In only a few cases have the
enzymes been localized to contacts in vivo and in no instances
have the contacts been demonstrated to be required for enzyme
function. Here, we show that plasma membrane (PM)—ER
contact sites in yeast are required for phosphatidylcholine
synthesis and regulate the activity of the phosphatidylethanol-
amine N-methyltransferase enzyme, Opi3. Opi3 activity requires
Osh3, which localizes to PM–ER contacts where it might facilitate
in trans catalysis by Opi3. Thus, membrane contact sites provide
a structural mechanism to regulate lipid synthesis.
Keywords: membrane contact sites; phosphatidylcholine
synthesis; Opi3; Osh3; Pah1
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INTRODUCTION
The structure of the endoplasmic reticulum (ER) of Saccharomyces
cerevisiae is somewhat unique among eukaryotes, in that its
reticular network, a characteristic of all eukaryotic cells, lies just
beneath the plasma membrane (PM). Reconstruction of total yeast
ER in individual cells by three-dimensional electron tomography [1]
has revealed that PM-associated ER (pmaER) consists of ER tubules
and flattened fenestrated ER sheets that are in close apposition to

the cytosolic leaflet of the PM. Regions of pmaER that are apposed
to the PM are devoid of ribosomes [1], consistent with these being
sites of physical contact between ER and PM [2]. PM–ER contacts
likely have important roles in all eukaryotic cells [3], and in yeast,
pmaER is enriched in lipid-synthesizing enzymes [2], suggesting
that PM–ER contacts are important for lipid metabolism. Protein
families with lipid-related functions have been found specifically
localized at PM–ER contact sites [4–6], where they are thought to
have roles in non-vesicular lipid transport between PM and ER,
although the role for the contacts themselves has not been directly
demonstrated. Recently, it has been found that localization of the
integral ER phosphatidylinositol phosphate phosphatase, Sac1,
to PM–ER contacts regulates phosphatidylinositol 4-phosphate
(PI4P) levels in the PM in trans [7]. In trans catalysis by Sac1
requires interaction with Osh3, a soluble lipid-binding protein of
the oxysterol-binding protein family that localizes to PM–ER
contacts [7]. Consistent with a role for contacts in regulating Sac1,
a mutant with reduced pmaER has increased levels of PI4P [8].

We previously found that two genes with roles in ER biogenesis
in yeast, SCS2 and ICE2, have an aggravating genetic interaction,
and Dscs2Dice2 double mutants have reduced pmaER, suggesting
that pmaER performs an essential function required for cell
growth [9]. Ice2 is an integral ER protein of unknown function that
is required for inheritance of pmaER [10]. Scs2 is a highly
conserved tail-anchored protein of the VAP family that localizes
proteins containing FFAT motifs to the ER [4] and regulates yeast
phospholipid synthesis [11]. Scs2 localizes the oxysterol-binding
protein homologues Osh2 and Osh3 to pmaER through interaction
with the FFAT motifs in these proteins [4,6], which is required for
regulation of in trans Sac1 activity [7].

RESULTS AND DISCUSSION
To uncover clues about PM–ER contact site function, we
examined the yeast global genetic interaction network [12],
which is a comprehensive map of pairwise genetic interactions in
which genes with similar functions form coherent clusters. We
noticed that SCS2 and ICE2 were in a cluster enriched for genes
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involved in phospholipid metabolism (Fig 1A). These included
genes required to make phosphatidylcholine (PC) by the Kennedy
pathway, a salvage pathway that synthesizes PC and PE from the
lipid precursors choline, ethanolamine and diacylglycerol
(Fig 1B) [13]. This cluster showed predominately aggravating
genetic interactions with a cluster containing both PEMT enzymes,
encoded by CHO2 and OPI3, which synthesize PC by the
methylation pathway (Fig 1A,B). Also in this cluster was the Ino2–
Ino4 transcription factor, which activates expression of Kennedy
and methylation pathway genes [13], as well as ICE2, further
suggesting a function in the methylation pathway.

This clustering suggested that PM–ER contacts might regulate
PC synthesis. We found that choline, but not ethanolamine,
rescued the Dscs2Dice2 slow-growth phenotype (Fig 1C), indicat-
ing that the mutant likely had a PC synthesis defect in the
methylation pathway. Overexpression of OPI3 in the Dscs2Dice2

mutant rescued its growth defect (Fig 1D), whereas overexpression
of CHO2 did not (supplementary Fig S1 online), suggesting
that Opi3 function was compromised. Addition of monomethyl-
ethanolamine, which is converted into phosphatidylmonomethyl-
ethanolamine (PME) by the Kennedy pathway and bypasses
the requirement for Cho2, did not rescue growth of Dscs2Dice2
cells (supplementary Fig S1 online) consistent with loss of Opi3
function in the mutant.

Cho2 performs the first PE methylation, whereas Opi3 is
primarily responsible for the second and third methylations
(Fig 1B), although Opi3 can also methylate first, but at a reduced
rate [14]. Because of this redundancy, Dcho2 and Dopi3
cells grow poorly on media lacking choline, but are not
obligate choline auxotrophs, whereas Dcho2Dopi3 cells are obligate
auxotrophs and are rescued by overexpression of Opi3, but not
Cho2 [14]. The aggravating genetic interaction between Scs2 and
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Fig 1 | Opi3 function is compromised in Dscs2Dice2 cells. (A) Gene clusters containing SCS2 and ICE2 revealed a potential role for PM–ER contacts in

phospholipid metabolism. Genes are colour-coded according to pathways in (B). Data were clustered from Costanzo et al [12]. (B) Principal pathways

of phospholipid synthesis in S. cerevisiae. Genes encoding enzymes required for each step are shown in italics. (C) Ten-fold serial dilutions of the

indicated mutant yeast strains grown on SD media (� ) or SD supplemented with either þCho or þ Etn. (D) WT and Dscs2Dice2 yeast grown on SD

media transformed with either a plasmid expressing Opi3 (þ pOPI3) or a control plasmid (� ). (E) Mutant yeast grown on SD media without choline.

(F) Yeast grown on SD media transformed with either a plasmid expressing Scs2 (þ pSCS2) or a control plasmid (� ). (G) In vivo PE methylation

assay. Log phase yeast were pulse-labelled with [3H]-Etn and the rate of PC synthesis was determined by measuring conversion of PE into PC over

time. Error bars, s.e.m. Asterisks, Po0.005 versus WT. (H) PE methylation assay for indicated strains expressing Opi3 from a plasmid (NS versus

WT). (I) Yeast grown on SD media containing choline with 1 mM DTT (þDTT) or without (� ). Cho, choline; DAG, diacylglycerol; DTT,

diothiothreitol; ER, endoplasmic reticulum; Etn, ethanolamine; NS, not significant; PA, phosphatidic acid; PC, phosphatidylcholine; PDE,

phosphatidyldimethylethanolamine; PE, phosphatidylethanolamine; PM, plasma membrane; PME, phosphatidylmonomethylethanolamine; PS,

phosphatidylserine; SD, synthetic-defined; synth, synthesis; WT, wild-type.
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Cho2 and the alleviating interaction between Scs2 and Opi3
observed in the gene cluster (Fig 1A) suggested that Scs2 might
modify Opi3 function directly. Consistent with Scs2 regulating
Opi3, we found that Dscs2Dcho2 cells were obligate choline
auxotrophs (Fig 1E), and overexpression of Scs2 rescued the
choline auxotrophy of the Dcho2 mutant (Fig 1F). The function of
ICE2 was less clear; however, we did uncover a genetic
interaction with PSD1 that was rescued by ethanolamine
(supplementary Fig S1 online), further supporting a role for Ice2
in the methylation pathway as implied by the gene cluster.

To measure Opi3 function in the Dscs2Dice2 mutant, we pulse-
labelled cells with [3H]-ethanolamine and monitored conversion
of radiolabelled PE into PC. In both wild-type and mutant cells,
the rate of incorporation of label into PC was linear for at least the
first 3 h of the assay (supplementary Fig S1 online). As expected,
we found that the rate of PC synthesis in a Dcho2 mutant control
was significantly reduced (Fig 1G). Consistent with decreased
Opi3 function, PC synthesis was also reduced in the Dscs2Dice2
mutant (Fig 1G). Overexpression of Opi3 increased the rate
of PC synthesis back to levels similar to wild type (Fig 1H;
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supplementary Fig S1 online). Thus, reduced synthesis of PC in the
Dscs2Dice2 mutant likely accounted for its choline auxotrophy.
Finally, the Dscs2Dice2 mutant was sensitive to dithiothreitol
(Fig 1I), indicating increased ER stress, also consistent with
decreased Opi3 function [15].

Loss of Opi3 function in the Dscs2Dice2 mutant suggested that
Opi3 functioned at PM–ER contacts. Using an endogenous type I
integral ER protein Pho88 tagged with green fluorescent protein
(GFP), we verified our previous findings that Dscs2Dice2 cells had

normal ER tubules and nuclear ER, but greatly diminished ER at
the cell cortex (Fig 2A). To characterize PM–ER contacts, we used
a specific marker that is an integral ER membrane protein that
localizes to PM–ER contacts by interacting directly with
the PM [5]. As previously found, Tcb3-GFP localized only to the
pmaER domain at the cell cortex, but not the nuclear ER or ER
tubules (Fig 2B). Consistent with three-dimensional electron tomo-
graphy showing that pmaER forms distinct domains in the bud and
mother, and is absent from the bud neck [1], Tcb3-GFP was
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discontinuous through the neck and otherwise localized to pmaER
throughout the cell cycle (Fig 2C). In the Dscs2Dice2 mutant,
Tcb3-GFP localization was clearly disrupted. pmaER defects were
pronounced in small and medium-sized buds, in which Tcb3-GFP
often failed to localize to the bud periphery and instead localized
to ER tubules near the centre of the bud (Fig 2D). In mothers,
Tcb3-GFP also mislocalized to the nuclear ER.

Now, we examined the localization of the endogenous Opi3
enzyme tagged with GFP, which appeared functional (supple-
mentary Fig S2 online). In wild-type cells, Opi3-GFP localized
throughout the ER (Fig 2E). We observed some extra diffuse
staining in the vacuole that was likely a result of turnover of Opi3-
GFP. In the Dscs2Dice2 mutant, localization of Opi3-GFP to the
nuclear ER remained intact; however, it was almost completely
absent from pmaER (Fig 2E). Quantification of Opi3-GFP in
the nuclear ER revealed no change in its expression level
(supplementary Fig S2 online), indicating that loss of Opi3
function likely resulted from the defect in pmaER in the mutant.
Consistent with this, Opi3 overexpression did not seem to rescue
pmaER (supplementary Fig S2 online).

Scs2 localizes both Osh2 and Osh3 to PM–ER contacts [4], and
we tested for their roles in regulating Opi3. Overexpression of
Osh2 partially restored growth of the Dscs2Dice2 mutant, whereas
Osh3 fully rescued (Fig 2F). In contrast, Osh1, which is localized
to the nucleus–vacuole junction by Scs2 [4], did not rescue, and in
fact impeded growth (Fig 2F). Osh3 overexpression restored PC
synthesis in the Dscs2Dice2 mutant (Fig 2G), consistent with

rescue of growth of the mutant. However, Osh3 did not rescue
pmaER in Dscs2Dice2 cells (supplementary Fig S2 online), but it
did restore growth of the Dcho2 mutant (Fig 2H), suggesting that
Osh3 regulated Opi3 function at contacts.

We now exploited the choline auxotrophy phenotype of the
Dscs2Dice2 mutant in a screen to identify regulators of PM–ER
contact structure. We identified a suppressor plasmid carrying the
PAH1 gene (Fig 3A), which encodes a highly conserved
phosphatidic acid phosphatase enzyme of the lipin family that
catalyses the conversion of phosphatidic acid into diacylglycerol
in the Kennedy pathway (Fig 1B) [16]. Surprisingly, a catalytically
inactive mutant of Pah1, D398E [17], also rescued the choline
auxotrophy of the Dscs2Dice2 mutant (Fig 3B), arguing against
rescue via the Kennedy pathway. Consistent with this, Pah1 still
rescued a Dscs2Dice2Dpct1 triple mutant with an inactivated
Kennedy pathway (Fig 3C). Overexpression of Pah1 rescued PC
synthesis in the Dscs2Dice2 mutant (Fig 3D; supplementary
Fig S3 online), indicating that Pah1 rescued Opi3 function.
However, it did not rescue the Dcho2 mutant (supplementary
Fig S3 online), suggesting that Pah1 did not regulate Opi3 directly.

These results suggested that Pah1 might rescue pmaER in the
Dscs2Dice2 mutant. In contrast to Opi3 and Osh3, overexpression
of GST–Pah1 appeared to restore Tcb3-GFP localization to pmaER
(Fig 3E), and Pah1 also restored Opi3-GFP to pmaER (supple-
mentary Fig S3 online). Therefore, we performed an ultrastructural
analysis of PM–ER contacts using transmission electron
microscopy. We quantified ER segment length, frequency and
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the overall ratio of PM–ER contacts to PM perimeter (Fig 3F;
supplementary Fig S4 online). In the Dscs2Dice2 mutant, we found
that contacts were decreased to B7% in buds and B13% in
mothers, compared with B25% of the cell periphery in wild type
(Fig 3G). In buds, the decrease resulted from both a decrease in
contact site length (Fig 3H) and frequency (Fig 3I). In mothers, the
decrease resulted only from reduced frequency as contact site
length was unaffected.

Overexpression of both Pah1 and D398E Pah1 in the
Dscs2Dice2 mutant restored contacts to near wild-type levels in
both buds and mothers (Fig 3G). Rescue resulted from increased
contact length and frequency in buds (Fig 3H,I), indicating that
Pah1 rescued the defect in formation of pmaER in the bud. In wild-
type cells, Pah1 increased contacts to B40% of the cell periphery,
a result of increased frequency, supporting a physiological role for
Pah1 in initiating contacts. Finally, Pah1 rescued the dithiothreitol
sensitivity of the Dscs2Dice2 mutant, which did not require
activation of the unfolded protein response (supplementary
Fig S3 online), further supporting that Pah1 directly rescued the
defect in PM–ER contacts by a mechanism that was independent
of activation of general stress response pathways.

Our results indicate that PM–ER contacts provide a spatial
mechanism to regulate synthesis of PC by the yeast PEMT enzyme,
Opi3. A consequence of altered Opi3 activity at contacts could be
altered PM stability, as has been found in the livers of Pemt� /�

mice, which have increased PE:PC in their PM [18]. Yeast mutants
with increased PE:PC in the PM are sensitive to non-ionic
detergents, which destabilize the bilayer [19]. We found that
Dlem3/ros3 cells, which have a buildup of PE in the PM owing to
decreased PE flippase activity [20,21], were sensitive to NP-40
(Fig 4A). We also found that Dopi3 cells, which have increased
PME [22], were NP-40 sensitive (Fig 4B), suggesting that PME
accumulated in the PM. The Dscs2Dice2 mutant was similarly NP-
40 sensitive, which was suppressed by Opi3 (Fig 4C). Importantly,
D398E Pah1 also suppressed, consistent with rescue of PM–ER
contacts and reconstitution of Opi3 function by Pah1 (Fig 4D).
Loss of Osh3 also caused NP-40 sensitivity, further supporting its
role in regulating Opi3 at contacts (Fig 4E). This function for Osh3
was independent of its role in regulating PI4P levels in the PM [7],
because Dsac1 cells were insensitive to NP-40 (Fig 4E). NP-40
sensitivity was not owing to decreased PE flippase activity,
because Dscs2Dice2 cells were insensitive to cinnamycin
(Ro09-0198), which binds PE located in the outer leaflet of the
PM and lyses cells [20,21], whereas Dlem3/ros3 cells were highly
sensitive (Fig 4F).

Previous work suggested that Opi3 could act in trans in
catalysing the methylation of PME located in a juxtaposed
membrane [23]. Hence, the role for PM–ER contacts might be to
provide Opi3 access to PE/PME located in the PM for in trans
methylation. We tested this possibility using an in vitro assay. We
incubated liposomes containing tritiated PME with ER microsomes
containing Opi3 and monitored synthesis of PC (Fig 4G). Mixing
of liposomes and microsomes resulted in conversion of B35% of
the PME into phosphatidyldimethylethanolamine (PDE) and PC
(Fig 4H). Recovery of the liposomal fraction, which contained the
most radiolabel (supplementary Fig S5 online), revealed a similar
lipid distribution with B30% of the PME converted to PDE and PC
(Fig 4I). Thus, accumulation of PDE and PC in the liposomal
fraction was consistent with in trans Opi3 activity. We did not

detect defects in endocytosis or uptake of NBD–PE/PC in the
Dscs2Dice2 mutant (supplementary Fig S5 online), indicating that
lipid transport between PM and ER was likely not disrupted,
further supporting that Opi3 functioned in trans at contacts.

We propose that PM–ER contacts regulate the activity of Opi3
through both providing its lipid substrate in trans and by restricting
access of Opi3 to Osh3 at contacts. Similar to its proposed role in
regulation of Sac1 [7], Osh3 might present PME or PE in the PM to
Opi3 located at PM–ER contacts. In trans methylation by Opi3
might enable cells to rapidly adjust the PME/PE:PC ratio of the PM,
affecting the physical properties of the bilayer. In trans methyla-
tion by Opi3 requires that PME is available in the PM. Lipidomic
analysis of subcellular fractions of yeast organelles identified PME
in the Golgi, but not in any other compartments, including ER
microsomes and PM [24]. This suggests that PME is a constituent
of the secretory pathway and is trafficked to the PM where it is
rapidly converted into PC. Finally, the active site of all eukaryotic
PEMTs resides on the cytoplasmic face of the ER membrane,
accessible to the PM [25] (Fig 4G), and prokaryotic PEMTs
are soluble enzymes that lack transmembrane domains [26]
and must, by their nature, associate with the PM in trans. Thus,
PM–ER contacts might regulate PC synthesis by providing PEMT
enzymes located in the ER access to their lipid substrates located
in trans in the PM.

METHODS
Plasmid yeast strains and growth conditions. Details of plasmids
and yeast strains used in this study can be found in the supple-
mentary information online. All yeast strains were on the basis of
S288C, and growth assays were performed at 30 1C for 24–48 h on
synthetic-defined (SD) medium.
Array-based genome-wide suppressor screen. The array-based
genome-wide suppressor screen was performed by adapting the
synthetic genetic array method to introduce each plasmid from the
yeast GST–ORF collection (Open Biosystems) into a Dscs2Dice2
strain and scoring for growth on media lacking choline.
Confocal microscopy. Yeast strains expressing GFP-tagged pro-
teins were grown to log phase and imaged using a Zeiss LSM-5
Pascal confocal microscopy system equipped with a Zeiss � 100
objective (Plan-neofluar, 1.3) by squashing 1–5 ml of live yeast in
media between a slide and cover slip.
Transmission electron microscopy of PM–ER contacts. For thin-
section electron microscopy, cells were prepared and imaged on a
Hitachi H7600 transmission electron microscope. A minimum of
15 budded cells were analysed per condition.
In vivo methylation assay. Briefly, log phase cells were collected
and incubated with 24 mCi of [3H]-ethanolamine for 1 h at
37 1C, washed and shaken at 30 1C for the indicated
times before total lipids were extracted and analysed by
high-performance liquid chromatography.
In vitro Opi3 trans methylation assay. Briefly, microsomes
containing Opi3 were isolated from a wild-type strain and
liposomes were prepared from lipids extracted from a Dopi3
strain labelled with [3-H] methionine, and microsomes were
incubated with [3H]-PME-loaded liposomes at 30 1C for 2 h. Lipids
were extracted before or after separating liposomes from
microsomes on a 20% (w/v) sucrose cushion by centrifugation,
and the conversion of [3H]-methyl-PME was quantitated after
thin layer chromatography.
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Supplementary information is available at EMBO reports online
(http://www.emboreports.org).
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