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Abstract
Infection and cardiovascular disease are leading causes of hospitalization and death in older
patients on dialysis. Our recent work found an increase in the relative incidence of cardiovascular
outcomes during the ~ 30 days after infection-related hospitalizations using the case series model,
which adjusts for measured and unmeasured baseline confounders. However, a major challenge in
modeling/assessing the infection-cardiovascular risk hypothesis is that the exact time of infection,
or more generally “exposure,” onsets cannot be ascertained based on hospitalization data. Only
imprecise markers of the timing of infection onsets are available. Although there is a large
literature on measurement error in the predictors in regression modeling, to date there is no work
on measurement error on the timing of a time-varying exposure to our knowledge. Thus, we
propose a new method, the measurement error case series (MECS) models, to account for
measurement error in time-varying exposure onsets. We characterized the general nature of bias
resulting from estimation that ignores measurement error and proposed a bias-corrected estimation
for the MECS models. We examined in detail the accuracy of the proposed method to estimate the
relative incidence. Hospitalization data from United States Renal Data System, which captures
nearly all (> 99%) patients with end-stage renal disease in the U.S. over time, is used to illustrate
the proposed method. The results suggest that the estimate of the cardiovascular incidence
following the 30 days after infections, a period where acute effects of infection on vascular
endothelium may be most pronounced, is substantially attenuated in the presence of infection
onset measurement error.
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1 Introduction
Infection and cardiovascular disease are leading causes of hospitalization and death in
patients on dialysis in the United States (USRDS, 2010). Smeeth et al. (2004) found that
infection is associated with an increased risk of cardiovascular events, using data from the
United Kingdom General Research Practice Database (Walley and Mantgani, 1997), the
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largest source of ongoing data on illness and practice in the UK. More specifically, they
showed that there is a 3- to 5-fold increase in risk (incidence) of a myocardial infarction or
stroke after infection in the general population. Although the precise mechanisms by which
infection may affect cardiovascular events are not fully known, infections may affect
vascular endothelium (Mahmoudi, Curzen and Gallagher, 2007), create a chronic sub-
clinical inflammatory state that affects atherosclerosis, (Zhu, Quyyumi, Norman et al.,
2000), or may create a procoagulant state (Macko, Ameriso, Gruber et al., 1996; Sun, 2006).

Only recently has the association between acute infections and cardiovascular events been
examined in the (U.S.) dialysis population, using data from the United States Renal Data
System (USRDS) which captures nearly all (> 99%) patients with end-stage renal disease in
the U.S. More specifically, Dalrymple et al. (2011) found an increased incidence of
cardiovascular events, particularly in the first 30-day risk period after infection-related
hospitalizations in older dialysis patients (age ≥ 65). Infection, or more generally the
“exposure” of interest, was observed over time during the follow-up/observation period for
each individual; therefore, the exposure was time-varying. The case series model, also called
self-controlled case series model (Farrington, 1995), was utilized to estimate the association
between the incidence of cardiovascular events and the time-varying exposure, namely
infection. The approach uses only cases, i.e., individuals with one or more cardiovascular
events. There are several important reasons and appealing aspects to this modeling choice.
First, the case series method provides consistent estimates of the relative incidence (e.g.,
cardiovascular events during the 30-day risk period following an infection relative to the
control period over the observation time) using only cases. Secondly, it implicitly controls
for all fixed confounders, measured and unmeasured, such as genetics or co-existing
illnesses. This later point is particularly relevant to the dialysis cohort from the USRDS as
dialysis patients who do and do not acquire infections likely differ in important ways not
easily measured; therefore, making adjustment in (e.g., Poisson) regression modeling
infeasible. Third, the case series model is well-suited for this type of hypothesis-driven
research because (1) it requires specification of the risk period(s) a priori and (2) leads to a
specific time window to potentially examine more aggressive intervention monitoring, such
as the first 30 days after exposure/infection, for cardiovascular risk reduction, in addition to
implementation of overall infection control/prevention strategies and early treatment in this
population.

The case series model was originally proposed in 1995 to investigate the association
between an acute outcome and a time-varying exposure; more specifically, adverse events
and vaccination. As mentioned above, only individuals with one or more events are sampled
in the case series model. It is derived from an underlying non-homogeneous Poisson cohort
model where events and exposure history are available on the observation period (ai, bi] for
the ith case/individual and with incidence rate λijk = exp(φi + αj + βk), where φi, αj and βk
are the individual-specific, jth age group and kth risk group effects, respectively. The primary
effects of interest are the βk's. To take into account the deliberate sampling on cases only,
the model likelihood is conditional on an event having occurred and the resulting kernel of
the likelihood is multinomial with probabilities depending on the incidence rate λijk. The
“self-controlled” aspect of the method refers to the fact that individual effects φi cancel in
the likelihood. The exposure history, i.e., the times when the exposures occurred, within the
observation period of individual i, namely (ai, bi], is assumed to be known precisely. For
example, in the original application of the case series model, there is little doubt as to when
a vaccination occurs as those can be ascertained fairly accurately.

However, a major challenge associated with using the USRDS hospitalization data to
address the infection-cardiovascular risk hypothesis is that the exact date or time of
infection/exposure onset cannot be ascertained based on hospital claims data, although the
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discharge date is a surrogate marker for the time of infection as it reasonably assures that the
infection has occurred by this date. Thus, our previous work used the date of infection-
related hospitalization discharge as the observed time of infection (Dalrymple et al., 2011).
Clearly, this is a conservative approximation to the true unknown date of infection, which
most likely occurred sometime during hospitalization or prior to the start of hospitalization.
From a more general perspective, this can be viewed as a problem of exposure onset
measurement error, where one only observes a marker of the unknown time of exposure.
The lack of an existing method that can handle this exposure onset measurement error leads
us to propose the measurement error case series (MECS) model, in order to more thoroughly
assess the infection-cardiovascular risk hypothesis in the dialysis population. Thus, the
proposed MECS model in this work aims to target the true underlying relative incidences
using imprecise exposure onset times and still retain the advantages associated with the
original case series model.

We note that exposure onset measurement error is distinct from traditional measurement
error in the form of mismeasured continuous or misclassified categorical variables (e.g.,
Carroll et al., 2006). There is indeed an extensive literature on methods for dealing with
measurement error in the covariates, including time-varying covariates, in general regression
modeling. For example, modeling measurement error in time-varying covariates, such as
longitudinal dietary intakes (e.g., from food frequency questionaire (FFQ)) in linear mixed
models and survival analysis were considered by Tosteson et al. (1999) and Liao et al.
(2011), respectively. Measurement error in time-dependent covariates, such as growth
hormone and binding protein levels, in pharmacokinetics nonlinear mixed-effects models
were considered by Higgins et al. (1997). Other works include Huang and Wang (2000) and
Tsiatis and Davidian (2004), both in the context of time-to-event data. In the literature on
time-varying covariate measurement error, including the above referenced works, the main
issue is that the longitudinal covariate measurements themselves, e.g., dietary/nutrient
intakes or protein concentrations, are measured with error. The timing of the covariate
measurements, such as when the FFQ's were administered or hourly measurements of serum
protein concentration, is not in doubt. Our work here focuses on measurement error in the
timing of when the exposures occur over time and to date there has been no work to handle
measurement error in the timing of exposure onset in case series modeling. There are several
works, unrelated to case series modeling and exposure onset measurement error, that involve
the “timing error” of covariates, whose meaning differs completely from the current work.
For example, in Higgins et al. (1997) this simply refers to covariates measured at different
time points than the response measurement times. Li and Ryan (2004) considered
“mistiming error,” which refers to using a covariate measured at a later known time, such as
some known time after birth or baseline, in place of an intended covariate at birth, which is
not available in a Cox regression model. See Keiding (1992), who also considered mistimed
covariates. We note that in mistimed covariates, the timing of the covariate is not in doubt
(error). One simply uses the covariate measured at a different known time; hence, the timing
of the available covariate itself is not subject to error.

Some interesting case series applications involve antidepressant use and hip fracture
(Hubbard et al., 2003) and prescription medications and motor vehicle crashes (Gibson et
al., 2009), although the original novel proposal by Farrington (1995) was for investigating
associations between time-varying transient exposures, specifically vaccinations, and
adverse events. It is increasingly recognized as an important method in the analysis of data
from biomedical and epidemiological studies. Excellent expository papers on the practice
and implementation of case series modeling are provided by Whitaker et al. (2006, 2009).

The remainder of this paper is organized as follows. In Section 2, we introduce the
measurement error case series model for exposure onset measurement error and investigate
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the bias when ignoring the measurement error. We also propose a bias-correction method in
Section 2.3 that requires only fitting the ordinary case series model, ignoring measurement
error. In Section 2.4 we examine the accuracy of the proposed bias-correction method in
estimating the true relative incidence of interest. Effcacy of the proposed approach is
examined in extensive simulation studies in Section 3 and these studies also reveal the
nature of bias under different patterns of true exposure effects. We present, for the first time,
an assessment of the infection-cardiovascular risk association in the dialysis population
taking into account the imprecise exposure/infection onset data in Section 4. Finally, Section
5 provides a discussion of our proposed MECS models and findings.

2 Measurement Error Case Series Models for Imprecise Exposure Onset
Times
2.1 The Model

The self-controlled case series model was proposed by Farrington (1995) and was originally
designed to estimate the relative incidence of acute events following transient exposures. It
is a retrospective cohort method based on a conditional Poisson model requiring cases only
and is self-controlled, since all time-invariant/age-independent confounders are implicitly
controlled. The case series method is derived by conditioning on the occurrence of an event
and the individual's exposure history during a fixed observation period, where event counts
arise from a non-homogeneous Poisson process. For a cohort of N individuals (i = 1, …, N)
with one or more events, let (ai, bi] denote the observation period over time for subject i
(e.g., age in days) which is partitioned into age intervals (groups) j = 0, …, J and exposure
risk periods k = 0, …, K. The baseline or control risk period corresponds to k = 0, which
consists of all time periods outside of the exposure risk periods. Similarly, the reference age
group is j = 0. For example, in the infection-cardiovascular example introduced earlier
(Dalrymple et al., 2011), the risk periods are 1–30, 31–60, and 61–90 days (K = 3) after an
infection (and the baseline period consists of observation times outside of the three risk
periods). Figure 1(a) illustrates the follow-up data for a subject.

The case series method compares the incidence within a risk period relative to the incidence
in the baseline period, within each individual. Let the length of time individual i spends in
age group j and risk period k be eijk. Given the exposure history over the observation period
for individual i, the number of events in each interval, denoted nijk, is assumed to follow a
non-homogeneous Poisson process with rate λijk = exp(φi + αj + βk), i.e., nijk ~
Poisson(eijkλijk). Here the parameters φi, αj and βk are, respectively, the individual-specific,
jth age group relative to age group j = 0 and kth risk group relative to baseline period k = 0
effects, with α0 = β0 = 0. The parameters of primary interest are βk, k = 1, …, K, the log
relative incidences for the exposure risk periods. The case series model is obtained by
conditioning on the event ni.. = Σjk nijk ≥ 1, where ni.. is the total number of events for
individual i. As shown in Farrington (1995), the kernel of the case series likelihood is
product multinomial, with the contribution from subject i given as

(1)

with probabilities

(2)

Mohammed et al. Page 4

J Am Stat Assoc. Author manuscript; available in PMC 2013 June 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



β = (β1, …, βK) and = α (α1, …, αJ). The individual effects φi cancel out, thus,
selfcontrolling for all fixed covariates. We refer the reader to Farrington (1995) for details
and also to the excellent expository papers by Whitaker et al. (2006, 2009) on the
application of case series models, including study planning guidance and assessment of
model assumptions.

Next, we introduce the model for exposure onset measurement error, motivated by imprecise
infection onset when using USRDS hospitalization data. Because exposure onset
measurement error is largely inconsequential to estimation of age effects, we focus here on
the exposure effects of primary interest (i.e., the β′s); therefore, we drop subscript j. Also,
we consider here, in more detail, a positive measurement error model because it is relevant
to our current application, where we know that each exposure/infection must occur prior to
the observed discharge date of an infection-related hospitalization. Thus, we consider the
following positive additive exposure onset measurement error model,

(3)

where wil is the observed exposure onset time, vil is the true (unobserved) exposure onset
time, uil is a positive measurement error (uil > 0) with mean μu = E(uil) and variance

, and Li is the number of exposures observed for individual i. For our current
application wil is the infection-related discharge time. Figure 1(b) illustrates the effects of
exposure onset measurement error. We assume that the amount of measurement error in the
exposure time (uil) is less than the risk period length of interest. For example, if the relative
incidence of events associated with the 30-day period after an infection is of interest, then
the uncertainty in the time when the infection actually occurred should not exceed 30 days.
If uil > 30 days then one cannot estimate the relative incidence in the 30-day period after an
infection, because uil > 30 amounts to not having any reliable data for estimation. Thus, this
assumption on the magnitude of the measurement error essentially ensures that there must be
some amount of reliable data for estimation.

We refer to (1)–(3) as the measurement error case series (MECS) model. As in the case of
classical measurement error problems, naive estimation ignoring measurement error will be
biased. We characterize the target of the naive estimation, and hence the bias, in Section 2.2
below. For the MECS models, given ui = (ui1, …, uiLi), ,
where  is the observed number of (e.g., cardiovascular) events in risk period k (k = 0, …,
K) and  are modified probabilities depending on
measurement error ui. More specifically, we show in the appendix that  is a function of
the length of the kth risk period, the true underlying rate λik, and a mixture of true rates
corresponding to control and risk periods and measurement error.

We provide the following result (Theorem 1) needed to fully characterize the bias resulting
from ignoring exposure onset measurement error in sections 2.2 and 3. For this purpose, we

further introduce the following notation. Among individuals with Li ≥ 2 exposures, let 

denote the number of (disjoint) risk segments ( ). For example, suppose that individual
i has Li = 5 infections, the risk period of interest is 1–30 days after an infection, infection 3
occurs within the 30-day risk period after infection 2 (i.e., the 30-day risk periods for
infections 2 and 3 overlap), and similarly, infection 5 occurs within 30 days of infection 4.

Then we have  risk segments defined by infection 1, infections (2, 3), and infections (4,
5). We refer to the later two risk segments as “overlapping” risk segments. Thus, we have
the following result for the general MECS model and a special case with potential
overlapping risk segments. It is assumed that risk periods are adjacent following an
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exposure; for instance, 1–30, 31–60 and 61–90 days following an exposure. We defer the
proof to the appendix.

THEOREM 1. Under the general MECS model (1)–(3) with Li exposures and non-overlapping
risk segments,

(4)

where Δi = Σ eirλir. Furthermore, for MECS models with one risk period, individuals with

multiple exposures, and possibly with overlaps, E(ñik) in (4) holds with Li replaced by ,
the number of disjoint risk segments.

Remarks—Our studies in Section 3 below show that the MECS model with non-
overlapping risk segments leads to the most severe bias on average; therefore, this case is of
particular relevance to understanding the extent and nature of bias when ignoring exposure
onset measurement error. Overlapping risk segments are relatively rare, although we also
examine their effects on estimation bias as well. We discuss the above result for common
MECS models (e.g., with K = 1 risk period) when there are possibly overlapping risk
segments in the appendix. Also, although not directly applicable to our specific application
in this work, the risk periods need not be adjacent in the case series model generally.
Equation (4) can be extended to this case and we discuss this in the appendix section.

In the special case with one risk group (K = 1), we have that (4) reduces to

Thus, from the above equality, we note that limμu→0 E(ñi1) = ni.πi1, providing an approach
to bias correction in Section 2.3.

2.2 Bias When Ignoring Exposure Onset Measurement Error
We consider here the bias that results from naive case series model estimation without
accounting for exposure onset measurement error. Together with Theorem 1, the result
described in this section is important for two purposes. First, it will be used to characterize
the general nature of the bias when ignoring exposure time measurement error in Section 3.
Secondly, it will be used to determine the accuracy of the proposed bias-correction method
in estimating the true relative incidence of interest in Section 2.4.

Consider the observed data { , wi, ei}, where wi = (w1, …, wLi) is the vector of observed
exposure times for the ith subject. The conditional maximum likelihood estimator (MLE) for

the case series model, denoted , is obtained as a solution to the set of likelihood equations

(5)

where . Details are provided in the section Appendix:
Estimation via Newton-Raphson. The MLE is consistent for , which satisfies the
estimating equations in (5) in expectation, i.e., β* is a solution to
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(6)

with . The bias of the naive case series model ignoring

measurement error is the difference between β* (the target of ) and β. To solve (6), we
note that substituting the expression for E(ñik) from (4) gives

This set of equations can be solved numerically for β* by the Newton-Raphson method
where the update of β* at iteration t + 1 is β*(t+1) = β*(t) − (J(t))−1a(t), with

 and J(t) is a K × K matrix of partial derivatives evaluated at β(t);

We use the above theoretical result to study the nature of bias due to exposure onset
measurement error in the simulation studies of Section 3 for various patterns of exposure
effects and realistic data scenarios. However, some insights are immediate from the above
result with the simplifying assumption that the length of observation periods (and risk
periods) and the number of exposures are the same for all subjects. For instance, we have
from (6),

where a closed form expression for β* is possible under equal observation and risk periods
for all subjects. Thus, in the simple, but illustrative, case where K = 1 (with Li = 1; dropping
subscript k), we obtain

(7)

From equation (7), the bias in this special case is apparent; there is increasing attenuation of
the true relative incidence, exp(β), as the mean of the exposure onset measurement error, μu,
increases. However, the nature of the bias generally is not always attenuation, as we will
demonstrate subsequently in Section 3. More precisely, if K = 1 the naive estimate will be
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attenuated, but with K > 1 risk periods the bias can be in either directions, depending on the
pattern of the true relative incidences of the risk periods. We note that the target of the naive

MLE , namely β* given in (7), follows from (4), the law of large numbers and Slutsky's

theorem, since it is straight-forward to show that . Here ñ.k =
Σiñik, k = 0, 1.

2.3 Bias-corrected Estimation Procedure
To motivate our proposed bias-corrected estimation procedure, consider the target of the
naive (conditional) maximum likelihood estimator, namely β* given in (7). Note that
limμu→0 β* = β, the true unknown relative incidence parameter of interest. Thus, we
propose a practical case series bias-correction procedure where the pattern of bias as a
function of increasing amounts of exposure onset measurement error (μu) is determined/
estimated and then extrapolated to the ideal case of no measurement error in the time of
exposure. We assume that that an estimate of the average amount of exposure onset
measurement error μu is available.

The simple steps of this correction procedure are as follows. First, obtain data sets with
increasing exposure onset measurement error, i.e., with increasing mean μj = μu + τj, by
adding a sequence of constants τj, j = 0, 1, …, M to the observed exposure times where 0 =
τ0 < τ1 < … < τM and τ0 refers to the observed data. Next, for each j, compute the naive

maximum likelihood estimator, , by applying the standard case series model, ignoring
exposure time measurement error. For a given estimate of μu, fit a least squares regression

of  on μj and the bias-corrected estimator is taken to be the
extrapolated value at μj = 0, i.e., the regression intercept. More precisely, define the (M + 1)
× (ν + 1) fixed predictor matrix by Dμ, then the estimated coefficient of the regression fit is

, k = 1, …, K. Thus, for bias-correction, we propose to
use the extrapolated value at μj = 0, i.e.,

(8)

where the vector of constants c = (c0, c1, …, cM)T is the first row of the (ν + 1) × (M + 1)

matrix . As we will detail in subsection 2.4 below, it is adequate in practice to

consider a quadratic regression fit (ν = 2) with Dμ containing predictors μj and .

Note that although on the surface the proposed bias-corrected estimator appears to resemble
the simulation and extrapolation (SIMEX; Cook and Stefanski, 1994) method for classical
measurement error in the predictors (Carroll et al., 2006), it is quite distinct. SIMEX
simulates additional data sets with increasing measurement error variance in the predictors.
Such an approach is not appropriate for measurement error in the time of exposure onset
This is clear when we consider a salient feature of the bias analysis described in Section 2.2,
which is that the bias does not depend on the exposure time measurement error variance, as
evident from (7). This facet generally holds, as illustrated in Figure 2, for the more general
MECS model described above. Thus, a SIMEX approach is not appropriate to bias-
correction for measurement error in the time of exposure. Secondly, note that there is no
simulation involved in our proposed estimation.

We also note that given an estimate of μu based on auxiliary data or even knowledge of μu
exactly, direct application of the case series model to the data where one subtracts this
estimate from each observed exposure onset time will not correctly target the true relative
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incidences. For this reason, we developed the above estimator where extrapolation is made
from a sequence of data sets with additively higher mean measurement error. We show this
explicitly in the appendix and relate this to the more general cases of exposure onset
measurement error where u is not strictly positive.

2.4 Accuracy of the Bias-Correction Method
In this section we evaluate the asymptotic accuracy of the bias-corrected estimation
procedure to target the relative incidence θk ≡ exp(βk) of interest. More precisely, we

investigate the approximation error in using  as an

estimator of θk. First, note that since  is consistent for , a solution to (6), we have that

 is consistent for . Because  is a solution to (6), note that it is a function

of the true effects , the average exposure time measurement error μu and the
observation lengths in the risk periods and baseline period {eik} across individuals i = 1, …,
N. Thus, the accuracy depends on these parameters generally. Therefore, to assess accuracy

in approximating the true relative incidence θk with the limit , we consider
the maximum absolute relative approximation error (maxARE), defined as a function of the
true relative incidences θ = (θ1, …, θK),

(9)

Note that we used the notation  to emphasize the dependence on the true parameters β.
We first consider the simple MECS model, with a single risk period K = 1, equal risk period
ei1 = e1 and equal follow-up times, as it illustrates clearly the factors affecting the maximum
approximation error. For this model (dropping subscript k), we have

, where a = e1 exp(β)/(1−exp(β)) and b = e0/
(1−exp(β)). Considering a third order Taylor approximation to log(·) at μj = 0 gives

It follows that for a quadratic regression fit (see Section 2.3 above), we have

(10)

since a/b = (e1/e0) exp(β),  and .

The error in the above approximation involves , ~ a−3 and ~ b−3. Thus, the error in
(10) will depend on two main factors: the effect size β and the average level of exposure
onset time measurement error relative to the risk period length μu/e1, as well as the relative
risk period length to the baseline period length e1/e0. Therefore, we examine the error in the
approximation with respect to these parameters. We examine the maximum absolute relative
error (maxARE) as given in (9). To encompass all reasonable relative incidences of interest
in real applications, we evaluate the accuracy for a wide range of true relative incidences,
ranging from a tiny effect size of 1% (θ = 1.01) to a very large effect size of 1,000% (10-
fold; θ = 10). For equal observed risk length e1 = 30 days after an exposure during 700 days
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of follow-up (e1/e0 ≈ 4.5%), and with the average level of exposure onset time measurement
error of μu = 4, 6, and 8 days (i.e. μu/e1 ~ 13.3%, 20% and 26.7%, respectively), the
maxARE are 0.48%, 1.27%, and 2.84%; thus, even with the higher relative measurement
error of nearly 27%, the maximum error of θ*(β) is less than 3% of the true relative
incidence θ. We note that the 2.84% maximum error is associated with the extremely large
effect size of θ = 10; therefore, the maximum relative error is quite low.

More generally, when allowing for varying lengths of the observed risk period for each
individual and varying number of exposures per person, the maximum relative
approximation error is similarly low compared to the simpler case of equal risk observation
lengths considered above. For this, we solve equation (6) for β* using the Newton-Raphson
method described in Section 2.2 and then evaluate (9) to determine the maximum error over
the range of β values. Similar to the simple model considered above, the maxARE over all
values of β are 0.52%, 1.34%, and 3.00% corresponding to moderate to high relative
average exposure onset time measurement error, i.e., average μu/e1 ~ 13.3%, 20% and 27%.
The average time in the risk period across individuals is 48 days and the average percent of
time spent in the risk period relative to the baseline period is ~ 7.5%. These parameters are
similar to our data application in Section 4, where the relative incidences of cardiovascular
events in the 30-days following infection were estimated to be ~ 1.5 to 1.8, corresponding to
average exposure onset time measurement error of μu = 4 and μu = 8 days. Under this
setting, the approximation error is negligible: 0.02% and 0.20% for for μu = 4 and 8 days,
respectively.

The maximum approximation error is similarly low when extending to models with multiple
risk groups, examined in more details in Section 3. For example, with average relative
exposure time measurement error of 20%, the maximum relative error is ~ 5% for tiny effect
sizes of θ = 1.01 to 1.05, and it reduces to ~ 1.5% otherwise. In summary, the limiting value

 is close to the true effect θk for all reasonable range of βk and average relative

exposure onset time measurement error. However,  is not close to θk arbitrarily and
particularly under impractical conditions in which we expect it not to perform well. For
example, consider a situation in which there is excessive amount of measurement error on
the time of exposure. For concreteness, consider the case where we are interested in the
relative incidence of events in the 30-days risk period following an exposure with a very
high exposure onset measurement error of μu = 15 days, so that on average we are uncertain
as to when the true exposure actually occurred by 15 days within a relatively small 30-day
risk window of interest (average 100×μu/e1 = 50%). The maximum relative error is 25.7%.
However, this reduced performance is expected since one cannot expect to be able to
estimate the relative incidence of events during a fixed risk period following an exposure
when one has excessive uncertainties regarding when the exposure actually occurred.

3 Simulation Study
3.1 Simulation Design

In this section, we implement a set of simulation studies to address two specific objectives:
(1) characterize the general nature of bias as a consequence of data with exposure onset
measurement error and (2) assess the efficacy of the proposed bias-corrected estimation
procedure to target the true relative incidence in MECS models.

We consider various underlying patterns of true relative incidences over multiple risk
periods. As illustrated in Figure 3, these patterns include decreasing, increasing, and
constant relative incidences over risk periods (cases a, b, and e, respectively), as well as
mixtures of increasing and decreasing incidences (cases c, d, and f). The log relative
incidences corresponding to these patterns are provided in Table 1; e.g., β = (β1, β2, β3) =
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(1.099, 0.693, 0.0405) for pattern (a). For each of these pattern of relative incidences, we
generated the data as follows. The observation period [ai, bi] is uniformly generated with
mean follow-up length of 700 days for i = 1, …, N = 1000 individuals and individual
effects/baseline rates are set to φi = log(1/10000). Next, the marginal number of events, ni.,
for the ith individual is generated from a Poisson distribution, truncated at 1 to obtain cases/
individuals with at least one event according to the case series model (Farrington, 1995) and
these events are distributed within an individual's observation period according to the
multinomial distribution with probabilities given in equation (2). The number of non-
overlapping exposures Li range from 0 to 3 with probability masses {0.2, 0.4, 0.25, 0.15}
and true/unobserved exposure times vil, l = 1, …, Li, is uniformly distributed over the
follow-up period. Next, positive measurement error uil, for each exposure, is added to the
true exposure times to obtain the observed exposure times, wil = vil + uil. We consider
uniform, normal and gamma distributed measurement error distributions with variances
1.33, 1.0 and 2.77, respectively.

To characterize the general nature of bias due to exposure onset measurement error and
illustrate how the bias depends on the average amount of measurement error μu as described
in Section 2.2, we generated data with increasing μu = 4, 6, 8, 10, 12 or 14 days. All
simulation results reported next are based on averages over 200 simulated data sets.

3.2 Results: Bias When Ignoring Measurement Error and Bias-corrected Estimation
To describe the general nature of the asymptotic bias, we focus in more details on studies of
decreasing and increasing effects patterns illustrated in Figure 3 (a) and (b), respectively.
Also, for the description of the bias, we focus on the case with uniform measurement error
and sample size N = 1000. Bias results for effect patterns (a) and (b) are shown in Figure 4
as a function of μu. Generally, and as expected, the bias increases with increasing average
measurement error μu. As can be seen, the naive case series estimates (black dashed curve)
target β* (dashed gray curve), which is obtained as the solution to equation (6) using the
Newton-Raphson algorithm described in Section 2.2.

When the risk is highest in the first 30 days and decreases with time, i.e., pattern (a), all

estimates ignoring measurement error, ,  and , are attenuated. Conversely, when the

true risk increases over time, i.e., pattern (b),  is attenuated but  and  are inflated. This
result is expected, since it can seen from (11) that the bias of the relative incidence in the kth

risk period is a function of the incidence in the next contiguous risk period, (k+1), for k = 0,
1, …, K − 1. Thus, if the true relative incidence in risk period k is greater than in risk period

k+1, i.e., if βk > βk then  will be attenuated. If βk < βk+1 then  will be inflated. Note that

 will usually be attenuated if exposure onset measurement error is present since the
relative incidence in the Kth risk period is a function of the incidence in the baseline period.
Similar patterns of bias hold for different measurement error distributions, e.g., normal and
gamma measurement errors. We provide details of these cases as supplemental materials in
the file mecs_sup.pdf.

Next, in Figure 5, we compare the relative amount of bias as the average measurement error
μu increases for data with no overlapping risk segments, partial overlapping risk segments,
and complete overlapping risk segments. The simulation setting for Figure 5 is as described
above with a 30 day risk period and uniformly distributed measurement error. As described
earlier in Section 2.1, overlapping risk segments are observed in practice when a recurrent
exposure occurs in the risk period of a previous exposure. For example, for a risk period of
interest defined as 30 days after an infection and with the first and second infections
occurring on days 10 and 35, the length of the risk segment is 55 days instead of 60 days
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since days 35 to 40 overlap. Although non-overlapping exposures, as described above, are
vastly more common, we also illustrate here the relative differences in bias when there are
overlapping risk segments. As illustrated in Figure 5, the bias is greatest when there are no
overlapping risk segments, least when all risk segments overlap and intermediate when there
are some/partial overlaps. Furthermore, the simulation results confirm the theoretical results
described in Section 2.2 for realistic data with mixtures of non-overlapping and overlapping
risk segments. Results for different measurement error distributions are similar and are not
shown.

We illustrate through extensive simulation studies the efficacy of the proposed bias-
corrected estimation procedure for the MECS models described in Section 2.3. Table 1
shows results from the proposed bias-corrected estimation procedure, using the simple
quadratic regression intercept estimate, under the more general MECS data scenarios for
each true effect pattern in Figure 3 (a)–(f) with N = 1000. For each simulated data set with
exposure onset time measurement error, increasing constants (τm = 0, 2, 4, …, 10 days)
were added to each exposure time and estimates were computed by applying the case series
model to each data set as detailed in Section 2.3. The proposed adjusted estimator performs
well for the different patterns of risk (a)–(f) and targets the true parameter β. Table 2
presents the bias and mean square error (MSE) for the bias-corrected and the naive
estimators. Overall, the MSE for the bias-corrected estimate is of similar order as the naive
estimate MSE; however as expected, its bias is drastically reduced. On average, the
reduction is ~ 9.4 folds across the simulations. We note that the simulation study assumes
that μu is known; thus the results may be optimistic.

In addition to uniform exposure onset measurement errors, we also examined gamma and
normally distributed measurement errors, as well as the performance for finite sample sizes.
The adjusted estimates target the true parameters as expected and these additional results are
available in the supplemental materials file mecs_sup.pdf. Also, at the suggestion of a
reviewer, we provided more details on the performance as the variance of the measurement

error distribution ( ) increases in the supplemental materials (Table 7). This result
illustrates the robustness of the bias-correction to the measurement error variance.

Finally, we remark on the choice of μM (i.e., the τj sequence) in the regression
extrapolation. From our experiences, there is flexibility in the choice of the τj sequence and
it is not a major factor in the quality of the estimator if chosen reasonably. In practice, the

choice of the sequence  will depend on the estimated average exposure onset
measurement error (μu) relative to the a priori specified risk period of interest. For example,
for the simulation study (and the data application) where the risk period of interest is the 30
day period(s) after infection/exposure, the choice of μM = μu + τM should not be
excessively small relative to the risk period length. Figure 6 displays a regression fit through

 versus μj = μu + τj with μu = 4 and μM = 14, demonstrating a very precise
extrapolation (black lines). Here the interval μM − μu relative to the risk period is 1/3. We
find that generally μM selected such that this relative length is about 1/3 to 1/2 to be
adequate. To illustrate how the extrapolation accuracy declines, we chose μM = 10 so that
the relative interval is only 20% of the risk period (gray lines). However, even with such a
small interval where the regression is fitted, the extrapolation is able to correct for most of
the bias relative to the naive estimate (asterisk). Since the computational cost of the naive
case series estimator is trivial, we recommend a conservative approach to take M as large as
feasible for a given dataset to capture the features of the quadratic regression fit in the
extrapolation. In our applications, we find that it is adequate to take M to be 6–10.
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4 Application: Examining the Infection-Cardiovascular Risk Hypothesis for
Patients on Dialysis
4.1 MECS Model for Infection-Cardiovascular Risk Using USRDS Data

As introduced in Section 1, a major challenge associated with using the USRDS inpatient
hospitalization data to address the infection-cardiovascular risk hypothesis is that the exact
date or time of infection onset cannot be ascertained precisely, although the observed
discharge date is a good marker for the time of infection since it reasonably assures that the
infection has occurred by this date. Thus, using the observed discharge time as a marker of
the true infection time is a conservative approximation since the infection most likely
occurred sometime during or possibly prior to the hospitalization. This modeling strategy
leads to positive infection onset measurement error and thus we apply the proposed MECS
model to determine the relative incidence of cardiovascular events in the risk period
following infection. Provided in more details in Dalrymple et al. (2011), in the short period
following an infection, specifically the approximate 30 days after infections, the effects of
infection on vascular endothelium is hypothesized to be most pronounced. Thus, we focus
on this risk period for illustrating the proposed MECS model. Cardiovascular events were
defined as myocardial infarction, unstable angina, stroke, or transient ischemic attack and
infections of interest included septicemia, bacteremia, peritonitis, endocarditis, soft-tissue,
pulmonary, genitourinary, gastrointestinal, joint or bone infection. The source population
included patients 65–100 years of age with end-stage renal disease who newly initiated
dialysis between January 1, 2000 and December 31, 2002. Study follow-up ended December
31, 2004. We refer the reader to (Dalrymple et al., 2011) for further details on the study
protocol. The cohort for the analysis reported below includes N = 16, 779 patients with one
or more cardiovascular events.

Generally, external or auxiliary data sources are needed to reasonably estimate the
measurement error parameter, namely μu. However, for our current application we can
derive reasonable bounds on μu by using data on the length of hospitalization stay. If a
hospitalization has an infection-related discharge diagnoses, it is likely that the infection
occurred some time during the hospitalization stay, or in some cases possibly shortly before
the start of the hospitalization. The median length of hospital stays is 8 days in our cohort.
Thus, we used μu = 8 days as our intermediate estimate. We also used the lower estimate μu
= 4, half of the length of a typical hospitalization stay, to illustrate the reduced biased
corresponding to a lower average (optimistic) level of measurement error, as expected. Thus,
we apply the bias-correction method for the MECS model to obtain adjusted estimates of the
true relative incidence using these values of μu. Also, we note that due to the data violating
the assumption of constant risk within a risk period, for illustration of the bias-correction
method, we define the risk period as days 6–30 after an observed infection onset measured
with error. The naive and bias-corrected log relative incidences are provided in Table 3. The

naive relative incidence is 1.354 ( ), i.e., the incidence of a cardiovascular event is
35% higher within the risk period after an infection compared to the baseline period. If we
estimate that, on average, the observed date of infection is 4 days later than the true date of
infection (μu = 4), then the relative incidence estimate is increased by 16% to 1.516

( ) after adjusting for infection onset measurement error. Similarly, if we instead
consider the intermediate estimate of measurement error μu = 8, the median of the
hospitalization length distribution, then the bias-corrected relative incidence estimate is

1.768 ( ), an increase of 41% above the naive estimate.

Thus, infection onset measurement error led to substantive attenuation of the direct case
series estimate of the relative incidence of cardiovascular events following infection in
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patients on dialysis. However, from the standard error estimates provided in Table 3, it is
obvious that all analyses lead to the same scientific conclusion that there is an increased risk
of cardiovascular events following infection; only point estimates and precision are affected
in this data. Reported standard errors for the bias-corrected estimation are based on 500
bootstrap data sets by resampling subjects, although SE estimates stabilize at ~ 100
bootstrap samples. Bootstrap confidence intervals (CIs) are also provided, showing that even
under the extremely optimistic assumption of low measurement error (μu = 4) the CI is
above the naive point estimate.

We note that for the USRDS data analysis above, we took a conservative approach by
considering a low and intermediate value for μu because we do not have a direct estimate of
the average amount of exposure onset measurement error. Instead, we arrived at this range
based on the available data on the duration of hospitalization stay, where the median length
of stay is 8 days. Examining both analyses, for μu = 4 and 8, allowed us to assess the
degrees of attenuation of the true relative incidence for these two levels of measurement
error. The analysis corresponding to μu = 4 can be interpreted as a reasonable approximation
to the situation where the distribution of infection onset is highly skewed to the end of the
hospitalization. This is unlikely and too optimistic, but it provides a lower estimate of
attenuation in a very optimistic scenario. It is informative that for the USRDS data, even
under this optimistic assumption about μu the relative incidence of cardiovascular events is
increased by ~ 16%; and the increase is more likely to be in the 23% – 41% range,
corresponding to μu = 5.5 to 8, for instance. However, similar to the theory of classical
measurement error in the covariates, with a consistent estimate of μu, say , which can be
obtained from an internal subsample or external validation data sources generally, the
proposed bias-correction method for the MECS model would target the true relative
incidence. For our application here, if we assume equal likelihood of infection during a
hospitalization stay, then ui|li ~ U(0, li), where li is the duration/length of hospitalization.
Thus, μu = E(u) = E{E(ui|li)} and we can use the consistent estimate

 (which is between the 4 and 8 days range we considered above).
For comparison, this analysis is also provided in Table 3.

4.2 Modeling of USRDS Infection-Cardiovascular Data via Simulation
In this section we further analyze the infection-cardiovascular hypothesis and the effects of
exposure onset measurement error by modeling the USRDS data characteristics relevant to
case series modeling by simulating data that matches more precisely the key characteristics
of the USRDS cohort. This allows for a more thorough study of the effects of measurement
error since the unknown parameters are controlled and can be varied. More precisely, we
simulated USRDS case series data by using the simulation approach described in Section 3
and matched key relevant characteristics of the USRDS data, including the distributions of
the ages at the start and end of the observation period, the length of follow-up, the length of
baseline and risk periods and the number of exposures per individual. The sample size is
kept at N = 16, 779, as observed. The distribution of the number of exposures for each
individual, Li, was based on the distribution of the number of exposures in the observed
data. We note that the number of exposures in the observed data ranged from 0 to 19.
However, in the simulated data, we restricted the range to no more than 10 exposures as this
captured > 99% of the original population and did not affect the analyses. We take the bias-
corrected estimates of β in the previous section to model the USRDS data. Once the number
of exposures were generated, the times of exposure were distributed uniformly across each
individual's observation history. Figure 7 displays the observed and simulated distribution of
the length of baseline period, observed exposure onset ages and number of exposures and
events per individual. The characteristics of the simulated USRDS data closely track that of
the observed USRDS data.
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We apply the case series model directly to both the data with true exposure times and
observed exposure times. As done earlier, we assess the effect of measurement error
generated from three different distributions: uniform, normal and gamma. Only results from
the uniform distribution are presented here but results from the normal and gamma
distributions are similar. Naive and bias-corrected estimates were obtained and averaged
over 200 simulated datasets each for μu = 4 and μu = 8. When relatively modest
measurement error was present, i.e., when μu = 4 days, namely when uil ~ Uniform[1, 7],
the average naive and bias-corrected relative incidence estimates were 1.433 and 1.525,
respectively. For intermediate level of measurement error, i.e., uil ~ Uniform[5, 11] (μu = 8
days), then the average relative incidence estimates were 1.518 and 1.784 for the naive and
bias-corrected method, respectively. Thus, the results are similar to the percent increases
observed in the analysis of the USRDS data of Section 4.1: the bias-corrected relative
incidence estimates suggest a 9% (for μu = 4) and 27% (for μu = 8) increase over the naive
relative incidence estimate on average, a significant difference in this high risk population.

5 Discussion
Motivated by using USRDS data to assess the infection-cardiovascular risk association in
the dialysis population, where the precise times of infection cannot be ascertained, we
proposed the measurement error case series model to take into account the imprecise
exposure/infection onset data. We presented, for the first time, a novel analysis of infection-
cardiovascular risk association in a national cohort, using the proposed MECS model. The
results lend additional support to the hypothesis that the ~ 30-day period following infection
is associated with a significantly increased risk/incidence of cardiovascular events. Through
several different analyses of infection onset measurement error in Section 4, we confirmed
the previously reported conclusion of an increased risk of cardiovascular events following
infection-related hospitalization, based on the discharge date as a marker of the time of
infection (Dalrymple et al., 2011); furthermore, the estimate of relative incidence was
conservative when ignoring measurement error.

We also provided the asymptotic bias of the case series model that ignores exposure onset
measurement error and proposed a feasible estimation procedure to correct for the bias when
using the USRDS data. The method performs well in extensive realistic simulation studies,
designed to match key characteristics of the USRDS data for the case series model. Also, an
appealing aspect of the proposed MECS models is that no new computational tools are
needed for estimation as they only involve repeated computation of the naive estimator.

We note that for general application of the MECS models, additional/auxiliary data is
needed to estimate the mean of the exposure onset measurement error distribution. This is
similar to the need for auxiliary data/information in regression modeling with traditional
measurement error for mismeasured continuous or misclassified categorical variables.
Depending on the specific application, additional data to estimate exposure onset
measurement error mean can be obtained through retrospective review of a subset of
subjects to determine true exposure onset times or follow-up data collection if feasible. In
the absence of any additional data or if collection of new data is not practical, the tools
developed in this work can be utilized in sensitivity analyses that assume specific values for
the mean of exposure onset measurement error. For our specific application, which utilizes
inpatient hospitalization data, a conservative marker of infection onset time is used and
reasonable bounds for μu were determined based on additional data on the length of hospital
stay.

Finally, in our application and the proposed MECS model framework, the precise onset of
the cardiovascular events that we consider are reasonably measured with accuracy with
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respect to diagnosis and time. Although more rare, inevitably with the size of the sample
analyzed, the timing of some events will not be accurate. However, although less applicable
to our current hypothesis on cardiovascular outcomes/events, measurement error on the
precise onset of events generally is possible, as pointed out by a reviewer. Case series
modeling with measurement errors in both the precise onset of events as well as the timing
of exposures presents significant challenges; it is an open problem at this time.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Appendix

Proof of Theorem 1
For the general MECS model with Li exposures for individual i and with K adjacent risk
periods, direct calculations yield

(11)

where Δi = Σr eirλir. To see that the denominator of (ui) is Δi, denote the numerator in
(11) by δik for k = 0, 1, …, K. Then it can be directly verified that Σk δik = Σk eikλik.

(Therefore, .) Thus,  since, conditional on ui,
;  given in (4) follows. Next, we consider the more

rare case in applications where two or more exposures may have overlapping risk segments
within the risk period (MECS model with K = 1), as previously defined in Section 2.1.

Suppose that there are Li ≥ 2 exposures with  disjoint risk segments ( ) as previously
defined prior to Theorem 1. Denote the number of exposures that form the sth risk segment

by ζ(s), where ζ(s) ≥ 1 (s = 1, …, ). Overlapping risk segments correspond to ζ(s) > 1 and

note that . The risk period length, ei1, can be partitioned into disjoint risk

segment lengths ; thus, . Similarly, the baseline period length, ei0, can be

partitioned into disjoint baseline segment lengths  (s = 1, …, ) and , where

the boundary is at the end of the observation period, , may be zero if the end of the

observation period occurs within the last exposure risk segment. (Thus, .)
Also, denote the measurement errors associated with the ζ(s) exposures of the sth risk
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segment by {uisj; j = 1, …, ζ(s)}, for s = 1, …, . Then the group probabilities, , can be
shown to be linear functions of the underlying rates {λik}, where the coefficients depend on

risk segment lengths { } and { }, and the measurement errors {uisj; j = 1, …, ζ(s)}.
Similar to (11), the model probabilities for the risk and baseline periods (after
simplification) are given by,

Therefore, E(nik) is as given in (4) with Li replaced by . This completes the proof of
Theorem 1.

For our application of the case series model to infection-cardiovascular association as well
as other applications of this model, a heightened risk of adverse events following an
exposure justifies the assumption of adjacent risk periods. However, the risk periods need
not be adjacent in the case series model generally. In this case (for non-overlapping
exposures) it can be shown that equation (4) becomes

Estimation via Newton-Raphson
Fitting the case series (multinomial) model can be based on standard software (including
SAS, Stata, and R; see http://statistics.open.ac.uk/sccs) that have routines for Poisson
models with log link function and allow for an offset term log(eijk). For the MECS
estimation proposed, no new computational tools are required; therefore, existing software
can be used. However, it may be more efficient with the repeated applications for different
μj to use the Newton-Raphson algorithm directly. We provide here the formulas for straight-
forward implementation. Following the notations introduced in Section 2.1 we have that
log(πijk/πi00) = αj + βk + log(rijk), with rijk = eijk/ei00. Thus, the log-likelihood for the ith

subject is

and the log-likelihood for N subjects with at least one event is . (Note
that the second term above is simply ni.. log(1/πi00).) Thus, direct calculations yield the J +K
likelihood equations:
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The needed second order partial derivatives are: ,

, ,

, .
The Newton-Raphson update at iteration (t + 1) is θ(t+1) = θ(t) − (H(t))−1q(t), where θ(t) =

( , )T, q(t) is the vector of first order partial derivatives, and H(t) is the
(J + K) × (J + K) Hessian matrix, both evaluated at θ(t).

Notes on Other Cases of Exposure Onset Measurement Error and Bias
Correction

In this work, we focus on positive exposure onset measurement error because this model is
directly applicable to our primary interest in analyzing infection-related hospitalizations data
from the USRDS. However, for the proposed MECS models to be more broadly applicable,
we provide here notes on the more general case where the variable u is not strictly positive.
First, note that when exposure onset is strictly negative (i.e., u < 0), it can be shown that the
expression for E(ñik) given in (4) holds with μu replaced by E|u|. For the more general case,
let p0 = Pr(u < 0) and p1 = Pr(u ≥ 0). For simplicity of notations, consider one exposure and
risk period (Li = 1, K = 1). Then it can be shown that

where I(E) denotes the indicator function for event E. Therefore, additional/auxiliary data is
needed to estimate p0, p1, E[uI(u ≥ 0)], and E[|u|I(u < 0)]. Auxiliary data in some
applications could be based on retrospective chart review of a subset of subjects to
determine true exposure onset, for instance. Otherwise, sensitivity analysis can be performed
for assumed values of these characteristics/parameters of the distribution of u.

Finally, we point out that the above expression for E(ñi1) explicitly shows that even when μu
is known precisely, case series analysis of data whereby one simply subtracts μu from each
observed exposure onset time with positive measurement error will not target βk. It is clear
that doing so, under positive exposure onset measurement error, will simply lead to the case
of general measurement error.
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Figure 1.
Example of follow-up data for one subject (a) without and (b) with exposure onset
measurement error. Note in (b) that when exposure onset measurement error is present, the
event is now observed in the baseline period when in truth the event occurs in the exposure
period, attenuating the relative incidence in this case.
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Figure 2.
Property of exposure onset time measurement error. Bias does not depend on variance of the
measurement error distribution. Dashed black curves denote naive case series estimates
ignoring measurement error, which targets β* (dashed gray curves) instead of β (solid gray
line).
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Figure 3.
Patterns of true relative incidence (β) in contiguous risk periods studied in simulations,
including (a) decreasing, (b) increasing, (e) constant, and both symmetric and non-
symmetric mixtures of increasing and decreasing βk's (pattern c, d and f).
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Figure 4.
Bias for (a) increasing and (b) decreasing true patterns of log relative incidence β(indicated
by horizontal lines) over three risk periods. Dashed black curves denote naive case series
estimates ignoring measurement error, which targets β* (dashed gray curves) instead of β. In
pattern (a), all three risk period log relative incidence estimates are attenuated. In Pattern (b),
the first two log relative incidence estimates are inflated and the third is attenuated. Also
included are 95% confidence intervals (thin dashed lines). Given are averages over 200
simulated data sets.
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Figure 5.
Relative estimation bias when ignoring measurement error for data with (1) complete, (2)
partial or (3) no overlapping risk segments. Bias is greatest when there are no overlapping
risk segments, least when all risk segments overlap and intermediate when there is some/
partial overlap. Dashed black curves denote naive case series estimates ignoring
measurement error, which targets β* (dashed gray curves) instead of β (horizontal line).
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Figure 6.
Illustration of the extrapolation from the regression fit to obtain the bias-corrected relative
incidence estimates. Black lines are the regression fit using μM = 14 and the gray lines are
based on μM = 10. Horizontal lines are the true βk's; the asterisk marks the naive estimate;
the square boxes indicate the bias-corrected estimates for μM = 14 (black) and μM = 10
(gray).
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Figure 7.
Characteristics of observed USRDS data compared to simulated USRDS data.
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Table 3

Naive and bias-corrected estimates and standard errors for . The naive estimate corresponds to applying the
case series method to the observed USRDS data, ignoring the presence of measurement error. The bias-
corrected estimates correspond to applying the proposed correction method and approximate standard errors
were obtained using the bootstrap method (via resampling of subjects). Bootstrap confidence intervals (CIs)
are provided for the bias-corrected estimates.

Estimation Method Log Relative Incidence Standard Error 95% CI

Naive 0.303 0.03 –

Bias-correction μu = 4 0.416 0.05 0.312–0.513

Bias-correction μu = 8 0.570 0.09 0.402–0.734

Bias-correction μ̂u = 5.5 0.470 0.06 0.358–0.586
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