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Abstract
Background—Genome-wide association studies (GWAS) have had limited success when
applied to complex diseases. Analyzing SNPs individually requires several large studies to
integrate the often divergent results. In the presence of epistasis, multivariate approaches based on
the linear model (including stepwise logistic regression) often have low sensitivity and generate an
abundance of artifacts.

Methods—Recent advances in distributed and parallel processing spurred methodological
advances in nonparametric statistics. U-statistics for structured multivariate data (μStat) are not
confounded by unrealistic assumptions (e.g., linearity, independence).

Results—By incorporating knowledge about relationships between SNPs, μGWAS (GWAS
based on μStat) can identify clusters of genes around biologically relevant pathways and pinpoint
functionally relevant regions within these genes.

Conclusion—With this computational biostatistics approach increasing power and guarding
against artifacts, personalized medicine and comparative effectiveness will advance while
subgroup analyses of Phase III trials can now suggest risk factors for ad verse events and novel
directions for drug development.
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Almost a decade after the completion of the Human Genome Project [1], the scientific and
medical advances hoped for from genome-wide association studies (GWAS) have not yet
been realized. After early successes with diseases where a single haplotype confers all or
most risk [2], the same statistical approaches have often produced ambiguous results when
applied to complex diseases [3,4]. Increasing the sample size (to tens of thousands of
subjects as suggested [5]) is impractical for rare disease forms, and also greatly increases the
duration and cost of data collection. Improving accrual by broadening the inclusion criteria
increases variance and thus requires yet larger samples; a vicious cycle. Moreover,
increasing sample size in a nonrandomized study may, somewhat paradoxically, increase the
risk of false positives [6,7].

Several mutations within a gene may contribute to the risk of common diseases and several
SNPs may have become associated with the same mutation over time. One risk factor’s
contribution may depend on the presence of others and sets of mutations may confer more
risk if they affect both chromosomes (compound heterozygosity). Hence, any statistical
approach based on p-values derived one SNP at a time (ssGWAS) is ill-suited to identify the
short-range epistasis involved [8] (following Fisher [9], the term ‘epistasis’ will be used for
any deviation from independence, be it between neighboring SNPs, intragenic regions or
genes). Analyzing diplotypes (sets of neighboring SNPs with unknown phase)
comprehensively would be preferable [10], yet traditional multivariate methods [11]
including linear/logistic regression (lr) assume independence and additivity/multiplicativity
of risk factors to yield computationally simple algorithms. Making unrealistic assumptions,
such as linearity, may easily lead to meaningful nonlinear relationships being overlooked
(false negatives). More importantly, random errors, not subject to biological constraints,
may occasionally fulfill these assumptions, so that the most ‘significant’ results are often
false positives.

Association studies, in general, are exploratory ‘selection procedures’ [12] to generate rather
than confirm hypotheses. Even though the same algorithms are used as in confirmatory tests,
‘p-values’ merely serve to sort candidates, so that a sufficiently large selection of candidate
genes will include the most interesting genes with high power. Even minor differences in the
composition of the study population can result in different subsets of genes being selected
[13], and each could help with understanding a different aspect of the disease etiology when
confirmed using mouse studies or clinical trials. Hence, the challenge in improving GWAS
is to reduce artifacts caused by applying oversimplifying approaches to complex diseases
(analyzing one SNP at a time, assuming independence and additivity of effects) while
incorporating more knowledge to increase the sensitivity for detecting biologically relevant
subsets of the genes involved.

With the advent of mainframe computers, more complex calculations (e.g., factor analysis)
became feasible. More recently, personal computers triggered the development of
resampling methods. Now we are, again, entering an era of advances in computational
biostatistics, where massively parallel computing has spurred the methodological advances
making wide-locus GWAS based on a nonparametric approach (μGWAS, based on u-
statistics for structured multivariate data) feasible [14]. Below, we introduce two novel
concepts.
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First, several ‘tag’ sets of ‘genetically indistinguishable’ SNPs [15] are typically scattered
across a linkage disequilibrium (LD) block, yet traditional methods cannot differentiate
between ‘permuted’ diplotypes containing members of the same tag sets in different order.
μGWAS draw on the spatial structure of SNPs within a diplotype and expected LD from
HapMap [16] to improve the resolution of GWAS to intragenic regions. Second, we apply
the concept of ‘information content of multivariate data’ (μIC) [14] at several stages of the
ana lysis to guard against artifacts. With these methodological advances, disease-relevant
genes and intragenic regions can now be suggested from a single study, often of only a few
hundred narrowly defined cases, rather than from a variety of large studies, turning GWAS
from a technique to identify isolated SNPs into a powerful tool to generate plausible and
testable hypotheses about the etiology of complex diseases.

Methods
μ-scores for diplotypes

It is often reasonable to assume that risk conferred by a heterozygous SNP lies somewhere
between baseline risk and a homozygous SNP (having two risk alleles) that is, between the
risk of a recessive and dominant allele, respectively. U-statistics (including the Wilcoxon/
Mann–Whitney U test [17]) treat SNPs as ordinal (wild-type = xx < xX < XX =
homozygous), but do not require the degree of dominance to be known. Treating diplotypes
as multivariate data then avoids the need for assumptions about independence and relative
importance of the SNPs [18], yet the theory was never broadly developed owing to
prohibitively high computational demand [19]. With GWAS, for instance, the number of
‘polarities’ (combinations of −1 = bad; 0 = irrelevant; +1 = good) increases exponentially
with diplotype length, yet with massively parallel computing we were now able to include
diplotypes up to length six.

Traditionally, one would have more confidence in a ‘significant’ locus if neighboring loci
also show association [20] and add recombination information to the data displayed. Here
we integrate the concepts behind this intuitive visual inspection into the statistical approach
itself. Recently, U-scores for multivariate data (μ-scores) have been extended to reflect
structures among variables with applications including sports [21], policy-making [22] and
medicine [14]. The proposed GWAS-specific structure is based on the notion that
neighboring disease loci may have similar effects and that a disease locus may be in LD
with both adjacent SNPs, unless the SNPs are separated by a recombination hotspot
(boundary between LD blocks; Figure 1).

μGWAS starts with computing matrices representing the partial order of each SNP,
combining pairs of these matrices into matrices representing the intervals and, finally,
combining SNP and interval matrices into a diplotype matrix from which the μ-scores are
computed [14,22]. As diplotype profiles are built from intervals around and between
neighboring SNPs, diplotypes where members Xi, Yi and Zi of the tag sets (X), (Y) and (Z)
appear in different order (permuted diplotypes), such as (X1, Y1 and Z1) versus (Y2, X2 and
Z2) can be distinguished. This novel approach to incorporate knowledge of neighborhood
relationships between SNPs increases power over merely combining all SNPs within a
diplotype in a single step [14], yet avoids the need for assumptions about dependencies and
relative importance required when using linear combinations (weighted sums) of univariate
scores. With GWAS based on lr (lrGWAS), one could work towards a similar goal by
adding sequential interaction terms. Hence, we will compare μGWAS not only with
ssGWAS for dominant, linear trend [23], and recessive effects, but also with stepwise
logistic regression with and without sequential interaction terms.
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Subjects
Childhood absence epilepsy (CAE) [24], formerly known as ‘petit mal’, is characterized by
frequent, short episodes of ‘daydreaming’. Through trial and error of different combinations
of valproic acid and various ion channel blockers, these absences can be controlled in
approximately 75% of affected children [25]. For adult patients, etiracetam, an IL-1β
inhibitor [26] was approved in November 1999, and a caspase 1 inhibitor (VRT-765) is
under going a controlled Phase IIb study [101]. CAE does not follow a simple Mendelian
pattern of inheritance, although recurrence of epilepsy in families is high. A high
concurrence in monozygotic twins and the absence of known exogenic factors make CAE an
ideal model for studying the genetics of complex diseases and approaches to unravel their
genetic risk factors to better match patients to existing drugs and identify new drug targets
for patients who do not respond to existing drugs.

The 185 CAE patients in this study were predominantly Caucasian (83%) and white
Hispanic (10%) with the well-known female preponderance (115 female vs 70 male
patients). Average age of onset for absence seizures was 5.7 years. Patients were required to
be seizure free on antiepileptic medication. Controls were selected from a publicly available
database [102]; see Supplementary Material at www.futuremedicine.com/doi/suppl/10.2217/
pgs.13.28 for details.

Results
Identifying genes

As is typical for ssGWAS, especially with small samples, only two SNPs reached the
customary s = −log10(p) > 7.5 level of significance with univariate tests (Figure 2, black
foreground), one in a noncoding region (chromosome 1, lr only), the other in the pseudogene
EE1A1P12 (chromosome 2).

Since ssGWAS was inconclusive and sequential interaction terms created an abundance of
likely false positives with lrGWAS (Supplementary Figure 1), even with regularization (AIC
[27]), the following discussion focuses on μGWAS versus traditional lrGWAS. In the spirit
of conducting a selection procedure [12,28], rather than confirmatory tests, p-values were
used solely for the purpose of ranking the loci and at any given level, lrGWAS had more
‘significant’ results in general, including many likely false positives. Hence, methods were
compared using similar arbitrary numbers of top regions (first comparison used only the top
6, second comparison used ~20 and third comparison used ~40; see Supplementary Table 1),
the latter cutoffs adjusted for display purposes (Figure 2) to match commonly used s-values
(μ: 7.5/7.0; lr: 8.0/7.5).

Only one of the top six genes in lrGWAS (RBFOX1) ranks higher than rμ = 73rd in
μGWAS (5th), while the other four among the top six regions in μGWAS are also among
the top 22 in lrGWAS (the above elongtion factor pseudo gene EEF1A1P12; synapsin III,
SYN3; FAT4; and CREB5; Supplementary Table 1). Of the top 17 μGWAS regions (s >
7.5), 14 (82%) are known to be in genes directly related to the NOD/ID–axonal guidance
signaling/ataxin pathway (Figure 3), including PANX1, SEC16B, the Rho GTPase
activating proteins OPHN1/ARHGAP41 and RICS/ARHGAP32, ABCC8, the potassium
channel KCNJ5, BRE, NLRP3 and RASSF8, compared with only eight genes (36%) of the
top 22 (s > 8), including KCNB2, DOK6 and MYO16, or 16 (40%) of the top 40 lrGWAS (s
> 7.5) regions.

Channelopathies—Epilepsy is commonly seen as a channelopathy, and lrGWAS identify
both postsynaptic (KCNB2, rlr = 3rd; DOK6, rlr = 10th) and presynaptic (MYO16, 13th)
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membrane processes. μGWAS adds KCNJ15 (rμ = 14th), confirms CNTNAP2 [29] and
CNTNAP4 (27th, and 48th, respectively), and hints at two targets for approved antiepileptic
drugs, the ion channels SCN4A and GABRB3 (43rd and 57th, respectively) [30]. Both
methods implicate SYN3 (rμ/rlr = 3rd/22nd), a presynaptic vesicle-associated protein [31].
μGWAS adds OPHN1 and ABCC8 (8th and 12th, respectively).

Inflammasome—Two approved antiepileptic drugs, topiramate and levetiracetam, and the
investigational drug VRT-765 target the NOD-like receptor signaling pathway [32]. While
both approaches suggest genetic variations in PANX1 (rμ/rlr = 13th/16th), μGWAS adds the
TNFRSF1A modulator BRE (15th) as involved and NLRP3 as a risk factor (16th). Hence,
VRT-765 might be particularly effective for patients with a ‘gain-of-function’ mutation in
NLRP3.

Cytoskeleton dynamics—RHOA was upregulated in patients with intractable epilepsy
[33], yet the mechanism involved is unknown. Two genes known to regulate RHOA,
OPHN1 (also known as ARHGAP41) and ARHGAP32 are among the top ten genes with
μGWAS, but rank only 99th and 58th, respectively, in lrGWAS. The risk of epilepsy is
increased in children with intellectual disability (ID), where ARHGAP32 has been
implicated. Binding between ARHGAP32 and ATXN1 has been implicated in inherited
ataxias [34]. OPHN1 is known to affect X-linked ID [35] and thus might explain the
preponderance of CAE among girls. μGWAS adds a pair of binding partners downstream of
RAC1 to the picture, RASSF8 (17th) and PARD3 (26th). Finally, the ‘pseudogene’
EEF1A1P12, being among the top ten regions in both approaches, hints at an involvement of
EEF1A1, which regulates CDC42. Hence, μGWAS uniquely provides a testable hypothesis
about the mechanism by which RHOA is upregulated in some forms of epilepsy.

Ataxin—Ataxias and epilepsy share genetic risk factors [36,37], including OPHN1 [38,39],
and both methods implicate two genes binding ataxins, RBFOX1 (rμ = rlr = 5th) and FAT4
(rμ/rlr = 6th/17th). μGWAS also hints at the calcium transporter ATPB2 (39th) and the
calcium channel ITPR1 (42nd) as potential drug targets.

Nucleosome—The effectiveness of valproic acid in treating epilepsies hints at a role of
nucleosome assembly in epilepsies and, in fact, μGWAS implicates mutations in CREB5
and SEC16B (4th and 10th, respectively).

Detecting epistasis & selection
Among the genes involved in cytoskeleton dynamics, ARHGAP32, with known direct
interactions with many of the key players, ranked 11th in μGWAS, but only 58th in
lrGWAS. Moreover, it had two separate ‘peaks’ in μGWAS, one in the promoter region.

Epistasis between neighboring SNPs—The most significant SNPs in ARHGAP32 by
ssGWAS (s = 4.3–4.7) are all members of tag set a (Figure 4e). The two μGWAS peaks,
separated by a clear trough (Figure 4C), pinpoint two loci where the effects of different
haplotypes converge, centered within 4 kb of exon 10 and the promoter region (exon 0),
respectively. Both regions contain a set c SNP as a distant member (≈20 kb), indicating a
common ‘background’ risk factor, and two members of region specific tag sets (exon 10: a/
b, exon 0: g/h). Both regions belong to a recently identified alternative splice variant, which
is expressed during neural development and involved in axon and dendrite extension
[40,41]. lrGWAS results are also elevated, yet without discriminating intragenic regions
(Figure 4D, insert).
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Intragenic epistasis/selection—No case or control subject had more than four risk
alleles among the three relevant SNPs in either region, although homozygous variants for
each SNP are present. Hence, the unobserved combinations must have been selected against,
for example, because of a more severe phenotype.

Intergenic epistasis—As approximately one-third of all subjects with the ARHGAP32
genetic risk factor lack the phenotype, other genetic cofactors are yet to be identified. Figure
3 suggests the possibility of epistasis in trans between regulatory and functional factors; that
is, between the plasma membrane (NGF/NRG–RAS) and the cytoplasm (RAC–RHOA/
CDC42).

Validation
In this analysis, we have reduced the potential for false-positive results by taking advantage
of the novel internal validation features made possible with μGWAS. During data
preparation, we used a data quality μ-score based on a comprehensive assessment of missing
data, Hardy–Weinberg equilibrium, short-range LD, and expected LD from HapMap
information. During ana lysis, we have drawn on polarity conflict and lower than expected
μIC (Supplementary Figure 2). Finally, we utilized μIC to indicate highly significant results
with low μIC. Notably, none of the pathway related genes flagged as potentially unreliable
are related to the genes downstream of RAC1 (Figure 2).

Larger genes are both more likely to carry mutations and to have false positives. Still,
although several of the genes identified are among the largest 5% (>200 kb) in the human
genome, only two of the top 11 unique genes in μGWAS (CREB5 and BRE) and three of
the top 13 unique genes in lrGWAS (DYSF, DOK6 and TMCO7) are ‘direct hits’ within the
coding region (Supplementary Table 1). ARHGAP32 and OPHN1 were implicated by ‘hits’
in the stop or promoter regions, respectively, and thus are not at an increased risk for being
false positives owing to their size.

The results on ARHGAP32 (Figure 4) are supported by further evidence. First, each of the
six SNPs included in the two diplotypes is in high LD with several other SNPs (Figure 4e),
for which the probe sequences differ and thus are not subject to the same calling errors.
Second, only the two pairs of diplotypes having the highest association with disease risk by
μ-scores were in high LD between the intragenic regions (Figure 4C, horizontal dashed
arrows), while lower risk diplotypes were unrelated. Not only is it highly unlikely for each
of these results to occur by chance alone, it is virtually impossible that they could occur
together, and in both independent populations. While this cannot rule out a false-positive
result due to association with factors beyond the etiology of epilepsy, these findings validate
the ability of μGWAS to detect intragenic regions of biologically relevant epistatic patterns.
Finally, the diplotype with the highest overall (exon 10 and promoter region [E,P]) score
μ(E,P) is clearly over-represented among cases, with a prevalence of 14.1% (26 out of 185)
and 6.5% (23 out of 354) in cases and controls, respectively, compared with 3.8% (7 out of
185) and 6.2% (22 out of 354) for the diplotypes with the lowest μ-scores, confirming that
μ-scores are, in fact, reflecting disease risk.

As one would expect, μ and lr scores (Figure 4, right border) are correlated. The subjects
with the pair of diplotypes having the highest μ(E,P)-scores (Figure 4D) also share a
diplotype with a high lr-score (Figure 4e), but the subjects scoring even higher in lr-scores
comprise four different diplotypes. Interestingly, the largest of these groups differs only in
the first SNP from a diplotype with low lr- and μ-scores (vertical arrows in Figure 4D),
consistent with the sensitivity of linear model results to outliers. As the partial ordering
underlying μ-scores, which directly reflects an underlying functional model, results in more
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genetic uniformity among subjects with extreme scores, these more homogeneous
subpopulations could then be selected for identification of functional variations through
sequencing.

Conclusion
With GWAS of complex diseases, only a few solitary SNPs typically stand out from the
noise, especially in small studies, and this study is no exception. Different compositions of
rare disease variants across studies almost inevitably result in different SNPs being
‘significant’, so that validation in independent ssGWAS requires many large studies until a
testable hypothesis emerges. μGWAS, by contrast, related approved and experimental drugs
to functional clusters of genes along a known pathway in a study of 185 well-characterized
cases only.

ssGWAS can efficiently screen for loci, where a single haplotype confers all or most of the
risk (EEF1A1P12). lrGWAS has advantages when the effects of SNPs are at least
approximately independent and additive (as they might be in some transporters and ion
channels). With more complex processes, however, like the interactions of ARHGAP32
with its various binding and activation partners, not constraining results by making overly
simplistic assumptions leads to biologically relevant hypotheses about functionally related
genes clustered around biologically relevant pathways.

Pathway-based approaches [42] and gene set enrichment analyses [43] combine results of
univariate statistics using assumptions regarding the relative importance of genes and prior
declarations of relatedness among genes instead of observed interactions. How ever, this ana
lysis suggests that few, if any, pathway genes themselves may carry mutations in common
diseases, unless they are members of redundant complexes (NLRP3, SYN3 and PARD3;
Figure 3), in which case multiple genes may need to be knocked out to produce a phenotype
[44].

Wide-locus GWAS aim at accounting for compound heterozygosity, different haplotypes
carrying the same mutation and epistasis between nearby disease loci. Hence, functional
regions can be identified more easily, even when the contribution of individual SNPs would
be difficult – if not impossible – to detect. Many traditional statistical methods, however,
have deficiencies for relevant types of epistasis. ARHGAP32, which ranked 10th among
μGWAS genes and was validated through the distinct epistatic pattern among the highest-
risk allelotypes confirmed in sequencing (Figure 4), did not even appear among the top 50
lrGWAS regions.

μGWAS requires neither Hardy–Weinberg equilibrium nor independence or additivity/
multiplicativity of genetic effects, thereby improving sensitivity for nonlinear effects
(including evolutionary selection; Figure 4, horizontal dashed arrows and Supplementary
Table 1). Adding sequential interactions and recombination hotspots improves resolution,
rather than creating artifacts. Together with OPHN1 (also unique to μGWAS at rank 8), this
study provides a plausible hypothesis why expression of RHOA is upregulated in some
forms of epilepsy [33].

Increased expression of RHOA was recently associated with some epilepsies [33]. Both
OPHN1 and ARHGAP32 interact with both RHOA and PI3K (Figure 3), a drug target
currently being investigated in cancer [45] and inflammatory diseases [46]. Wortmannin, an
inhibitor of PI3K, attenuates the effects of seizures in rats [47] and PX-866 (a oral drug
derivative of wortmannin in a Phase II prostate cancer trial [103]), targets PI3K. If our
results are confirmed and hold for patients with other epilepsies as well, this might lead to
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novel therapeutic approaches to treat patients whose seizures do not respond to drugs
targeting ion channels, the inflammasome or the nucleosome. As this study included only
patients whose seizures were controlled by valproic acid and/or ion channel blockers, these
genes may play an even larger role in other populations.

A particular advantage of μGWAS is the ability to guide the interpretation of data patterns
in terms of biological function. Sorting diplotypes by the overall risk they confer (Figure
4C), rather than by linear weight scores lacking direct biological interpretation (Figure 4D)
provided compelling evidence for intragenic epistasis (Figure 4C), facilitated validation
(Figure 4e), and generated testable hypotheses regarding the function of underlying
mutations. By utilizing the order of neighboring SNPs and HapMap information about their
expected LD, μGWAS can often identify functional intragenetic regions, whereas the
resolution of lrGWAS, irrespective of sample size, is typically limited to an LD block as a
whole. For instance, this ana lysis suggests that the combinations of diplotypes with the
highest μ-score, in either of the ARHGAP32 regions, have been selected for because they
partially compensate for each other. Epistasis might also explain why knocking out the
entire ARHGAP32 gene produced no obvious phenotype in mice [48].

In summary, our results show that genetic risk factors for complex diseases cannot be
adequately addressed with ssGWAS alone and that the computationally simple lrGWAS
approach may be insensitive to complex forms of epistasis. Reducing artifacts by avoiding
models motivated by computational convenience, rather than biological plausibility, reduces
the need for independent studies to guard against false-positive results from model
misspecifications. For comparative effectiveness research and personalized diagnostics to
live up to their expectations, cases and controls need to be closely matched to the population
or patient involved. Adequately controlling for genetic and environmental confounders when
selecting appropriate cases and controls is essential to tease out predictive factors. This goal
is much easier to achieve with only a few hundred subjects, rather than several thousands to
be matched. Finally, subset analyses of Phase III trials and published epidemiological
studies could rapidly reveal novel insights for drug development.

Future perspective
The Ras pathway is known to be involved in both cancers and many developmental
disorders [49], so the findings here suggest that identifying genetic risk factors modulating
this pathway may help in better using information from sequencing patients when targeting
pharmacological interventions not only in cancers, but also in other neurodevelopmental
diseases other than CAE, including ID and autism spectrum disorders [31].

With more appropriate statistical methods and more powerful computational tools becoming
available, the focus in screening for genetic risk factors of complex diseases can now shift
from individual SNPs scattered across the genome to clusters of genes around biologically
meaningful pathways. With further advances in computational resources, μGWAS can be
extended from epistasis across recombination hotspots (Figure 1) to epistasis between
intragenic regions (Figure 4), and between genes (Figure 3).

As μGWAS can provide therapeutically relevant information from substantially smaller
sample sizes, decisions in personalized medicine and comparative effectiveness research can
be based on samples fine-tuned to the particular patient or population, respectively.

As a few hundred subjects experiencing adverse events or lack of a treatment effect and
matched controls from the same population suffice to determine genetic risk factors, data
from previous or upcoming Phase III trials can now be effectively mined to determine
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subpopulations at risk of adverse events and identify directions for development of drugs
with a broader target population.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Executive summary

Background

■ The requirement for (tens of) thousands of subjects with univariate statistical
approaches limits the usefulness of genome-wide association studies
(GWAS) for comparative effectiveness research, personalized diagnostics/
treatment and subgroup analyses of Phase III trials.

■ Several mutations within an intragenic or promoter region may contribute to
the risk of common diseases.

■ GWAS using multivariate statistical approaches based on unrealistic
assumptions (e.g., independence and additivity) implicit to linear/logistic
regression (lrGWAS) has low power to detect meaningful relationships and
carries a risk of false positives.

■ The advent of massively parallel computing has spurred the development of
statistical methods that require fewer unrealistic assumptions, including
GWAS based on U-statistics for structured multivariate data (μGWAS).

Methods

■ Extending μ-statistics to reflect linkage disequilibrium (LD) structures in the
data increases the power and avoids artifacts.

■ A well-characterized sample of 185 children with childhood absence epilepsy
was analyzed as an example.

Results

■ With single-SNP GWAS, only two SNPs reached the customary level of
significance.

■ Of the top 17 regions in μGWAS, 14 (82%) were in genes related to a known
disease-related signaling pathway, compared to only eight (36%) of the top
22 regions in linear/logistic regression GWAS.

■ μGWAS was able to detect intragenic regions (i.e., exon and promoter) and
LD structures, suggesting evolutionary selection.

Conclusion

■ Avoiding overly simplistic assumptions leads to biologically relevant
hypotheses about functionally related genes clustered around biologically
relevant pathways.

■ The pathway identified by μGWAS contains targets of approved antiepileptic
drugs and a gene being investigated as a cancer drug target.

■ Reducing artifacts by avoiding biologically implausible assumptions guards
against false-positive results from model misspecifications.

■ By reducing the GWAS sample sizes to a few hundred subjects only,
μGWAS enables personalized medicine, comparative effectiveness research,
and subset analyses of epidemiological studies/Phase III trials.
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Figure 1. SNP-related chromosomal intervals
Conceptual structure of chromosomal SNP-related intervals for disease loci in LD with three
consecutive SNPs (SNPs X, Y and Z), but not with a more distant SNP (SNP A). SNPs X
and Y are part of different LD blocks, separated by a recombination hotspot. Hence, the
interval between these two SNPs is excluded. The location indicating LD between SNPs A
and X is highlighted in blue. The inter-regional boundaries need not be known.
LD: Linkage disequilibrium.
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Figure 2. Comparison of 185 childhood absence epilepsy cases versus matched controls
Unadjusted −log10(p) by chromosomal location; top: μ-statistics for structured multivariate
data (μGWAS); bottom: linear/logistic regression (lr; without interaction terms). Univariate
results, shown in black, are consistently similar across the approaches, as expected. For
μGWAS, dots vary in size by diplotype length and are color coded, with red indicating
results with low μ-scores for reliability (high significance, low μIC). Lr results are
overlayed with the Cochran–Armitage (squares) and Mantel–Haenszel (×/+) test results.
Genes known to be directly related to the NOD/intellectual disability–axonal guidance
signaling/ataxin pathway are shown in bold. Genes indicated in the center header row (pink)
of each chromosome have support in both μGWAS and lrGWAS; genes ranking higher in
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μGWAS or linear/logistic regression GWAS appear in the first row (blue) or third row (red),
respectively. Darker colors indicate more significant results. Other implicated genes are
shown against the dark background of univariate results.
?: No gene in the region implicated; …: Several genes within the same linkage
disequilibrium block.
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Figure 3. Published direct relationships between the minimal subset of the NOD/intellectual
disability–axonal guidance signaling/ataxin pathway directly related to significant genes by
μGWAS (23 of 40, s > 6.5) and lrGWAS (17 of 40, s > 7.0), respectively
The members of the pathway are shown and labeled in bold. Methods are indicated in colors
(blue: μGWAS; red: lrGWAS; pink: both). The most significant genes (μGWAS: >7.5,
lrGWAS: >8.0) are shown in darker shades. (See for details). Supplementary Table 1 Dotted
circles relate to functional clusters mentioned in the text. Drugs are indicated in green.
μGWAS: μ-statistics for structured multivariate data; lr: Linear/logistic regression.
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Figure 4. Microarray genotyping results for the linkage disequilibrium block containing
ARHGAP32
(A) Linkage disequilibrium (LD) map; (B) coding regions; (C) μ-statistics for structured
multivariate data (μGWAS) test results by diplotype length followed by the polarities of the
SNPs contributing and the SNP pattern (orange: homozygous; yellow: heterozygous; green:
wild-type) for controls and cases sorted by μ(E, P) = μ((E1, E2, E4), (P1, P3, P4)) (near right
stub). Diplotypes ranked high (red) and low (green) by μ-scores for each region (left stub:
μE = μ(E1, E2, E4), μP = μ(P1, P3, P4)) are highlighted as more saturated. Horizontal arrows
indicate consistently paired diplotypes. The insert shows the ‘Manhattan plot’ of the
−log10(p) values. (D) lrGWAS results followed by the lr coefficients (coeff.) of the SNPs
involved. SNP pattern are sorted by lr scores (far right stub). The enlarged profiles with
extreme lr scores differ in one the five SNP only (vertical arrow). The insert shows the
values based on univariate and stepwise lr. (E) LD between each of the ten SNPs included in
the two μGWAS regions (blue) and the lrGWAS region (purple) and the members of the
same tag set (gray). Tag set c is represented in both μGWAS diplotypes and the lrGWAS
diplotype, which contains two members of tag set e.
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Coeff: Coefficient; E: Exon; (E,P): Exon 10 and promoter region; lr: Linear/logistic
regression; P: Promoter.
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