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Abstract
X-ray phase contrast imaging is a very promising technique which may lead to significant
advancements in medical imaging. One of the impediments to the clinical implementation of the
technique is the general requirement to have an x-ray source of high coherence. The radiation
physics group at UCL is currently developing an x-ray phase contrast imaging technique which
works with laboratory x-ray sources. Validation of the system requires extensive modelling of
relatively large samples of tissue. To aid this, we have undertaken a study of when geometrical
optics may be employed to model the system in order to avoid the need to perform a
computationally expensive wave optics calculation. In this paper, we derive the relationship
between the geometrical and wave optics model for our system imaging an infinite cylinder. From
this model we are able to draw conclusions regarding the general applicability of the geometrical
optics approximation.

1. Introduction
It is hoped that x-ray Phase Contrast Imaging (XPCi) will provide a generational
improvement in the effectiveness of mammography [1]. To our knowledge, the only in vivo
mammography program is in progress in Trieste, Italy, using the SYRMEP beam line [2].
This program has provided mammograms of improved spatial resolution and detail visibility
compared with conventional mammography. It cannot, however, be considered a viable tool
for clinical screening due to its reliance on a synchrotron source.

An alternative XPCi technique employing laboratory sources was suggested by Olivo et. al
[3, 4] in 2007. This technique is known as coded aperture XPCi and has since been under
continuous development within the radiation physics group at UCL (see references [5, 6, 3]
for example). This technique has been demonstrated experimentally and validated
theoretically in the aforementioned references. We are now building a pre-prototype coded
aperture XPCi system in order to demonstrate the efficacy of the technique using in vitro
human breast tissue samples. In order to design the system and verify the experiments, it is
necessary to model the entire imaging system, including the interaction of x-rays with tissue.
The small refractive index contrast of tissue combined with the unpolarised x-ray source
mean that a full electromagnetic calculation for the scattered x-rays can be avoided.
Furthermore, the short wavelength of x-rays relative to typical cell structure dimensions
means that a geometrical optics model is often sufficient. This is important as a rigorous
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scalar calculation of the scattered field would require prohibitively large computational
resources. In this paper, we thus attempt to establish conditions under which a geometrical
optics approximation can be employed to model a coded aperture XPCi system.

As with models of other, related imaging systems [7, 8, 9, 10, 11], we consider phase objects
whose optical thickness is at least piece-wise smooth. Work was done by Peterzol et. al [12]
to determine the limits of validity of the geometrical optics approximation for free space
propagation type XPCi systems. Such an analysis has not been performed for coded aperture
XPCi systems. The link between geometrical and wave optics is by no means a new area of
research. Keller [13] was the first to show that geometrical optics need not be limited to
modelling objects with smoothly varying refractive index. He showed that geometrical
optics is an approximation to wave optics which can be made more accurate by the inclusion
of higher order terms. A good account of this technique is given by James [14]. In this paper
we calculate higher order terms to show how the geometrical optics and wave optics
solutions vary in predicting coded aperture XPCi images. The paper is arranged as follows.
We first present the wave optics model and show how it can be implemented efficiently. We
then derive the geometric optics model before showing how a source of finite width can be
introduced into the system. We then apply the developed theory to the particular example of
an infinite cylinder. By employing the stationary phase approximation to the diffraction
integrals which result from the wave optics model, we derive the geometrical optics model,
thus showing how the two models are related. Finally we show some numerical examples
and show conditions under which the geometrical optics model may be accurately
employed.

2. Wave optics model
We consider first the wave optics model of the imaging system depicted in Fig. 1. Normally
a sample would be placed on the detector side of the sample apertures however we initially
consider the sample free case. Following the method employed by Olivo and Speller [16] we
use Fresnel-Kirchhoff diffraction theory to calculate the field incident upon the detector
apertures. We consider initially a single point source at position (xs,0, −zso) emitting a
spherical wave at wavelength λ. Previous experiments have shown [16] that modelling the
system at the source’s average energy gives a good prediction of the image. The assumption
of a point source will be relaxed later. Assuming the exp(−iωt) sign convention, the field at
position P = (x,y,zod) may be given by [16]:

(1)

where

(2)

and  represents the transmitting regions of the sample apertures. In addition, x, ξ and z are
defined in Fig. 1 and (ξ,ψ,z) and (x,y,z) form right handed coordinate systems. The
integration over ψ can be performed by noting that the apertures have no dependence upon
ψ. We must thus evaluate:

(3)

Munro et al. Page 2

Opt Express. Author manuscript; available in PMC 2013 May 03.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



evaluating this integral with limits at +∞ contradicts the Fresnel approximation used to
obtain Eq. (1) and should be solved using the theory of distributions [15]. This problem can
however be avoided by noting that the kernel of the integral in Eq. (3) is a rapidly oscillating
function which lends itself to asymptotic evaluation by the method of stationary phase.
According to the method of stationary phase [14, Pgs. 29-34], an integral of the form:

(4)

where g(x) has a single first order stationary point, x0, such that g′ (x0) = 0, g′′ (x0) ≠ 0, can
be approximated as:

(5)

in the limit of large k. Applying this approximation to Eq. (3) we find that

(6)

the role of this term is to ensure energy conservation and give the incident field the correct
phase relationship with y. This result is also obtainable using Fourier theory applied to
distributions [15] which reveals that Eq. (6) is in fact the solution to Eq. (3) [17]. This
enables us to write Eq. (1) as:

(7)

where we now introduce the periodic function T(ξ) to represent the transmission function of
the sample aperture. It is now easy to include the effect of a phase object with phase
function ϕ (ξ) by following an approach similar to that of Arfelli et. al [18]. The total field at
the detector apertures may be found according to:

(8)

where  is the extent of the object.

3. Efficient evaluation of wave optics field
We now turn our attention to how the expression in Eq. (7) may be efficiently evaluated. As
T(ξ) is a periodic function with period L, it can be represented as a complex Fourier series
written in general as:

(9)

which upon substitution into Eq. (7) yields

(10)
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As also suggested by Engelhardt et. al [10], the Fast Fourier Transform (FFT) can be used to
efficiently evaluate this expression. In particular, starting with the definition of the discrete
Fourier transform [19]:

(11)

by allowing x′zso/(zso + zod) to take on values κL/(2N) the summation in Eq. (10) may be
evaluated, for a finite number of terms, by constructing a vector of the form:

(12)

where

(13)

and finally taking the Fourier transform of the vector in Eq. (12). Noting also that the
coefficients Cn may also be evaluated using the FFT, Eq. (10) may be evaluated very
efficiently.

The second term in Eq. (8) must, in general, be evaluated numerically unless the object has a
phase function permitting analytic evaluation. It was found that Gaussian Quadrature
integration [19] provided accurate results.

4. Geometrical optics model
Olivo and Speller [6, 20] have previously used geometrical optics to model the coded
aperture XPCi system. Their approach used a “forward” technique where photons emitted by
the source were traced through the system. Photons could be blocked by an aperture,
refracted by a sample or both. The number of photons reaching a particular pixel represent
the signal detected by that pixel. We now consider the ray optics approach in a more formal
manner in order to relate it to the wave optics approach. For the remainder of this section we
consider only non-trivial rays which are transmitted by the sample aperture. We consider
here a first order geometrical optics. It has been shown by Keller [13] and later by James
[14] that geometrical optics may be extended to include higher order terms which represent
what is usually termed diffraction. Here we consider only the first order terms of the
geometrical optics approximation. The trajectory of a light ray is described by the
expression [21]:

(14)

where r is the position vector of a point on the ray, s the length of the ray, n the refractive
index of the medium and  defines a wave front of constant phase, ie, . It is
evident from this that we assume rays are deflected in the ξ direction only. Consider a phase
object as depicted in Fig. 2. We define the phase function, ϕ (ξ), as

(15)
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where n(ξ,z) is the refractive index at position (ξ,z) and we have assumed that rays make
only small angles, θi, with the z-axis. The angle by which the ray is deflected in then given
by:

(16)

With reference to Fig. 1, we can say that a ray emitted at angle θi to the z-axis will intercept
the ξ-axis at position ξ = zso tan(θi) and, if deflected by an object, will intercept the x-axis at
position

(17)

The phase of the ray at the detector apertures is calculated by taking into account the phase
introduced by the object and the distance travelled in free space according to the Fresnel
approximation. The amplitude of the ray must be such that energy is conserved. In
particular, the time average power propagating in a small pencil of rays emanating from the
source must remain constant. The ratio between ray amplitudes at z = zod and z = 0 is thus
given by:

(18)

5. Modelling a finite size source
Secs. (2)-(4) show how to calculate the field incident upon the detector apertures. The
detected signal is found by integrating the intensity of x-rays transmitted by the detector
apertures and incident upon a particular pixel. In general, the pth transmitting region of the
detector apertures is given by [pLM − LM/4+dL, pLM +LM/4+dL] where dL is the
displacement of the detector apertures relative to the projection of the sample apertures as
shown in Fig. 1 and M = (zod + zso)/zso is the system magnification. We assume that the
pixels are aligned as shown in Fig. 1 such that a single pixel entirely covers a single
transmitting region of the detector apertures. Before calculating the signal detected by each
pixel, we introduce a source of finite size in the x̄ direction. The brightness is described by
P(x̄) which we will take to have a Gaussian profile. We can then take the signal of the pth
pixel to be given by:

(19)

where, for mathematical convenience we have assumed that the source brightness profile
limits the effective source size rather than the limits of integration. By making the
substitution P(x̄) = exp(−(x̄/σ)2), Eq. (19) may be expressed as:

(20)

where

(21)

and erf(z) is the error function
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(22)

Equation 20 shows that K(x) may effectively be considered as a pixel sensitivity function.
Figure 3 shows plots of K(x) for a variety of source Full Widths at Half Maximum
(FWHM). This shows how a broad source leads to a broad K(x) thus diminishing the
sensitivity of the system to fine variations in the intensity caused by phase variations in the
object.

6. XPCi model of a dielectric fibre
6.1. Wave optics model

We now apply the results of previous sections to model the XPCi image of a cylindrical
fibre. This problem has been considered previously by Olivo and Speller [6] in order to
verify experimental results. We consider a non-absorbing cylinder of radius R, refractive
index n = 1 − δ, parallel to the ψ-axis centered upon (ξ,z) = (ξ0,0). Absorbing materials can
be modelled by writing n = 1 − δ + iβ thus introducing an attenuation term in Eq. (8). We
have opted to set β to 0 to simplify the following analysis. Note that δ is of the order of 10−6

to 10−7 for the range of x-ray energies and materials which we consider here. The phase
function, ϕ (ξ), may thus be calculated as:

(23)

We consider first the wave optics calculation. We must evaluate the second term of Eq. (8)
after substituting Eq. (23) into it. The bounds of integration are found by taking the
intersection of the transmitting part of the sample aperture and the cylinder. Without loss of
generality we consider three cases depicted in Fig. 4 where the transmitting part of the
sample aperture is assumed to be centered upon ξ = 0. Note that the cases depicted in Fig. 4
do not limit the cylinder radius, all that is important is where the cylinder boundaries lie
relative to the transmitting regions of the apertures. A cylinder covering more than one
sample aperture could be modelled using a combination of the cases depicted in Fig. 4. In
practice our system employs a series of apertures to simultaneously image a wide field of
view. For clarity, we consider here a single sample/detector aperture pair and scan the object
to obtain its image. Images obtained in this way will be equivalent to those obtained in
practice only when photons are not scattered between differing pre-sample/detector aperture
pairs. Only a simple extension is required to model the practical system as is shown at the
end of Sec. (6.2). An analysis of when this approximation is valid is given in Sec. (6.3).

The integration may be evaluated numerically however it is instructive to analytically
evaluate by approximation. We start by writing Eq. (8) as

(24)

where

(25)

where Ω = [ξ0 − R,ξ0 + R] ∩ [−Lη/2,Lη/2] and η is the fill factor of the sample apertures.
We now attempt to find asymptotic solutions, for large k, to the integrals in Eq. (25) by
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again applying the stationary phase approximation. In this case we must also consider the
end points of the integrals. It is shown by James [14, Pgs. 29-34] that when the integration in
Eq. (4) is evaluated over the interval [a,b] and g′ (x) is non-zero and finite at the end points,
a term

(26)

must be included. It is shown by Murray [22, Pg. 77] that if one of the end points is a
stationary point, then Eq. (26) should be omitted and a factor of 1/2 included in the term of
Eq. (5). We now turn our attention to evaluating leading terms in the asymptotic expansions
of the integrals in Eq. (25). We start by defining the functions g1(ξ) and g2(ξ) and finding
their derivatives as:

(27)

it is easy to verify that when M, δ and zod are limited to those values experienced in

practice,  has a unique solution for every value of x′. This solution must in
general be calculated numerically. This may be done efficiently by evaluating

 where ξi = [ξi] is a discretisation of the domain [ξ0 − R +ε,ξ0 + R
− ε] for some small ε. This corresponds to case (2) in Fig. 4 where the entire cylinder is
illuminated and thus rays are refracted to all values of x′. In cases (1) and (3), the bounds of
integration are affected by the sample apertures which in turn affects the values of x′ to
which rays are refracted. The stationary point of g1 for a particular x′ may be found by
interpolation with γ as the abscissa. This enables the leading term in the expansion to be
calculated as

(28)

examination of  shows that g2 has a single stationary point at ξ2,0 = x′/M. In the case that
x′/M is within the bounds of integration of U2, the following term is contributed by the
stationary point ξ2,0:

(29)

supposing then that Ω = [a,b] and that neither a or b are stationary points of g2, the next term
in the asymptotic expansion may be found as

(30)

which, in the special case where b = −a, becomes
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(31)

6.2. Relationship between wave and geometrical optics models
We show here how the wave and geometrical optics solutions are related. As θi and α in Eq.
(17) are small we can write Eq. (17) as

(32)

where Eq. (23) has been substituted into Eq. (16) to find α. This expression is identical to

 in Eq. (27), the stationary phase condition for integral U1. It is then easy to verify that
assuming identical incident field conditions, substituting Eqs. (23) and (16) into Eq. (18)
results in the same magnitude as CΓ(y)I1,0. Furthermore, substitution of the phase
contributions from the phase object and the Fresnel approximation for free space
propagation result in the same phase as in CΓ(y)I1,0. This shows that the leading term in the
asymptotic expansion of U1 gives the same field as the geometrical optics approximation to
the refracted field. Examination of CΓ(y)I2,0 = 1/(zso + zod)exp(ik((y2 + (x − xs)2)/(2(zso +
zod)) + zso + zod)) shows that this is the geometrical optics field of the light which reaches
the detector apertures without being refracted by the cylinder or blocked by the sample
apertures. Closer examination of CΓ(y)I2,1 shows that this is the field due to diffraction at
the edges of Ω. Note that this quantity becomes infinite at the edges of the geometrical
projection of Ω onto the detector apertures. This non-physical result can be remedied by
modifying the stationary phase solution [23] however this is beyond the scope of this work.

Table 6.2 shows how the intensity and complex amplitude, for the geometrical and wave
optics models respectively, are calculated in each region defined in Fig. 5. Note that the
geometrical optics solution provides the intensity of the field whilst the wave optics solution
provides the complex amplitude of the field.

6.3. Examples and analysis
The validity of the presented model and technique depend on the tendency for photons to be
scattered between adjacent sample/detector aperture pairs. It is however possible to develop
a minimum bound upon the separation of apertures required to maintain validity. If a
cylinder of radius R is placed with its centre at ξ = 0 in the imaging system of Fig. 1, its
edge will be projected onto the position x′ = MR in the space of the detector. We are
interested in knowing how quickly the field scattered by the cylinder decays away from x′ =
MR. Assuming that the edge of the cylinder is illuminated, photons are refracted to values of
x′ approaching ∞ and are described by the term I1,0 defined in Eq. (28). Photons reaching a
position x′ ≫ MR must be incident upon the cylinder for a value of ξ very close to, but not
exceeding R. By writing ξ = R − ε, ε > 0, in Eqs. (27) it is easy to find a simple analytic

expression giving I1,0 for x ⪢ MR as ε tends to 0. It is then simple to show that  will
reduce by two orders of magnitude at a position x′ = RM + Δx′ where:

(33)
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Figure 6 shows contours of Δx′ for values of R and δ encountered in practice. Δx′ may be
considered the minimum separation of adjacent sample/detector aperture pairs to ensure
detector apertures principally detect photons originating from their associated sample
aperture. The above analysis considers only a point source. A source of finite width may be
considered by noting the definition of x′ in Eqs. (2) and thus adding (W/2)zod/zso to Δx′,
where W is the detector FWHM.

Previous studies [6] have shown that coded aperture XPCi contrast is increased by reducing
the fraction of detector pixel exposed to directly incident radiation. This however leads to an
increase in the exposure time as fewer photons reach the pixel. In this work we have thus
chosen a displacement, dL, equal to half of the transmitting width of the detector apertures,
thus exposing half of the pixel to directly incident radiation. We used a sample aperture
periodicity of L = 40μm along with zso = 1.6m and zod = .4m to match the dimensions of an
experimental system currently under construction. The simulations were performed for a
photon energy of 100keV.

Figure 8 shows the intensity incident upon the detector apertures as calculated by the wave
optics and geometrical optics solutions for a point source illuminating a cylinder. The
cylinder has a value of δ = 10−7, a radius of 5μm and was situated with its axis at ξ = −5μm.
As is expected, the wave optics intensity exhibits oscillations resulting from interference
between different field components. The geometrical optics solution is physically impossible
as the sharp edge occurring at x = 0 would require the field to contain infinite spatial
frequencies. Consideration of the angular spectrum of a propagating aperiodic field shows
that such a field would require evanescent waves which, in our case, would have negligible
magnitude such a distance from the sample apertures.

Figure 9 compares the directly calculated wave optics intensity to that calculated using the
stationary phase approximation. As explained in Sec. (6.2), singularity anomalies arise in
this solution which have been neglected. This plot shows that apart from these anomalies,
the approximate solution agrees well with the directly calculated intensity. One can use the
components which comprise the approximate solution to determine when the geometrical
optics and wave optics solutions converge. This is however made difficult by the singularity
anomalies present in the approximate solution and so we have opted to use a more pragmatic
approach as outlined below.

One can envisage that when a source of finite width is employed, the XPCi signals predicted
by the geometrical and wave optics models should converge. There are two explanations for
why this should be the case. The first explanation observes that the point source intensity
incident upon the detector apertures is convolved with the magnified source profile which in
our case is Gaussian. This is equivalent to applying a low pass filter to the intensity
distribution causing the oscillations in the wave optics intensity and the sharp transition in
the geometrical optics intensity to be smoothed. The second explanation considers that, as
shown in Sec. (5), a source of finite width may be modelled by a system employing a point
source and equivalent detector apertures which cause the pixels to have a spatially
dependent sensitivity as described by Eq. (21). Figure 3 shows that as the source broadens,
so does the width of the equivalent detector aperture sensitivity function. Because of energy
conservation, one would expect the geometrical and wave optics XPCi signals to converge
as the source broadens. In particular, consider the plot shown in Fig. 7. This shows the
difference between the intensities, incident upon the detector apertures, predicted by wave
and geometrical optics. This signal has a zero mean value as required by conservation of
energy. The coded aperture XPCi signal thus depends upon the domain over which the field
intensity is integrated by the detector pixel. As the sensitive part of each detector pixel
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increases, or equivalently, as the source broadens, the geometrical and wave optics signals
thus tend to converge.

Previous studies [6] have shown that the maximum XPCi signal for a cylindrical object
using the system described in this section occurs when the cylinder is positioned at
approximately ξ0 = −R. This is demonstrated in Fig. 10 where wave and geometrical optics
signal traces have been plotted for a cylinder of radius 5μm and δ = 10−6. The signals have
been normalised by the signal for the object free case. These plots demonstrate how the
signal traces converge as the FWHM of the source increases. It also shows how the peak of
each trace is in the vicinity of ξ0 = −R, as expected. Simulations run over a range of radii,
values of δ and source FWHM show that the peak of the signal trace does indeed occur in
the region of ξ0 = R. This is suggests a good way of assessing the difference between the
wave and geometrical optics XPCi signals as the two signals are likely to vary most at the

peak. We thus calculate an error term, ε(−R), where , and
IWO(ξ0) and IGO(ξ0) are the XPCi signals for the geometrical and wave optics (full

expression evaluated numerically) cases respectively, for a cylinder at position ξ0.  and

 are the object free XPCi signals for the geometrical and wave optics cases respectively.

Before proceeding to calculate ε it is useful to note that some approximations can provide
further insight into the problem. In the case of ξ0 = −R, g1 in Eq. (27) can be well

approximated by  for x′ > −MR, but not too close to −MR. This

approximate form leads to a solution of  for the stationary point of g1.

Substitution of ξ1,0 back into the approximate forms of g1 and  show that both of these
functions have a dependence upon δ2R rather than each of these independently. This
suggests that it is reasonable to expect ε for a particular source FWHM to be constant for
constant values of δ2R. This is indeed the case as was verified by a large number of
simulations, a small selection of which are shown in Fig. 11. This significantly simplifies the
task of determining the source size for which the geometrical and wave optics signals
converge. Figure 12 is a contour plot of ε as a function of source FWHM and δ2R. The
important conclusion which we can draw from this is that for our particular choice of zod
and zso, as we expect a source to have a FWHM of around 50μm, the geometrical optics
model will provide results consistent with those of the wave optics model. This result will
make it feasible to model much larger objects.

7. Conclusions
In this paper we have outlined the two most widely used techniques for modelling XPCi
systems: wave and geometrical optics. We have used the theory developed to model the
image of an infinite cylinder in a coded aperture XPCi system. This problem has practical
significance as it can be tested experimentally. For this particular problem, we show how the
geometric and wave optics models are related. we then show how this theory can be used to
develop a guide for when the two techniques can be trusted to give consistent results.
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Fig. 1.
Schematic diagram of imaging system including reference frames used in the paper. Note
that (x̄,ȳ,z), (ξ,ψ,z) and (x,y,z) all form right handed coordinate systems. The imaging
system is assumed to have no y dependence. Note that dL is defined by the displacement
between the detector apertures and the projection of the sample apertures onto the detector
apertures.
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Fig. 2.
Diagram illustrating the phase function ϕ (ξ) of a phase object of extent zob in the z
direction.
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Fig. 3.
Plot of K(x) for some values of source FWHM, given in the legend in μm. Values of M =
1.25 and L = 40μm were used.
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Fig. 4.
Three cases which must be considered in order to evaluate the integral in Eq. (8).
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Fig. 5.
Diagram illustrating the three regions which must be considered when analysing the field
incident upon the detector apertures.
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Fig. 6.
Contours of Δx′ for a variety of values of R and δ. This diagram effectively shows the
minimum separation required between adjacent sample/detector aperture pairs to ensure
detector apertures principally detect photons originating from their associated sample
aperture.
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Fig. 7.
Plot of the difference between intensities calculated using the wave optics (full expression
evaluated numerically) and geometrical optics approximations. The sensitive region of the
pixel is shaded. Simulation parameters were the same as in Fig. 8.
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Fig. 8.
Plot of the intensity of the field incident upon the detector apertures for the geometrical and
wave optics (full expression evaluated numerically) solutions. Simulation parameters used
were R = 5μm and δ = 10−7, all other parameters were as described in Sec. (6.3).

Munro et al. Page 19

Opt Express. Author manuscript; available in PMC 2013 May 03.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



Fig. 9.
Plot of the intensity of the field incident upon the detector apertures as calculated using the
exact and approximate wave optics formulations. Simulation parameters were the same as in
Fig. 8.
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Fig. 10.
Plot wave optics (WO, full expression evaluated numerically) and geometrical optics (GO)
XPCi signal traces for a cylinder of radius 5μm and δ = 10−6, for three different values of
source FWHM. The cylinder is scanned from ξ0 = −L/4 − R to ξ0 = 0. The signals have
been normalised by the signal for the object free case.
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Fig. 11.
Plots of ε against δ2R for three different values of δ and a point source (left) and a source of
FWHM 50μm.
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Fig. 12.
Contour plot of the error between the normalised XPCi signals as calculated by geometrical
and wave optics models. Source FWHM is on the vertical axis and δ2R is on the horizontal
axis.
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Table 1

Summary of components contributing to the field and intensity in the different regions for the case of wave
and geometrical optics solutions respectively. Note that objects illuminated by adjacent sample apertures may

be modelled by replacing each term I1,0 and  with summations,  and , over all objects i
respectively.

Region I Region II Region III

Geometrical optics, |U|2 I1,0
2 I1,0

2 + I2,0
2 I1,0

2

Wave optics, U Ui+I1,0−I2,0−I2,1 Ui+I1,0−I2,1 Ui+I1,0−I2,1
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