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Abstract
We propose a tracking system that is especially well-suited to tracking targets which change
drastically in size or appearance. To accomplish this, we employ a fast, two phase template
matching algorithm along with a periodic template update method. The template matching step
ensures accurate localization while the template update scheme allows the target model to change
over time along with the appearance of the target. Furthermore, the algorithm can deliver real-time
results even when targets are very large. We demonstrate the proposed method with good results
on several sequences showing targets which exhibit large changes in size, shape, and appearance.
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1. INTRODUCTION
This paper addresses the problem of tracking objects that change drastically in size over
time. When objects move closer or farther from the camera, significant changes in size,
shape, and intensity profile occur, as demonstrated in Figure 1. Methods that do not take
changes in target appearance into account can not accurately maintain track in these cases.

Several techniques attempt to address this problem using the popular the mean-shift
framework. Collins creates an additional feature space based on target scale characteristics
and solves for scale parameters and translation parameters simultaneously [1]. Peng et al.
and Qian et al. adjust the window size and kernel bandwidth of the tracker based on
estimations of target scale in successive frames [2, 3]. In these methods, localization is based
on an unchanging intensity histogram usually taken from the first frame of the video
sequence. When the target is very far, its estimated histogram may be very different from its
histogram when the target is closer. Because these methods do not account for this, they can
lose track as the appearance changes.

Template tracking is another approach that addresses tracking targets of variable size [4, 5,
6]. The goal of these methods is to register a template image onto the current frame to
determine movement. When registration parameters allow scaling, it is possible for the
template tracker to follow the changing size of the target. However, this method is defeated
if the object changes significantly in appearance as it changes in size.

Based on a review of the literature, there appear to be two sources of error as the target is
tracked. Spatial drift is the change in the model such that the model and target are

©2008 IEEE

NIH Public Access
Author Manuscript
Proc Int Conf Image Proc. Author manuscript; available in PMC 2013 May 03.

Published in final edited form as:
Proc Int Conf Image Proc. 2008 ; : 241–244. doi:10.1109/ICIP.2008.4711736.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



misaligned. Feature drift is the change of target appearance as it diverges from the
appearance of the model over time.

We propose a method that deals with these two sources of error separately. Spatial drift is
prevented by registering the previous target representation to the current frame and
registering the previous frame to a periodically updated key model. This accounts for frame-
to-frame movement and incorporates the influence of a stable model to minimize transient
affects. Feature drift is accounted for by updating the key model in a way that limits spatial
drift and allows smooth feature changes over time. This update allows the method to track
features which are specific to the target’s recent appearance and is robust against large
changes in scale.

2. PROPOSED ALGORITHM
The proposed method is divided into two main components: template matching and template
update. Template matching, described in Section 2.1, prevents spatial drift in the target
model by performing two registration procedures. First, translation parameters p1 are

determined, which register the image I at the current frame to the model,  obtained from
the previous frame. This reduces frame-to-frame spatial drift. Next, a second set of
translation parameters p2 is found which align  to the key model . This reduces spatial
drift in the model. The two sets of translation parameters are summed to determine the final

translation parameters p that specify the location of the target and the next model 

Template update, described in Section 2.2, is executed every N frames, and allows the key
model  to change over time in a manner that limits spatial drift yet allows a smooth
change in target appearance. Every N frames, the key model is replaced by the best model

from the a set of the previous N models . The diagram in Figure 2 illustrates the
algorithm with template matching on the left, and template update on the right.

2.1. Template matching
The goal of template matching is to estimate the transformation parameters p = {p1 … pn}
that best align a reference template T(x) to an image I(x), where x = (x, y)T is a vector of
template coordinates. Borrowing the notation of Baker and Matthews [6], we assume that
W(x; p) warps reference coordinates according to p. This problem may then be formulated
as a sum of squared differences (SSD),

(1)

where the sum is computed over template coordinates x. We begin by reforming this
expression with the introduction of a step variable Δp and use a truncated Taylor expansion
to separate it from the warp:

(2)

(3)

We now take the gradient with respect to Δp and rearrange terms to yield the step solution:
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(4)

where H is the n × n Hessian matrix:

(5)

If we examine the Hessian matrix, we notice that the terms that most effect its computation
are those with large image gradient ∇I. These coordinate locations X ⊆ I contain the most
information affecting the transformation parameters p. As suggested by Dellaert and Collins
[7], using only this subset of pixels in the computations can increase speed by orders of
magnitude with little loss in accuracy. Following this technique, at the start of each iteration,
we compute (4-5) and necessary derivatives only on a dominant subset X. Procedure 1
details the iterative estimation of p as described in [4, 5].

This process is well suited for arbitrary transformation parameters, but we find that allowing
more complex transformations than translation introduces unnecessary degrees of freedom
and can lead to inaccurate registrations. Hence, we take p to be translation in the x and y
direction, and

(6)

2.2. Template Update
The goal of template update is to allow the appearance of the reference image to change in
order to reduce feature drift while at the same time preventing spatial drift from entering the
system. To achieve this, the key model  is updated every N frames with the procedure
outlined in Figure 3.

During the template matching step, we collect the past N models, denoted as . The
new key model,  is chosen as the best representative of this set as determined by a
matching error, e

(7)

(8)

The set of  represents optimally registered image patches from the previous N frames,
but many will exhibit image noise or slight misalignments that make them poor choices for a
key model. We choose the new key model to be the candidate with the lowest matching
energy so that the key model changes smoothly without introducing spatial or feature drift.

Note that the size of the models never varies as the models are updated. Although we
maintain track of the target as it changes in scale, we do so without changing the size of our
representation. This is accomplished by tracking features available at the current scale of the
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target. Hence when the target is small, the key model may include the entire target, but if the
target grows such that it is larger than the model, the model holds finer details of the target’s
appearance that allow the algorithm to maintain its track point.

3. EXPERIMENTS
We applied this tracker to several sequences chosen to demonstrate robustness against large
changes in appearance of the target especially due to scale change. Additionally, we discuss
the parameters that can affect system performance. Videos from all tracking sequences can
be found at the author’s web site.1

3.1. Tracking Results
First, consider the LEAVES sequence shown in Figure 4. Here we use the proposed method
to track a small bunch of leaves. In the first frame, when the track is initialized, the leaves
appear very small, and little detail can be seen. Over the course of the video, the camera
approaches the leaves and their size and detail level increase dramatically. Three full frames
are shown with the tracking result on the first row of Figure 4. Rows two and three show

models,  from selected frames. Notice how the information in the model adapts to
represent features specific to the current scale of the target. The proposed method maintains
a stable track point on the front-most leaf throughout the sequence.

In Figure 5 tracking results for the VEHICLE sequence are shown. This tactical imagery
shows a vehicle being tracked starting from a very far distance and closing quickly until the
target becomes very large in the frame. In the initial frames, the target is barely visible, and
can only be seen in the zoomed-in models shown in the second and third rows of the figure.
The model adapts to the changing size of the target, and the sequence is accurately tracked
despite the large scale and appearance change.

The BOAT sequence demonstrates the robustness of the technique against factors besides
scale change in Figure 6. The size change of the target is not as drastic as those in Figures 4
and 5, but this sequence exhibits poor resolution, sporadic illumination changes, significant
image noise, and significant target variability due to crashing waves and the varying pose of
the boat. Figure 6 shows three full size frames with tracking result, and eight models from
throughout the sequence.

3.2. Parameters
The proposed method has two parameters which control its behavior: percentage of pixels
used as the dominant subset X ⊆ I in the registration procedure (Section 2.1) and the length,
N of the history used for key model updates (Section 2.2).

First, we discuss the pixel percentage used in registration. Using fewer pixels increases the
speed of the algorithm significantly. It can also increase the accuracy of registration in some
cases. In the BOAT sequence, the background water is noisy and low contrast. If 100% of
the pixels are used in registration for this sequence, results are not as accurate due to many
ambiguous background pixels being included in the registration. We use 25% of pixels with
good results. Alternatively, in the LEAVES sequence the background is very high-contrast.
In this case using only a small percentage of the pixels can cause the template matching step
to favor registration to the background instead of the target. In this imagery, we use 100% of
the pixels to ensure the object is tracked despite the high contrast background.

1http://www.shawnlankton.com
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The second parameter of interest is the length N of the model history used during the
template update step. This parameter must be set to reflect how quickly the target is
expected to change in appearance. For instance, in the LEAVES sequence, the target
undergoes a large appearance and scale change very quickly. For this experiment we use a
relatively short history of N = 5. In the VEHICLE and BOAT sequences, the target changes
more slowly, and a history of 20 frames is used.

3.3. Efficiency
Finally, we point out the efficiency inherent in this algorithm. Other methods that are
capable of tracking objects though scale changes may continuously change the size of their
tracking window to include the entire object. Hence, the number of pixels analyzed in order
to localize the target increases with target size. This increase can lead to slower frame rates
when the target appears large. Because our algorithm uses a fixed window size and updates
the features tracked within that window, the frame rate remains roughly constant despite
changes in target size. Furthermore, the simplicity of the algorithm allows it to run at real
time speeds. In our prototype Matlab implementation we achieve speeds between 17 and 26
Hz. Table 1 shows the frame rates achieved for each of the three experiments shown.

4. CONCLUSION AND FUTURE WORK
We have shown a novel tracking algorithm capable of tracking targets through significant
changes in size and appearance. By using a two-phase template matching scheme and an
intelligent template update procedure, the system can prevent spatial drift and feature drift in
order to maintain accurate track. Furthermore, the efficiency of the algorithm makes it useful
for real-time applications.

Future work may include using robust estimators rather than sum of squared differences to
determine correlation between models and targets as well expanding the current approach
into a particle filtering framework to make the system more robust against extremely erratic
target motion.
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Fig. 1.
First, middle, and last frame from the LEAVES sequence. Notice the drastic change in size,
shape, and appearance as the leaves move from a small blob in the distance to fill the entire
frame.
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Fig. 2.
Flow chart representation of the proposed method
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Fig. 3.
We update the key model  periodically to prevent feature drift. The new key model 

is selected by choosing a model from the set  that has the lowest error e when
compared to the previous key model 
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Fig. 4.
Tracking results on the LEAVES sequence demonstrating ability to track through large scale
change. First row: selected full-size frames. Second and third row: target models from
selected frames throughout the sequence.
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Fig. 5.
Tracking results on the VEHICLE sequence demonstrating ability to track through large
scale change. First row: selected full-size frames. Second and third row: target models from
selected frames throughout the sequence.
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Fig. 6.
Tracking results on the BOAT sequence demonstrating ability to track through noise,
illumination changes, and target variability. First row: selected full-size frames. Second and
third row: target models from selected frames throughout the sequence.
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Table 1

Frame rates achieved during experiments

Sequence Figure Frame Rate

LEAVES 4 17.54 Hz

VEHICLE 5 25.46 Hz

BOAT 6 24.62 Hz
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Procedure 1

Registration

Determine dominant subset X ⊆ I

repeat

 Compute I(W(x;p))

 Compute residual [T(x) − I(W(x; p))]

 Compute ∇ I ⋅ ∂W
∂p

 and form the Hessian H as in (5)

 Solve for Δp as in (4)

 p ← p + Δp

until p has converged
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