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Abstract
Complex systems abound in public health. Complex systems are made up of heterogeneous
elements that interact with one another, have emergent properties that are not explained by
understanding the individual elements of the system, persist over time and adapt to changing
circumstances. Public health is starting to use results from systems science studies to shape
practice and policy, for example in preparing for global pandemics. However, systems science
study designs and analytic methods remain underutilized and are not widely featured in public
health curricula or training. In this review we present an argument for the utility of systems
science methods in public health, introduce three important systems science methods (system
dynamics, network analysis, and agent-based modeling), and provide three case studies where
these methods have been used to answer important public health science questions in the areas of
infectious disease, tobacco control, and obesity.

Keywords
complex systems; system dynamics; network analysis; agent-based modeling; computer models;
simulation

INTRODUCTION
In 2006 the United States established the Biomedical Advanced Research and Development
Authority (BARDA), partly in response to the threat of a global H5N1 pandemic as well as
the 9/11 terrorist attacks. Part of BARDA’s mission is to help prepare the national plan to
address the threat of emerging infectious diseases like pandemic influenza. As part of this
planning, BARDA has utilized the most current public health science to make decisions and
recommendations about aspects of pandemic planning such as stockpiling and distribution of
vaccines, the timing and targeting of vaccines, and the most effective use of non-medical
interventions such as social distancing (i.e., quarantines) (38). The science base for these
recommendations relies to a great extent on new types of methods for simulating and
modeling complex systems (56). This is a historical moment for public health science.
Government, business leaders, and other stakeholders are already using public health
systems science to guide national pandemic strategy--this highlights the utility and impact of
these methods. However, systems science methods remain underutilized and are not featured
prominently in public health curricula or training(137). The purpose of this review is to
present an argument for the utility of systems science methods in public health, to introduce
three important and relevant systems science methods (system dynamics, network analysis,
and agent-based modeling), and to illustrate these methods through three case studies where
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these methods have been used to answer important public health science questions in the
areas of infectious disease, tobacco control, and obesity.

THE NEED FOR NEW METHODS TO STUDY COMPLEX PUBLIC HEALTH
SYSTEMS
What are Complex Systems?

Complex systems abound in public health. In fact it has been suggested that most of the
interesting processes in nature, society, and the economy derive from complex systems (3;
123). So what is a complex system? Wanting to avoid semantic distractions, Gallagher and
Appeneller (55) introduce a special issue of Science by stating that a complex system is “…
one whose properties are not fully explained by an understanding of its component parts.”
Although formal definitions may vary, there is broad acceptance that complex systems have
the following properties (101; 108):

• They are made up of a large number of heterogeneous elements;

• These elements interact with each other;

• The interactions produce an emergent effect that is different from the effects of the
individual elements;

• This effect persists over time and adapts to changing circumstances.

Consider the example of the national vaccine system, which according to the above criteria
we can clearly see as a complex system (133). It is made up of heterogeneous components
(individuals, health clinics, public health agencies, pharmaceutical companies) which
interact with each other and are organized at different levels. Certain properties of this
system such as herd immunity emerge from the interactions of its various components. The
vaccination system has existed over a long time period, but it does respond to changing
circumstances. For example, vaccination rates across the U.S. have started going down,
partially in response to media coverage of the autism-vaccination debate in the general
media (129). Because the interesting behavior of systems is emergent, it is necessary to
study a system as a whole, rather than to decompose it and study its individual parts (3).
This implies that traditional study designs and analytic tools will not suffice to explore
complex public health systems.

The Argument from Study Design
In 1968, the sociologist Allen Barton stated that (17):

For the last thirty years, empirical social research has been dominated by the
sample survey. But as usually practiced, using random sampling of individuals, the
survey is a sociological meatgrinder, tearing the individual from his social context
and guaranteeing that nobody in the study interacts with anyone else in it.. . . . If
our aim is to understand people’s behavior rather than simply to record it, we want
to know about primary groups, neighborhoods, organizations, social circles, and
communities; about interaction, communication, role expectations, and social
control.

This is as true now for public health as it was a generation ago. Public health science is
dominated by randomized control trial (RCT) and epidemiologic risk factor study designs
(59; 132). The social psychologist Joseph McGrath provided a framework for understanding
the complementary strengths and weaknesses of various types of study designs that can be
used to illustrate why traditional RCT and risk factor designs are inappropriate for studying
complex public health systems (Figure 1) (100). Essentially, RCTs and other types of quasi-
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experimental designs are concerned more with internal validity and the ability to precisely
measure intervention effects. However, this precision sacrifices external validity and the
ability to measure and understand contextual and ecological effects. Systems science study
designs (such as computer simulation modeling and network observation studies) appear on
the opposite side of McGrath’s figure from experimental designs—thus, these types of
studies may sacrifice measurement precision, but they gain external validity and the ability
to assess the influence of context on behavior.

There are two particular aspects of traditional study designs that severely limit their
appropriateness for complex systems. First , RCTs and risk-factor studies gain their
precision partly through randomization for group assignment and/or sample selection. This
randomization ensures that study participants are not typically drawn from naturally existing
social or organizational systems. Not only are the behavioral effects of these social systems
excluded, but study participants are not allowed to interact with one another as they typically
would (132). (In fact, we often label this type of interaction ‘contamination,’ and consider it
a study flaw.) Second , experimental and risk-factor studies (e.g., case-control studies) are
primarily designed to identify the existence or size of a specific effect or relationship, not
the mechanism of the effect (sometimes called the ‘black-box’ problem) (72). As Meehl has
pointed out, rejecting a null hypothesis of no effect is a very low epistemological bar, and
the social and health sciences are better served by proposing richer predictions based on
more sophisticated models of causal mechanisms (102). Thus, if we are to study complex
public health systems, we will need to use study designs and methods that allow for
interactions among elements of the complex system, and that are able to study, identify, and
characterize the mechanisms that drive the behavior of the system (54).

The Argument from Analysis
There is a similar mismatch between the characteristics and assumptions of traditional data
analysis approaches in public health, and the characteristics of the data and models that
derive from complex systems. Stated most concisely, the types of statistical analyses that we
use most often in public health are inappropriate for studying complex systems. Even more
sophisticated analytic techniques such as SEM, latent class analysis, etc., that are designed
to test more complicated relationships break down in the presence of all-too-common
feedback loops, threshold effects, and other types of non-linearity. Critiques of statistical
modeling are not new, but a common theme of these discussions is that statistical models are
most useful when they are connected to strong study designs, appropriate data, and match
the structure of the theoretical predictions.(52; 91)

Table 1 summarizes several reasons why the study of complex systems requires new data
analysis techniques. Whereas traditional statistical modeling often assumes linear
relationships where changes in dependent variables are proportional to changes in
independent variables, complex systems are characterized by non-linearity, threshold events,
and chaotic behavior (119). Traditional modeling often assumes normality of variables or
residuals—not only are normal distributions poor depictions of reality (105), but complex
systems are more often characterized by power laws that lead to scale-free distributions
(108; 145). Complex systems are characterized by heterogeneous actors, not only do they
not require representativeness in the sampling sense (43), but computational models of
complex systems can include actors of fundamentally different types (e.g., people,
businesses, and products). Although some linear modeling approaches such as random
effects models can be applied to multiple levels of analysis, most traditional statistical
models are limited to a single level. Complex systems, on the other hand, are often
multilevel (15). Although statistical analysis can of course be applied to longitudinal data, in
public health these data are typically ‘discretely’ longitudinal—snapshots taken at well-
separated points in time. A fundamental property of complex systems is that they are
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dynamic, and some of the existing computational modeling tools (especially agent-based
modeling, see below) allow for tracking systems as they change in ‘real time’ (43).
Although statistical modeling can be used to assess relationships among objects (e.g., cluster
analysis; (118)) it more often focuses on correlational relationships between variables.
Modeling complex systems, on the other hand, typically focuses on the interactions of the
actors within the system. Finally, traditional statistical modeling is inherently reductionist,
focusing on individual parameter estimates, specific individual interactions, or individual
links in the causal chain. Methods for studying complex systems are by their very nature
holistic, examining whole systems or models of systems to help identify the complex
mechanisms by which they operate (96).

Three Key Methods for Studying Complex Systems
The preceding discussion makes it clear that traditional study design and analytic methods
commonly used in public health sciences are not appropriate for studying complex systems.
The rest of this review will focus on three methodological approaches that are commonly
used to study these types of systems: system dynamics (SD), network analysis (NA), and
agent-based modeling (ABM). Although there is some overlap, these three methods each
approach the study of complex systems in different ways. Table 2 presents the aspects of
complex systems that each method is particularly suited to address. For example, agent-
based modeling and network analysis are both more suited for describing how the individual
actors in a system interact with one another compared to system dynamics (See also Osgood
(114)).

System dynamics, network analysis, and agent-based modeling all have rich,
multidisciplinary conceptual and technical histories, have benefited from recent
developments in computational and modeling advances, and have been used to study
complex systems of many types. Not all studies of complex systems in public health use
these methods, but many do. However, despite the importance of these methods for studying
complex public health systems, they do not have a prominent place in public health training
and education. There are important exceptions, such as the annual NIH-sponsored Institute
of Systems Science and Health, which provides training in these three specific methods
(http://issh.aed.org/).

SURVEY OF COMPLEX SYSTEMS METHODS
System Dynamics

System dynamics (SD) is based on the premise that complex behaviors of a system (e.g.,
population prevalence of an infection), result from the interplay of feedback loops, stocks
and flows, and delays (130). The method arose originally in management science (50) from
the recognition of the need to explicitly model non-linear processes that are characteristic of
complex phenomena like policy resistance, the law of unintended consequences, and the
often counterintuitive behavior of social systems (131). Simulations are implemented as a
series of differential equations that track accumulations of stocks (e.g., people, currency,
disease counts, etc,), which are determined by flows (e.g., rate of occurrence), feedback
loops (causal loops with either balancing or reinforcing effects) and time delays.

The focus of system dynamics is on building models to represent the dynamic complexity of
aggregate, often high-level phenomena such as new product adoption in organizations, or
predator-prey relationships over time. Simulation results allow for the examination of the
system behavior, which may take on various patterns (e.g., exponential growth, oscillation,
s-shaped growth, collapse, etc. (130)) and be compared to hypothesized or expected system
behaviors (i.e., reference models). System dynamics models have been used to provide
useful illustrative models even absent of strong empirical data, to demonstrate relative
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impacts of various policies or intervention strategies, particularly when feedback loops may
be used to explain patterns of non-linearity or unintended consequences (e.g., the chronic
disease prevention model in Homer & Hirsch (68)). Compared to other types of complex
system models, SD models tend to have broader boundaries (i.e., include a larger number of
relevant explanatory variables) and be more amenable to including variables for which
strong empirical data may not be available (68; 116). In the SD field there is a strong
emphasis on group model building (142), where models are developed in a participatory
process between modeler and practitioners or end users. Thus, the process of developing,
testing and refining an SD model is ideally both iterative and participatory.

With a typical focus on aggregate characteristics and broad boundaries, system dynamics
modeling has lent itself to an array of public health applications. It has been used to model
potential public health outcomes in cases where it is not feasible to test various intervention
strategies on real populations, particularly where interventions may involve factors far
upstream from health outcomes (64; 67; 74). Models to guide practice in clinical preventive
care (127), disaster planning (65), and setting more realistic public health benchmarks (107)
provide other examples of the practical utility of SD models in public health. An interesting
area for further exploration is its utility in examining strategies to address populations with
overlapping epidemics, or “syndemics” (106).

Network Analysis
Network analysis (NA) is a research method and scientific paradigm that focuses on the
relationships among sets of actors. The actors can be any type of entity that can have a
relationship or tie with other entities: persons, animals, organizations, countries, websites,
documents, and even genes. Of the three methods considered in this review, network
analysis has the longest history—the roots of network analysis can be traced back to a
number of different disciplines, including mathematics (especially graph theory and
topology), anthropology (kinship systems), and sociology (social ties and structure) (53).
However, what we now recognize as modern network analysis was established in the early
1930s with Jacob Moreno’s invention of the sociogram, a graph that depicts the structure of
interpersonal relations in a group (109). With the availability of efficient computer
algorithms, the development of specialized network analysis software, and the ‘discovery’ of
network analysis by modern physicists and mathematicians (24), interest in network analysis
has exploded. The ‘new science of networks’ is being used in almost every area of science
(16) to study important questions such as the robustness of terrorist networks (120), the
structure of the Internet (14; 26), the functioning of the brain (18), political divisions of
modern society (39), and the complex interactions of genes and human disease systems (90).

Perhaps because of its longer history, and the ability to quickly analyze real-world data,
network analysis has a wider variety of applications and analytic approaches compared to
SD and ABM (see Wasserman & Faust (144); Brandes & Erlebach (23)). Despite the
analytic variety, almost all network analysis makes use of one or more of three different
analytic modes: network visualization, network description, and statistical modeling of
networks. One of the attractions of network analysis is the ability to visually examine a
given network, especially if it is small to medium-sized. Figure 2for example, shows the first
HIV transmission network with ‘Patient 0’ highlighted (9), and highlights both the contagion
structure and possible transmission mechanism. Network description makes up the bulk of
network analysis, and can be flexibly used to address a wide variety of scientific questions.
Figure 3 highlights this diversity.

Working down each column in the figure, basic network analysis can focus on the location
of individual actors in the network, the structure of local connections and network
subgroups, or the entire network. More advanced network analysis can examine multiple
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networks, the relationships among multiple types of network ties, multilevel networks, or
how networks change over time. Finally, relatively new developments in statistical network
theory are allowing for the first time the building and testing of statistical models and
hypotheses of network processes and structures (57).

Over the past two decades network analysis has become more widely used in public health,
especially in the following five areas (92): disease transmission, social support and social
capital, network influences on health behavior, public health service and organizational
networks, and the social structure of information diffusion. Three examples illustrate how
the use of network methods have helped facilitate a greater move towards network and
systems theories in public health. First it was during the early years of the HIV epidemic
(followed by work on SARS and other infectious diseases) that epidemiologists started to
employ network analytic methods as a new way to chart the spread of a disease, and to plan
how to counter disease outbreaks (104; 124). This moved the fundamental S-I-R disease
model away from a pure population-level model by incorporating local social network
information into the basic model (76). The second example is in the area of information
diffusion. Early empirical work on Rogers’ Diffusion of Innovations theory emphasized the
temporal aspects of the rate of diffusion over time, and the identification of distinctive types
of people or organizations involved with diffusion (e.g., opinion leaders) (36). It was not
until Valente focused on the network aspects of Diffusion of Innovations, for example by
studying network threshold effects on diffusion patterns (138), that diffusion studies started
incorporating more relational and structural aspects of communication systems (63; 99).
Finally a recent series of studies by Christakis and Fowler have collectively suggested that a
wide variety of health behaviors and functioning (including smoking, obesity, and
happiness) are ‘socially contagious’ and directly shaped by social networks (30; 31; 51). The
methods and conclusions of some of these studies have been challenged (34; 95), but the
visibility of this work has helped to highlight the continuing importance of network analysis
methods in modern public health science.

Agent-Based Modeling
Agent-based modeling (ABM) uses computer simulation to study complex systems from the
ground up, by examining how individual elements of a system (agents) behave as a function
of individual properties, their environment, and their interactions with each other. Through
these behaviors, emergent properties of the overall system are revealed. Compared to system
dynamics, this results in a form of decentralized modeling where there is no formalized
definition of global system behavior (i.e., no differential equations that drive the high level
processes of the system) (22). ABM is the youngest of these three systems science methods,
although its conceptual roots trace back to important 20th Century discoveries in
mathematics, philosophy, and computer science, including Von Neumann’s invention of
cellular automata, and John Conway’s Game of Life (108). One of the first influential agent-
based models that clearly demonstrated how the behavior of complex systems could be
described using only simple agent-level rules was Reynolds’ simulation of flocking birds
(121). Reynolds ‘boids’ model used only three simple bird-level rules: 1) separation (don’t
get too close to any other bird); 2) alignment (match the speed and direction of nearby
birds); and 3) cohesion (head for the center of mass of nearby birds). The result of the
simulation using these rules was “…the graceful dance-like movement of the flock whose
hypnotic rhythm is clearly patterned yet also highly non-linear” ((97) p. 144). ABM has
been employed in a great number of disciplines, but has been particularly useful to describe
emergent properties of organizational, social, and cultural systems in anthropology,
sociology, political science, business and economics (10; 12; 66). More generally, ABM has
been shown to be particularly useful for modeling emergent phenomena such as contagion
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flows, markets, organizational behavior, and diffusion (21); all of which are relevant in
public health research.

ABM employs computer simulations that start with characteristics and rules about individual
agents, and then generate dynamic ‘histories’ that reveal overall system properties and
behavior. Table 3 lists the most important characteristics of agents and agent-based models
that collectively distinguish this approach from other modeling approaches such as SD (42).
Although specialized software packages and libraries for ABMs exist (e.g., RePast), much
of the academic ABM projects are based on hand-written software that utilizes object-
oriented programming techniques (117). Given the dynamic nature of ABM models, one of
the important attractions of these simulations is the visual nature of the modeling
environment. Many ABM simulation environments allow researchers to view the system
behavior in ‘real-time’ (see the RePast user interface: http://repast.sourceforge.net/;
AnyLogic: http://www.xjtek.com/anylogic; or NetLogo: http://ccl.northwestern.edu/
netlogo/). The development of ABM methods has been extremely rapid--exciting recent
developments include the integration of GIS and social network information into agent-
based models (11; 37), and the ability to use extremely large sets of agents in the
simulations, including synthetic populations of entire communities or nations (25).

The signature success of agent-based modeling in public health is in the study of epidemics
and infectious disease dynamics. ABMs have been used to study disease transmission at
multiple scales, from individual communities to global pandemics (44). ABMs of epidemics
have helped move epidemiology beyond the traditional S-I-R model, and have demonstrated
the importance of examining the role of social networks, transportation systems, local
geography, and diverse behavioral responses to changing contexts on the spread of disease
(45; 46; 148). ABMs have also started to be used to study chronic disease and health
behavior, including drinking (58) and smoking (11), as well as complex public health and
healthcare systems (75; 128). Conceptually, these models have been useful in suggesting
possible mechanisms by which contexts (i.e., neighborhoods, communities, residential
environments) influence health and health behavior (8). Finally, much like SD, ABMs
promise to provide powerful ‘simulation laboratories’ where different types of public health
interventions, programs, and policies can be tested when more traditional outcome studies
are not possible (83).

THREE CASE STUDIES
As the above methods review suggests, system dynamics, network analysis, and agent-based
modeling have been used in a wide variety of public health research situations. In this
section, we present three short case studies that highlight how these systems science
methods have been used in particular public health research programs to answer critical
scientific and policy questions that would be difficult, if not impossible, to answer using
more traditional research designs and analytic tools.

Infectious Disease
The study of Infectious disease has been the earliest and most important testing ground for
systems science methods in public health. Scientists have long understood that the course of
disease transmission in a population is the result of the complex interplay between biology,
environment and society (6). Systems science methods have been critical in moving theories
of disease transmission from simplistic temporal models that assume random mixing, to
sophisticated models which recognize the importance of geography, social connections,
travel patterns, and non-rational behavior (78; 115). Collaborative modeling networks, such
as MIDAS (111), offer an example of the types of shared investigative efforts that can
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approach infectious disease models from various angles to advance innovations in
methodological development and utility of the models.

The importance of social ties in infectious disease underlies the relevance of methods able to
capture the complexities of social interactions. HIV transmission provides an illustrative
example, spreading through a heterogeneous set of contact types including sexual and
intravenous drug use (77), and largely determined by interactions between the structure of
social networks and their interaction with population level characteristics (125). Specific
characteristics of network structure that are predictive of infection can lead to improved
understanding of transmission processes, as illustrated by the work of Rothenberg and
colleagues, who identified relevant “microstructures” in syphilis transmission (126) and
Christley et al. (33), who identified measures of network structure that are predictive of
novel infections in a previously uninfected population. Christakis et al. (32) utilize a novel
approach to studying friend networks and flu spread, based on previous knowledge of the
centrality of individuals in a social network who are randomly selected as friends of initial
contacts. Described as the “friendship paradox” (your friends have more friends than you
do), they show that this faster way of sampling and assessing social networks may be useful
in improving response time to a broad array of infections.

Applications of system dynamics in infectious disease range from early studies that
emphasized describing dynamics of the spread of disease, to recent work more strongly
oriented toward testing potential impacts of infectious control strategies. Early examples of
SD in infectious disease as applied to the AIDS epidemic focused on describing the
dynamics of the disease transmission process and characteristics of the HIV virus, like
incubation period (70; 122). Models have offered particularly powerful results when data
exist to provide a test of model validity. A classic example of the use of SD in studying the
dynamic of unintended consequences is provided by Homer and colleagues (69), who
developed and tested a model to study the development of antibiotic resistant in pneumonia
using existing population-based data from various countries. Vickers et al. (143) employed
SD modeling to test various assumptions for the rebound in chlamydia rates, and used
surveillance data to choose the most parsimonious model whose behavior mirrored that of
the surveillance data, which pointed to increased testing and not to any real increases in
occurrence as the reason behind the uptick in chlamydia rates. Thompson (135) helped
frame the debate about polio programs oriented toward long-term eradication vs. short-term
controls, clarifying the economic costs and benefits for policymakers. The usefulness of
broad model boundaries in SD is illustrated by studies of overlapping epidemics. The co-
occurrence of HIV and multi-drug resistant tuberculosis provide a strong example of this,
with the accompanying complex menu of potential policy options that public health decision
makers struggle with to address various treatment and control approaches in affected
populations (7; 81).

Agent-based (and hybrid system dynamic/agent-based) modeling is currently at the forefront
of the modern science of infectious disease (44), with its ability to address the complex
interplay between individual behavior and social connections on a large scale. Results from
the MIDAS modeling network provide some good examples of the multiple ways of testing
ABM models in simulating outcomes of potential infectious disease policy and practice
decisions. Lee et al. (84) modeled vaccination allocation policies in the face of an H1N1
epidemic to examine priority recommendations around high-risk individuals versus highly-
infective children when vaccines are in short supply, and comparisons among outcomes such
as attack rate, hospitalizations and overall cost. Members of the same group (82) identified
problems with school closing strategies for controlling influenza outbreaks, and found that
short closures were counter-productive and that only longer closures would provide the
needed lag time for implementation of long-term effective vaccination programs. In another
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study (83) utilized the influenza models to examine the impact of strategies for workplace
H1N1 vaccination and found that those aimed at larger firms were more efficient and
effective than those that were spread across a larger number of smaller workplaces.

Studies of infectious disease continue to be at the forefront of the development of combined
approaches that join elements across system methods to model the interaction between
individual agent behavior with social networks (29; 46; 79), and with system dynamics of
epidemics (45).

Tobacco Control
Tobacco control is at once the biggest challenge for public health (tobacco use is still the
number one preventable cause of death in much of the world) and one of its biggest success
stories (27). Starting in the mid-20th century, epidemiologists and clinical scientists were
able to identify the links in the causal chain between tobacco use and death and disability
(mainly via cancer and heart disease), using fairly traditional research methods. However,
scientists are now realizing that systems science methods may be critical tools for
understanding the complex factors shaping tobacco use and addiction at the individual level;
and similarly for understanding the complex interactions of the various organizational actors
in the tobacco control public health system (98). Tobacco control science reaches from ‘cells
to society,’ and is clearly a classic example of a complex system: it has interacting,
heterogeneous actors and the system as a whole adapts and changes over time. This is
reflected in Figure 4which is a causal map for a systems dynamic model for tobacco control,
developed as part of NCI’s Initiative on the Study and Implementation of Systems (113).
This causal map illustrates some of the complex feedback loops (more than 1,900!) that exist
between the various actors that include individual smokers, tobacco growers, government
regulators, public health scientists, and the tobacco industry. Similarly, public health
scientists are increasingly aware that changes in tobacco control and tobacco use are likely
to have complicated and sometimes unintended consequences in the larger health, economic,
and political systems, including changes in healthcare costs, worker displacement and
employment, philanthropy, state and local budgets, and health disparities (19).

System dynamics and network analysis have both been used more widely in tobacco control
science compared to agent-based modeling (68). Dynamic systems simulations and
modeling have been particularly useful for forecasting population-level trends, such as
smoking initiation and prevalence. For example, dynamic modeling work done by Mendez
and colleagues (103) has charted smoking initiation and cessation rates over time in the U.S.
to determine the likelihood of achieving Healthy People goals of 10% smoking prevalence
by 2025. These dynamic models have suggested that under a variety of conditions, smoking
rates will decline over time, but achieving a 10% prevalence rate is unlikely (73). System
dynamics have also been used to explore the additive and interactive effects of multiple
policies and interventions on smoking rates. This is a particularly attractive use of SD, given
that in the real world, single policies are never implemented in isolation. The most well-
known example of this approach is the SimSmoke models of Levy and colleagues, which
have been used to explore the potential effects of tobacco control policies on smoking in the
U.S. and other countries (86; 87). Similar dynamic systems approaches have been used to
explore tobacco control educational programs (134) and governmental investment in
cessation services (136). The cumulative lesson learned from these dynamic modeling
studies is that multiple, evidence-based policies need to be implemented in a comprehensive
strategy to continue to lower smoking rates (88).

Although high-level, aggregate models (as found in many SD models) have been useful for
forecasting long-term population-level trends, they are by their very nature less useful in
identifying important mechanisms or relational structures that drive tobacco use. Network
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analysis has proven to be more successful in this regard, and has been used to primarily
address two broad sets of tobacco control questions: how social networks influence
individual tobacco use, and how community, state, national and international tobacco
control systems are structured. Although it has been known for some time that there are
strong peer and family influences on smoking behavior, network analysis can be used to
identify what types of ties and network structures are most associated with smoking. Ennett
& Bauman (41) were among the first to do this, showing that adolescents who were most
isolated from their peers were most likely to smoke. Subsequent network studies have
expanded on this basic effect, showing the buffering effects of friendship groups (5), and the
interaction of network ties with school environments (4). Current network studies of
smoking are starting to establish more specific causal mechanisms—for example, Lakon and
colleagues suggest that networks influence smoking by structuring flows of emotional
support (80).

Network analysis has also been frequently used to describe and explore the complex
structures of tobacco control systems from state-level to global. Harris, Luke, and colleagues
(62) analyzed the contact and collaboration networks of eight state tobacco control programs
to identify a common star-shaped pattern of connections between the lead agency and four
other types of organizational partners. At the national level, network analysis has been used
to map the structure of tobacco control leadership across agencies in the Department of
Health and Human Services (85) and to develop models of collaboration among five
national tobacco control networks (93). At the international level, Wipfli and colleagues
(146) used network analysis to show that engagement with an online network of
international tobacco control advocates was positively associated with the likelihood of
formal adoption of the Framework Convention on Tobacco Control.

At this point in time, agent-based modeling has not been applied to tobacco control research
in any comprehensive way, although ABM has been used to study other addictive behaviors
(58; 60). The agent-based modeling group at the Brookings Institution have started
developing agent-based models of smoking behavior and policies (11), but these methods
have yet to be widely adopted by tobacco control scientists. This is expected to change,
however, as ABMs are ideal approaches for studying the effects of different policies when
traditional experimental designs are not possible. For example, ABM models could be built
to test the dynamic effects of tobacco retailer density reduction through distinct policy
approaches such as attrition, increased licensing fees, or buffer zones around schools (94).

Obesity
Like tobacco control, obesity is a growing global public health challenge. In the past two
decades alone there has been an increase in weight in the US such that over 2/3 of the
population is now overweight or obese (48). Causal factors in obesity range from individual
metabolic components to society at large, resulting in causal models that describe the
various levels and sectors of society that offer potential points of public health intervention
(e.g., policy, built environment, social networks) (71). Complex systems models offer a set
of analytical methods that can account for this complexity (61), and build upon previous
simulation studies (89) to further develop models that examine the interplay between cells,
individuals and society. Large-scale, team modeling efforts now exist, such as COMNet,
CompMod, and Foresight (1), that have constructed models to simulate the complex web of
causation in obesity prevention. See Vandenbroeck et al, (141) for an impressive example of
the complex systems map of obesity. These models can be further utilized to examine the
impact of interventions applied as various inputs and modifications to the models.

Social network analysis is perhaps the best-known systems method approach in obesity and
offers an illustrative example of more broadly applicable considerations in interpreting SNA
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results. In their influential paper, Christakis and Fowler (30) describe the spread of obesity
through social networks. The authors investigated a large network of individuals in a
population-based cohort of adults over a period of 32 years, and found that subjects’, or
“egos”, weight gain was a function of weight gain in persons to whom they were socially
connected, or “alters”. Using generalized estimating equations (GEE) to examine the impact
of other factors, such as smoking behavior and geographic distance, on the relationship
between relatedness and weight gain and found little mediating effect, which the authors
interpreted as providing support for perception of social norms as the driving force over
behavioral imitation, the former being less a function of frequency of contact than the latter.
However, Cohen-Cole et al. (35) challenge these findings, and suggest that if a more
comprehensive set of contextual factors are taken into account, it is the shared environment
that drives social network patterns in obesity, though they concede that the evidence for
tightly woven network ties in obesity still suggest the usefulness of intervention approaches
aimed at social networks. Other NA work on the spread of obesity in adolescent social
networks (49; 139) further underscores the applicability of this analytical approach. Greater
understanding of the types and directionality of friendship and other social and even
geographic (20; 28) ties can improve efforts to develop more effective intervention
approaches based on specific network targets, social norms, and broad population vs. high-
risk group strategies (13), despite some of the challenges in attributing causality between
network structures and obesity (35; 40).

Agent-based and system dynamics models have also been employed in obesity research to
examine the impact of dynamic interactions among multiple causal components. Recent
work in ABM has explored the dynamics of determinants of walking behaviors, and
neighborhood vs. environmental determinants of SES differentials in obesity. Auchincloss
and colleagues (8) used ABM simulations to explore income differentials in nutrition as a
function of both food prices and preference, and discuss the utility of computational models
in developing a stronger set of evidence on which to base public health policy, particularly
where strong empirical data are not available. Yang et al. (149) used ABM to study the role
of the social and built environments on SES differentials in walking behavior, incorporating
feedback mechanisms such that, for example, individual walking behavior is enforced as the
number of other walkers increases. A subset of the system dynamic literature in obesity is
focused on individual weight loss models (2; 47; 112). However, large scale, multi-group
modeling initiatives, such as the CompMod and ComNet modeling networks of the Envision
project in the National Collaborative on Childhood Obesity Research (1), are supporting
broader model boundaries that represent higher-level societal sectors that are likely to play a
meaningful role in designing better interventions with population-level impact.

Taken as a whole, while the literature is still relatively young, these studies have helped shift
the paradigms of etiology and intervention in obesity, and perhaps chronic disease in
general, to include mechanisms akin to communicable disease, and that while much of the
current emphasis is rightly placed on the built environment, the social environment may be
another important driver in creating opportunities for weight loss and healthy weight
maintenance.

MOVING FORWARD WITH SYSTEMS SCIENCE METHODS IN PUBLIC
HEALTH

In early 2000, Stephen Hawking said “I think the next century will be the century of
complexity.” As we have suggested in this review, public health is well on its way to
fulfilling this prediction by using an array of systems science methods to study complex
public health problems.
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Complex system methods challenge traditional study design and data analysis approaches in
public health research. The picture that emerges from reviewing existing work is that system
methods are inherently translational, with real world applications often explicit in the
models. With a greater push for translational research in complex, real-world settings (147),
we expect a growing demand for methods able to account for complexity. The field of
complex system methods appears to be moving toward greater integration among the
systems science methods to account for the interaction between social networks, broad
system boundaries, and individual behavior, in order to improve the utility of models for
policy and practice decision-making that span multiple levels of influence (114).

Despite the promise of systems science methods for public health, they remain underutilized
and lack visibility (137; 140). Although there are a number of institutions and settings
around the country that train and support systems scientists (e.g., University of Michigan’s
Center for the Study of Complex Systems, the Santa Fe Institute, NIH’s Institute on Systems
Science and Health), schools of public health are only now starting to think about
developing their own curriculum and degree programs. While a brief review of course
offerings in the top 20 schools of public health in the US found that about half offered at
least one course that addressed a complex system method, it is not clear that such
coursework is well-integrated into the methods curricula. It has been suggested that
computational modeling and systems science is a ‘3rd Way’ that moves beyond traditional
quantitative and qualitative research design dichotomies (110). If this is so, then we need to
start producing more public health scientists who are comfortable and skilled using concepts
and tools that focus on dynamics, agents, and networks; and ensure that the public is aware
of the benefits of this approach to public health science.
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GLOSSARY

Systems
Science

Systems science is an interdisciplinary field of science focusing on
complex natural and social systems. Complex systems are characterized
by: heterogeneous elements that interact with each other; non-linearity;
and effects that are emergent (i.e., different from the effect of individual
elements), persist over time and adapt to changing circumstances.

System
Dynamics

System dynamics (SD) uses computer simulation to model non-linear
processes, such as stocks and flows, feedback loops, and time delays,
based on a series of differential equations.

Network
Analysis

Network analysis (NA) is a research method and scientific paradigm that
focuses on the relationships among sets of actors; these can be any type of
entity that can have a relationship or tie with other entities: persons,
animals, organizations, countries, websites, documents, and even genes.

Agent-Based
Modeling

Agent-based modeling (ABM) uses computer simulation to study complex
systems from the ground up, by examining how individual elements of a
system (agents) behave as a function of individual properties, their
environment, and their interactions with each other, to reveal emergent
properties of the overall system.
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Figure 1.
Complementary strengths and weaknesses of various study designs, based on McGrath’s 3-
Horned Dilemma (100).
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Figure 2.
Sexual and disease status network of 40 men with HIV/AIDS (9).
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Figure 3.
Analysis approaches for basic and advanced network analysis.
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Figure 4.
ISIS System Dynamics Model for Tobacco Control (113).
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Table 1

Comparison of traditional and complex system analytic assumptions.

Domain
Traditional analytic techniques
often assume: Complex systems assume:

Functional form Linearity Non-linearity

Common distributions Normality Non-normality

Characteristics of actors Homogeneity Heterogeneity

Level-of-analysis Single level Multiple levels

Temporality Static, or discretely longitudinal Dynamic, with feedback

Fundamental relationships Among variables Interaction of actors

Perspective Reductionist Holistic
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Table 2

Primary strengths of each systems science method

System Property SD NA ABM

Model breadth X

Feedback loops X X

Dynamic systems in real time X X

Interactions of individual actors X X

Interactions between multiple levels X X

Complex relational structures X

Heterogeneous actors X X X
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Table 3

Core properties that collectively underly most agent-based models

•   Heterogeneous Agents allowed to differ from one another on important characteristics

•   Spatial Agents are located in some explicitly defined space

•   Interactive Agents can interact locally with one another and their environment

•   Bounded Rationality Agents are assumed to have imperfect knowledge

•   Dynamic Models are recursive, allowed to change non-linearly and exhibit non-equilibrium
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