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Abstract
Anxiety negatively affects quality of life and psychosocial functioning. Previous research has
shown that anxiety symptoms in healthy individuals are associated with variations in the volume
of brain regions, such as the amygdala, hippocampus, and the bed nucleus of the stria terminalis.
Brain lesion data also suggests the hemisphere damaged may affect levels of anxiety. We studied a
sample of 182 male Vietnam War veterans with penetrating brain injuries, using a semi-automated
voxel-based lesion-symptom mapping (VLSM) approach. VLSM reveals significant associations
between a symptom such as anxiety and the location of brain lesions, and does not require a broad,
subjective assignment of patients into categories based on lesion location. We found that lesioned
brain regions in cortical and limbic areas of the left hemisphere, including middle, inferior and
superior temporal lobe, hippocampus, and fusiform regions, along with smaller areas in the
inferior occipital lobe, parahippocampus, amygdala, and insula, were associated with increased
anxiety symptoms as measured by the Neurobehavioral Rating Scale (NRS). These results were
corroborated by similar findings using Neuropsychiatric Inventory (NPI) anxiety scores, which
supports these regions’ role in regulating anxiety.

In summary, using a semi-automated analysis tool, we detected an effect of focal brain damage on
the presentation of anxiety. We also separated the effects of brain injury and war experience by
including a control group of combat veterans without brain injury. We compared this control
group against veterans with brain lesions in areas associated with anxiety, and against veterans
with lesions only in other brain areas.
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1. Introduction
Anxiety is an emotional response that arises in situations of conflict and uncertainty (Gray,
1982). The symptoms of anxiety include hyperarousal and worry (Bishop, 2007). In stress-
provoking situations, the behavioral expressions of anxiety, such as displays of tension,
increased agitation and locomotion, and defensive hostile behavior may be observed and
reliably quantified in humans (Lippert-Gruner, Kuchta, Hellmich, & Klug, 2006) and other
species (Kalin & Shelton, 2003).

In this study, we wished to investigate areas in the brain that when lesioned affect anxiety
levels. We used voxel-based lesion-symptom mapping (VLSM) to determine where lesions
are associated with higher NRS anxiety ratings. VLSM computes a t-value comparing
behavioral scores in patients with and without damage to a voxel. It performs a whole-brain,
voxel-by-voxel, hypothesis-free analysis, rather than attempting to categorize patients based
on lesion location. Because TBI patients have been shown to have increased prevalence and
severity of anxiety (Fann, Katon, Uomoto, & Esselman, 1995; Rapoport, McCauley, Levin,
Song, & Feinstein, 2002), we expected that the NRS would reveal increased anxiety in
veterans with TBI. We used a control group of veterans who did not suffer brain injury, but
who otherwise shared a similar war experience.

Studies have reported increased anxiety and PTSD (a form of anxiety) in those with war
experience and TBI. In one study, 74% percent of Vietnam veterans who experienced
combat also reported symptoms of PTSD (Buydens-Branchey, Noumair, & Branchey,
1990). This same study found that longer combat exposure and increased combat intensity
were both associated with increased likelihood of PTSD. Also, while 62% of those not
wounded in the war reported a lifetime occurrence of PTSD, 92% who suffered physical
injuries of any type in the war reported a lifetime occurrence of PTSD. Epstein & Ursano
(1994) found that 29% of brain-injured patients were clinically diagnosed with anxiety
following their traumatic brain injuries (TBI). Carlson et al. (2010) found increased anxiety
disorders and PTSD in war veterans with TBI compared to war veterans without TBI.

While there are factors other than brain damage that can increase anxiety after TBI,
including memories of the event that caused the TBI (R. S. Epstein & Ursano, 1994), Jorge
et al. (1993) suggest that anxiety in brain-injured patients may be related to the extent and
location of brain damage. Anxiety and fear are mediated at least partially by different brain
regions. Fear is a biologically adaptive physiological and behavioral response to an actual or
anticipated occurrence of an explicit threatening stimulus (Bishop, 2007). Anxiety is, in
many ways, similar to fear, although it is less stimulus-specific, has a slower onset, and is
longer lasting (Davis, 1998; Walker, Toufexis, & Davis, 2003). The difference can be
portrayed as follows: anxiety occurs during approach or movement toward a dangerous
situation and increases awareness and preparedness, while fear occurs during escape from a
dangerous situation or threat (R. J. Blanchard, Yudko, Rodgers, & Blanchard, 1993; Gray &
McNaughton, 2000). Early research found that the destruction of the amygdala and temporal
lobes leads to reduced anxiety in both humans and animals. Monkeys who had their bilateral
temporal lobe and amygdala removed had no fear of approaching other animals or objects,
and were less fearful and hostile toward humans (Kluver & Bucy, 1939; Weiskrantz, 1956).
More recent work in humans found that removal of the temporal lobes impaired recognition
of vocal fear (Dellacherie, Hasboun, Baulac, Belin, & Samson, 2011). Lesions of smaller
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regions provide more precise results. Reviews of both animal and human literature report
that the bed nucleus of the stria terminalis (part of the extended amygdala; Fox et al., 2010;
Walker et al., 2003) is involved in anxiety, and the amygdala is involved in fear (Davis,
1998; Walker et al., 2003). Truitt et al. (2009) found that lesions of interneurons in the
anterior and posterior divisions of the basolateral amygdala in rats resulted in increased
anxiety-like behaviors.

Other brain regions involved in anxiety include the hippocampus (in animals: Barkus et al.,
2010; and in PTSD patients: Bossini et al., 2008), insula (Simmons, Strigo, Matthews,
Paulus, & Stein, 2006; Uchidi et al., 2000), medial prefrontal cortex (PFC) (in rats: Blanco
et al., 2009) and the orbitofrontal cortex (Kringelbach & Rolls, 2004; Milad & Rauch,
2007).

Anxiety levels may also be affected by the hemisphere of the lesions. From the same cohort
as the current study, those TBI veterans with right orbitofrontal lesions reported higher
anxiety than those with left orbitofrontal lesions and controls (Grafman, Vance,
Weingartner, Salazar, & Amin, 1986). In patients with both closed head injury and
depression, those with right hemisphere lesions were more likely to have anxiety in addition
to their depression (Jorge et al., 1993). Patients with tumors in the right hemisphere had
higher anxiety than those with tumors in the left hemisphere (Mainio et al., 2003).

The picture is not so simple however. Using the same cohort as the current study, Koenigs et
al. (2008) found that veterans with lesions in vmPFC and amygdala were less likely to have
PTSD, while those with posterior lesions had a rate similar to controls.

2. Material and Methods
2.1 Subjects

Veterans were drawn from Phase III of the W.F. Caveness Vietnam Head Injury Study
registry (VHIS), a longitudinal study of brain-injured veterans, mainly with focal penetrating
injuries, and uninjured combat control veterans (Raymont, Salazar, Krueger, & Grafman,
2011). In Phase I, 56% of brain-injured veterans were working compared with 82% of
control veterans (Schwab, Grafman, Salazar, & Kraft, 1993). Equal percentages of brain-
injured and control veterans were living with their wives (74%). Phase III (2003–2006) was
conducted at the National Naval Medical Center in Bethesda, MD. The veteran population
offers a number of methodological advantages including its large sample size, relative
uniformity, and access to pre-injury data for comparison with post-injury performance.

One hundred and eighty-two brain-injured male combat veterans and 51 uninjured combat
veterans with CT scans for whom the NRS was completed were included in this study. The
TBI and control groups did not differ significantly in age or level of education (see Table 1).
All subjects gave informed written consent in accordance with the Code of Ethics of the
World Medical Association (Declaration of Helsinki). All study procedures were approved
by Institutional Review Boards at the National Naval Medical Center and the National
Institute of Neurological Disorders and Stroke.

2.2 CT-imaging and lesion identification
MRIs were precluded as many of the veterans had retained metal shrapnel in their heads;
therefore axial CT scans were acquired. These were performed without contrast in helical
mode on a GE LightSpeed Plus CT scanner, and images were reconstructed with an in-plane
voxel size of 0.4 × 0.4 mm, an overlapping slice thickness of 2.5 mm, and a 1 mm slice
interval. Lesion location was determined from CT images by manual tracing on each slice
using the Analysis of Brain Lesions (ABLe) software implemented in MEDx v3.44 (Medical
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Numerics) (Makale et al., 2002; Solomon, Raymont, Braun, Butman, & Grafman, 2007).
Lesion volume was calculated by summing the traced areas and multiplying by slice
thickness. The tracing was performed by a physician with clinical experience reading CT
scans (VR), and reviewed by an experienced observer (JG) who was blind to the results of
the clinical evaluation and neuropsychological testing. The TBI veteran’s CT scans were
normalized to a CT template in Montreal Neurological Institute (MNI) space, using the AIR
algorithm with a 12-parameter affine fit and linear transformation (Woods, Grafton, Watson,
Sicotte, & Mazziotta, 1998). To optimize efficacy of the registration procedure, the brain
images were first automatically skull-stripped. Voxels inside the traced lesion were not
included in the spatial normalization procedure. The spatial transformation was applied to
the traced lesion, bringing it into MNI space. See Supplementary Figure 1 for examples of
brain lesions in our participants, and Supplementary Figure 2 for assessments of registration
accuracy. For each subject, the resulting normalized lesion mask image was used in the
VLSM analysis using ABLe software. Specifically, the VLSM analysis computed a t-value
comparing NRS anxiety scores in those with and without damage to a voxel. We performed
VLSM on all voxels in the brain where at least four subjects had a lesion. We used two
different brain atlases to determine the anatomic location of the voxels that significantly
correlated with the anxiety scores. These atlases were the AAL atlas database for grey
matter (Tzourio-Mazoyer et al., 2002) and the White Matter atlas database for white matter
(Mori, Wakana, Nagae-Poetscher, & van Zijl, 2005).

2.3 Neuropsychological Tests
A range of neuropsychological functions, including memory and executive functioning were
assessed in a battery of tests administered over 5–7 days. This study used a subset of these,
as follows. Post-injury general intelligence was assessed with the Armed Forces
Qualification Test (AFQT-7A, United States Department of Defense, 1960). Scores on this
test correlate highly with the Wechsler Adult Intelligence Scale (WAIS) intelligence
quotient scores (Grafman et al., 1988; Wechsler, 1997a). Working memory was assessed
with the Wechsler Memory Scale- III working memory primary index scores (WMS-III,
Wechsler, 1997b). Depression was assessed with both the Beck Depression Inventory scores
(BDI; Beck, Steer, & Brown, 1996) and the Structured Clinical Interview for DSM-IV-TR
Axis I Disorders (SCID) major depression lifetime prevalence scores (First, Spitzer, Gibbon,
& Williams, 2002). PTSD was assessed with the SCID PTSD lifetime prevalence scores
(First et al., 2002).

After approximately 25 hours of formal testing and general interactions, an experienced
research assistant rated each participant using the NRS (Levin et al., 1987), based on
observations of the participant’s spontaneous behavior. The NRS is a validated (Corrigan,
Dickerson, Fisher, & Meyer, 1990) 27-item instrument used to measure the severity of
behavioral sequelae following TBI. Each item required a rating on a scale from 1 (not
present) to 7 (extremely severe). We used the NRS anxiety subscale, which measures worry,
fear, or over-concern for the present or future. For the UCLA Neuropsychiatric Inventory
(NPI, Cummings et al., 1994), the examiner read the questions aloud to a companion who
knew the participant well. Companions were generally spouses, partners, or adult children,
most of whom gave their answers via telephone. For each abnormal behavior present, a
rating for that behavior was elicited on a severity scale from 1 (mild) to 3 (severe), and on a
frequency scale from 1 (occasionally, less than once a week) to 4 (very frequently, once or
more per day or continuously). We used the frequency x severity scores for NPI anxiety in
our analyses. In addition, participants completed the state and trait anxiety inventories
(STAI; Spielberger, Gorsuch, Lushene, Vagg, & Jacobs, 1983). We used standard scores for
this; higher scores mean higher anxiety.
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2.4 Statistical Analysis
Analysis of the behavioral data was performed with IBM© SPSS© 19.0 (www.spss.com),
and alpha was set to .05 for all analyses. Two-tailed independent samples t-tests were
performed to compare veterans with TBI and controls in age, years of education, AFQT
scores, and WMS-III measures. Kolmogorov-Smirnov testing on NRS anxiety, NPI anxiety,
STAI, and BDI scores revealed that both groups had significantly non-normal distributions,
because most individuals showed no overt signs of anxiety or depression. We therefore used
non-parametric tests for these. Non-parametric tests were also used for lifetime prevalence
variables since they were not scalar.

Using the VLSM software in ABLe, we created a lesion density map to show how many
veterans with TBI had lesions at each voxel by overlaying their individual normalized lesion
maps. We then performed one-tailed t-tests at each voxel to find any significant positive
associations of lesioned voxels and NRS anxiety, NPI anxiety, and STAI for grey matter and
again for white matter. An FDR correction of .05 for multiple comparisons was used, and a
minimum cluster size of 10 voxels.

Because not every injured brain is lesioned at every voxel, statistical power is often lacking
in VLSM analyses. We tolerated low power in order to be able to test lesion locations over
much of the brain. For our study, we chose the minimum number of cases with overlapping
lesions to be 4 at any voxel (see Gläscher et al., 2009, who used a similar criterion). If fewer
than 4 injured veterans had a lesion in a given voxel, that voxel was excluded from our
analyses.

After the VLSM analysis, we divided the brain-injured veterans into two groups: those who
had lesions in significant grey matter areas resulting from the VLSM analysis for NRS
anxiety, and those who had lesions only in other grey matter areas. We used two-tailed
Mann-Whitney tests to compare median NRS, NPI, STAI scores, BDI scores, PTSD lifetime
prevalence, and depression lifetime prevalence for each of the two TBI groups resulting
from our VLSM analysis with those of the control veterans and with each other. To
investigate the potential impact of brain volume loss, we performed Pearson correlations
between percentage of brain volume loss and NRS anxiety in all injured veterans, and
between volume loss in each hemisphere and NRS anxiety.

3 Results
3.1 Behavioral Results

Controls had significantly higher AFQT and WMS-III scores than injured veterans, although
the scores of the injured veterans were within the normal range (see Table 1). Injured and
control veterans did not differ significantly on the NRS, NPI, or STAI anxiety measures.
Injured and control veterans did not differ significantly in their likelihood of suffering from
depression, but brain injured veterans were less likely to have had PTSD in their lifetimes
than control veterans.

3.2 VLSM Results
Figure 1 shows the lesion density overlap map for all 182 veterans with TBI. The maximum
overlap of 32 subjects occurred in prefrontal areas.

Table 2 and Figure 2 show the results of the VLSM analysis for NRS anxiety. Lesioned
regions in the left temporal lobe, fusiform, inferior occipital lobe, and insula, along with
limbic structures including the hippocampus, parahippocampus, and amygdala were
associated with increased NRS anxiety. In the right hemisphere, a small lesioned region in
the superior and middle temporal lobes was associated with increased NRS anxiety.
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VLSM results for NPI anxiety overlapped considerably with those for NRS anxiety.
Lesioned regions in the left temporal lobe, fusiform, middle occipital lobe, lingual gyrus,
precuneus, and cerebellum, along with limbic structures including the hippocampus and
parahippocampus were associated with increased NPI anxiety. There were no lesioned
regions in the right hemisphere associated with increased NPI anxiety. There were no
lesioned regions associated with STAI scores.

Comparisons of NRS anxiety between the resulting three groups (veterans with lesions in
areas significantly associated with NRS anxiety, veterans with lesions only in other areas,
and control veterans) revealed a trend toward a significant difference only between veterans
with lesions in areas significantly associated with NRS anxiety (mean 2.14 ± 1.58) and
control veterans (mean 1.49 ± 1.07) (Mann-Whitney U = 760, n1 = 37, n2 = 51, p = .059, 2-
tailed) with veterans with significant lesions having higher anxiety than control veterans.
This was expected based on our VLSM results. Veterans with lesions only in other areas had
a mean of 1.68 ± 1.13 which was in between the other two groups. There were no significant
differences for the NPI anxiety measure (p > .37) or the STAI measures for the three groups
(state: p > .47, trait: p > .13).

Comparisons of PTSD lifetime prevalence revealed that veterans with lesions in significant
areas had a significantly lower likelihood of PTSD (mean 1.62 ± 0.83) than control veterans
(mean 2.17 ± 0.88) (Mann-Whitney U = 643, n1 = 37, n2 = 52, p = .004). PTSD comparisons
between veterans with lesions in significant areas and those with lesions only in other areas
(mean 1.97 ± 1.07), and between those with lesions only in other areas and control veterans
revealed trends toward significance (Mann-Whitney U = 2150, n1 = 37, n2 = 142, p = .07;
Mann-Whitney U = 3134, n1 = 142, n2 = 52, p = .08, respectively).

Comparisons of major depression lifetime prevalence between the three groups revealed no
significant differences (p > .17). Similarly, comparisons of BDI scores revealed no
significant differences (p > .11).

To investigate whether our VLSM results could be partially due to differences in brain
volume loss, we performed t-tests comparing percentages of volume loss between the two
resulting groups. While there was not a significant difference in total brain volume between
groups (1.35 ± 0.11 vs. 1.36 ± 0.12) [t(180) = .76, p = .45]), we found that veterans with
damage in significant lesion areas had a significantly greater percentage of volume loss than
those with damage only in other areas (5.77% ± 5.25% vs. 2.41% ± 2.61%) [t(40.62) = 3.77,
p = .001]. To investigate the potential impact of brain volume loss, we performed Pearson
correlations between percentage of brain volume loss and NRS anxiety in all injured
veterans. There were trend-level positive relationships between total brain volume loss and
NRS anxiety (r = .13, p = .08) and left hemisphere volume loss and NRS anxiety (r = .12, p
= .10); but not between right hemisphere volume loss and NRS anxiety (r = .04, p = .60).

Injury to several white matter tracts was significantly associated with NRS anxiety. These
were the sagittal stratum, posterior thalamic radiation, superior longitudinal fasciculus,
fornix/stria terminalis, and uncinate fasciculus, all on the left (see Table 3 for z-values). The
superior longitudinal fasciculus, fornix/stria terminalis, and uncinate fasciculus all connect
grey matter regions implicated in modulating anxiety based on our results: the superior
longitudinal fasciculus is located in the dorsolateral part of the corona radiata and contains
connections between the frontal, parietal, occipital, and temporal lobes. The fornix and stria
terminalis are both connected to the limbic system: the fornix to the hippocampus, and the
stria terminalis to the amygdala (Weller & Smith, 1982). The uncinate fasciculus connects
the frontal lobe (orbital cortex) and the anterior temporal lobe (Kier, Staib, Davis, & Bronen,
2004).
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4 Discussion
We studied a sample of 182 male Vietnam War veterans with penetrating brain injuries,
using voxel-based lesion-symptom mapping which examined whether there are any
significant associations between anxiety and location of brain lesions. Injured and control
veterans did not differ significantly from each other on behavioral measures of anxiety
including the NRS, NPI or STAI anxiety measures. This may be due to several reasons. The
first is that TBI, per se, may not result in increased anxiety in general. The second is that the
controls were also war veterans and both groups may have had elevated anxiety due to their
war experience.

Our analysis found specific brain areas that when lesioned resulted in higher NRS anxiety.
Damage to similar regions also was associated with another measure of anxiety, NPI anxiety
scores. The correspondence of results from these two measures of anxiety supports these
regions’ role in the regulation of anxiety. Our significant lesion results are specific to
anxiety as measured by NRS and NPI, since we found no lesioned areas associated with
STAI scores. Therefore our results are limited to observer-completed rating scales rather
than self-reports, as the NPI is completed by another person who knows the veteran well,
and the NRS by a researcher, while the STAI is completed by the patient. These differing
results may be due to diminished self-insight in those with brain damage (Levin et al., 1987)
which is evident on self-reports, or to differences in internal versus external symptoms of
anxiety.

Our VLSM results included areas of lesion in bilateral temporal lobe. Consistent with this, a
study of pediatric TBI patients found that temporal lobe damage was positively correlated
with PTSD (Vasa et al., 2004). Also, people with panic disorder were found to have
significantly smaller temporal lobes than normal controls (Vythilingam et al., 2000). On the
other hand, in another study of pediatric patients, those with generalized anxiety had larger
superior temporal gyri than did normal controls (De Bellis et al., 2002). Our results included
mesial temporal lobe, including the hippocampus, parahippocampus, amygdala, and insula,
along with the fusiform gyrus, and inferior occipital lobe. While it is difficult to pinpoint
exact regions of the brain with certainty using CT images of penetrating brain injuries, the
mesial temporal lobes have been shown to be involved in anxiety and fear processing. The
hippocampus plays a role in contextual fear processing both in animals (Anagnostaras, Gale,
& Fanselow, 2001; Kim & Fanselow, 1992; Phillips & LeDoux, 1992; Selden, Everitt,
Jarrard, & Robbins, 1991) and humans (Shin & Liberzon, 2010). The hippocampus projects
to the PFC and to the bed nucleus of the stria terminalis/hypothalamus and the amygdala;
hence, it is well-placed for a role in emotion, including anxiety (Bannerman et al., 2004;
Barkus et al., 2010; Davis, 1998; Goldman-Rakic, Selemon, & Schwartz, 1984; Gray &
McNaughton, 2000; Petrovic, Canteras, & Swanson, 2001; Swanson & Cowan, 1977).

Consistent with our results, a VBM study in monozygotic twins found smaller left
parahippocampal regions in those at high risk for anxiety (de Geus et al., 2006). Our results
are also consistent with Syal et al.’s (2012) in that those with social anxiety disorder have
reduced fusiform grey matter thickness. Parahippocampal, fusiform, and inferior occipital
regions are involved in recognition of objects, faces, and spaces (R. Epstein, Harris, Stanley,
& Kanwisher, 1999; R. Epstein & Kanwisher, 1998; Haxby, Hoffman, & Gobbini, 2000;
Schiltz et al., 2006). Damage to these areas could lead to increased anxiety due to feeling
less grounded in social and other scenarios. The veterans’ brain damage might have affected
the way in which they reacted to novel stimuli in the testing environment (Sander, Grafman,
& Zalla, 2003)
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Our results are consistent with a large body of literature pointing to the amygdala’s role in
the acquisition of fear conditioning and expression of fear responses in monkeys (Kluver &
Bucy, 1939; Weiskrantz, 1956). Anxiety is associated with amygdala hyperactivity in
humans with PTSD and in anxious and depressed children (Rauch et al., 2000; Thomas et
al., 2001). The amygdala is a complex structure composed of several nuclei (Adolphs, 2010;
Davidson et al., 2002; Davis, 1994; File, Gonzalez, & Gallant, 1998; Kalin, Shelton, &
Davidson, 2004). For a review, see LeDoux (2000). Our methods did not allow for a fine-
grained analysis of the locations within the amygdala. The amygdala has connections to the
superior temporal gyri (De Bellis et al., 2002), an area that was also associated with anxiety
in our study. The central nucleus of the amygdala (CeA) connects to subcortical regions
such as the hypothalamus, basal forebrain, and brainstem and is therefore well positioned to
mediate anxiety as these areas are involved in the stress response (Amaral, Price, Pitkänen,
& Carmichael, 1992; Davis, 1992; Kalin et al., 2004). The basolateral regions of the
amygdala connect to the cortex, including orbitofrontal and ventromedial regions, as shown
in primates (Amaral et al., 1992). These regions regulate negative emotions in humans and
animals (Quirk & Beer, 2006). As work performed mainly in rats shows, the bed nucleus of
the stria terminalis, part of the extended amygdala, has been implicated in long lasting
anxiety but not acute fear (Davis, 1998; Walker et al., 2003).

The insula is part of the extended limbic system, and it is connected to some of the other
regions we found associated with anxiety, including the temporal lobe, hippocampus, and
amygdala (Augustine, 1996). The insula’s functioning is altered in anxiety disorders (Paulus
& Stein, 2006). It responds to fearful versus neutral faces in participants with specific
phobias (Wright, Martis, McMullin, Shin, & Rauch, 2003). An increase in blood flow in the
insula was found during symptom provocation that was shared across three anxiety
disorders: obsessive-compulsive disorder, simple phobia, and PTSD (Rauch, Savage, Alpert,
Fischman, & Jenike, 1997). Another study found increased blood flow in the insula during
high anxiety (shock) compared to low anxiety (no shock) conditions in humans (Chua,
Krams, Toni, Passingham, & Dolan, 1999).

Our white matter results also have support in the literature. The uncinate fasciculus links the
PFC, which is involved in top-down regulation of emotion (Davidson, 2002), with the
hippocampus and amygdala (Montag, Reuter, Weber, Markett, & Schoene-Bake, 2012).
Fractional anisotropy (FA) in the right uncinate fasciculus was found to be lower in patients
with generalized social anxiety disorder (Phan et al., 2009). Higher FA in the left superior
longitudinal fasciculus and uncinate fasciculus has been shown to be correlated with higher
trait anxiety in males (Montag et al., 2012).

Our results support a role for the temporal lobe, hippocampus, fusiform and
parahippocampal regions, amygdala, and insula in anxiety; however, the direction of change
in our results differs from many, but not all, other studies. In our findings, damage to these
areas is associated with increased anxiety. Some studies have shown results similar to ours,
in that altered function and anatomy in limbic structures resulted in increased anxiety. For
example, in a voxel-based morphometry study of healthy subjects, our group found that
smaller left amygdala and parahippocampal gyrus volume was associated with increased
anxious symptoms as measured by the STAI (Spampinato, Wood, De Simone, & Grafman,
2009). Further, when inhibitory basolateral amygdala interneurons were lesioned, rats had
increased anxiety-like behavior in social situations (Sanders & Shekhar, 1995a, 1995b;
Truitt et al., 2009; Truitt et al., 2007).

On the other hand, some studies show decreased fear and anxiety after lesions to amygdala
and hippocampus (see Bannerman et al., 2004; Davis, 1992). For instance, lesions of the
amygdala are known to block several measures of innate fear in rats (cf., D. C. Blanchard &

Knutson et al. Page 8

Neuropsychologia. Author manuscript; available in PMC 2014 March 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Blanchard, 1972). Monkeys with amygdala lesions show less caution in approaching
potential predators, such as snakes, to which they normally have an innate fear response
(Machado, Kazama, & Bachevalier, 2009), and show less initial avoidance of human
strangers and unfamiliar objects (Mason, Capitanio, Machado, Mendoza, & Amaral, 2006).
In patients tested after temporal lobe resection for the relief of epilepsy, Dellacherie et al.
(2011) found that amygdala lesions impaired recognition of fear expressed by voice, and led
to decreased anxiety. Others have shown that hippocampal lesions in animals led to reduced
anxiety on a variety of behavioral tests (Barkus et al., 2010; Deacon, Bannerman, &
Rawlins, 2002; Gray & McNaughton, 1983). Bannerman et al. (2004) summarized the
differential effects on anxiety for amygdala versus ventral hippocampus lesions. Depending
on the extent of destruction of the amygdala, the resulting effects may range from a
decrement in one’s ability to regulate anxiety (leading to increased anxiety) to an inability to
generate anxiety when there is more substantial amygdala damage. The increased anxiety
found in our VLSM analysis may be at least partially explained by the fact that amygdala
damage was minimal.

Brain damage may result in increased or decreased anxiety depending on whether inhibitory
or excitatory neurons are damaged (see Sanders & Shekhar, 1995a, 1995b; Truitt et al.,
2009; Truitt et al., 2007, for their work in rats). The effects of damage may also vary
depending on whether fear or anxiety is being measured. There is evidence in both animals
and humans that the bed nucleus of the stria terminalis, the hippocampus, and the insula
regulate anxiety, as opposed to fear, which is modulated more by the amygdala (Barkus et
al., 2010; Deacon et al., 2002; Duvarci, Bauer, & Pare, 2009; Gray & McNaughton, 1983;
Paulus & Stein, 2006; Wright et al., 2003). There are also different types of anxiety. For
instance, Koenigs et al. (2008), using the same cohort, found that lesions in the amygdala
significantly affected one form of anxiety (PTSD) but not others (e.g., panic disorder,
agoraphobia, social phobia, etc.). Consistent with Koenigs et al. (2008), the significant
lesions in our VLSM analysis, which included the amygdala and other limbic structures,
were associated with lower rates of PTSD over one’s lifetime.

Our results showed a much larger area of damage associated with anxiety symptoms in the
left hemisphere compared to the right. Other studies have also shown hemispheric effects for
anxiety, but there is not a consistent pattern. Consistent with our results, in a study of 160
patients with damage limited to one hemisphere, Gainotti (1972) found anxious mood more
frequently in left versus right hemisphere-lesioned patients. However, several studies have
found right hemisphere involvement with higher anxiety. Mainio et al.’s (2003) results
revealed that patients with right hemisphere tumors had substantially higher anxiety than
those with tumors on the left. Dellacherie et al. (2011) found that patients who had
undergone a left temporal lobe resection for intractable epilepsy (compared to those patients
who had undergone a right temporal lobe resection and to normal controls) judged the
valence of fear as less unpleasant. A PET study on panic disorder showed increased blood
flow in the right parahippocampal gyrus compared to the left (Reiman, Raichle, Butler,
Herscovitch, & Robins, 1984). There are also studies showing mixed results for hemisphere
involvement. A PET study in monkeys showed that anxious temperament correlated with
higher deoxyglucose uptake in the left hippocampus and the right central nucleus of the
amygdala (Oler et al., 2010).

Numerous human studies implicate the amygdala in emotional processing, but again the
hemisphere affected is not consistent. For example, an fMRI study found greater activation
of left amygdala and insula after verbal warnings of impending threat (Phelps et al., 2001).
Gläscher and Adolphs (2003) note that amygdala activation in response to emotional stimuli
has been observed either bilaterally (Hariri, Bookheimer, & Mazziotta, 2000; Liberzon et al.,
2000; Taylor, Liberzon, & Koeppe, 2000) or in the left hemisphere (Blair, Morris, Frith,
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Perrett, & Dolan, 1999; Lane, Chua, & Dolan, 1999; Lane et al., 1997; Morris et al., 1996),
whereas several lesion studies implicate the right amygdala in recognizing fear and other
negative emotions from faces (Adolphs, Tranel, & Damasio, 2001; Anderson, Spencer,
Fulbright, & Phelps, 2000). Meta-analyses of human emotional imaging studies found
significantly more activation in left compared to right amygdala (Baas, Aleman, & Kahn,
2004; Sergerie, Chochol, & Armony, 2008; Wager, Phan, Liberzon, & Taylor, 2003);
however, Gläscher and Adolphs (2003) suggest there might be an initial, perhaps automatic,
emotional reaction mediated by the right amygdala, followed by a more differentiated
emotional reaction mediated by the left amygdala. These findings leave a complex picture of
laterality for negative emotions. Heller & Nitschke (1998) agree that it is difficult to find a
clear hemispheric focal point for anxiety and that several factors may be involved in
laterality, including the type of anxiety (anxious arousal, e.g., panic, versus anxious
apprehension, e.g., worry or fear about the future), differences in arousal levels, specific
brain region affected, emotional valence, and whether there is an increase or a decrease in
activation (Davidson, 1992a, 1992b; Gainotti, 1972; Heller, 1990; Lee, Loring, Meador,
Flanigin, & Brooks, 1988; Sackeim et al., 1982). Also, as pointed out by Davidson (2002),
true hemispheric differences can be found only by statistical tests of the interaction of
hemisphere by condition, which have rarely been performed. Some of the lateralization
results in the literature may be due to the imaging parameters used. Mathiak et al. (2006)
demonstrated a pure method artifact during fMRI that affected the laterality of the resulting
amygdala activation, due to susceptibility artifacts from changing the phase-encoding
polarity.

It is important to point out limitations of our findings. One relates to our study population of
male Vietnam veterans of uniform age, education, and ethnicity. This homogeneity adds to
the strength of the findings, but also makes the generalizability of the results uncertain. In
addition, anxiety is a multifactorial diagnosis. The anxiety scales we used vary in their
focus, subjectivity and other factors. Our lesion groups differed in that those with lesions in
significant lesion areas had significantly more volume loss on average than those with
lesions in other areas. This makes it difficult to untangle the effects of lesion location and
brain volume loss. However, across all lesioned individuals, the correlation between brain
volume loss and NRS anxiety was weak (r = .13). Another limitation is that the use of CT
scans rather than MRI scans resulted in a less detailed picture of the neuroanatomy involved.
Also, the AIR registration process used in ABLe is a 12-parameter linear fit, which may lead
to imperfect registration (Solomon et al., 2007). In addition, penetrating injuries can create
positional shifts in affected grey matter and white matter tracts, and it is likely that there has
been some reorganization of the brain during the recovery process. Further research is
needed to differentiate the causes of increased anxiety after injury to these areas in order to
determine how much of the increased anxiety is due to the memories of the event that
caused the injury, the resulting decrease in functionality, and the social and psychological
consequences. Further research is needed to determine more specifically which brain regions
lead to increased and decreased anxiety.

In summary, we detected an effect of brain damage on the presentation of anxiety, defined
as worry, fear, or over-concern for present or future. Increased anxiety was associated with
damage in the middle, inferior and superior temporal lobe, hippocampus, and fusiform
regions, along with smaller areas in the inferior occipital lobe, parahippocampus, amygdala,
and insula in the left hemisphere, and in a small region of the superior and middle temporal
lobe in the right hemisphere. These findings highlight the importance of clearly specifying
the type of anxiety being measured. The association of injury to these areas and heightened
anxiety suggest that individuals with damage to these areas may be at risk for pathological
anxiety.
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Highlights

1. We studied anxiety symptoms in Vietnam War veterans with brain injuries.

2. Anxiety was measured using the Neurobehavioral Rating Scale.

3. Damage in temporal lobes and left limbic area associated with increased
anxiety.
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Figure 1.
Color indicates the number of participants’ lesions overlapping at each voxel. A minimum
overlap of four lesions is required for VLSM analysis.
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Figure 2.
Color indicates brain regions where the association between lesion location and NRS
anxiety score is statistically significant, based on t-tests and after correction for multiple
comparisons (FDR). The left is on the viewer’s right.
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Table 1

Comparison between veterans with TBI and control veterans on means and standard deviations for
demographic information and neurobehavioral scores, and medians and mean ranks for anxiety and depression
scores.

Variable Veterans with TBI Control veterans Statistics (2- tailed)

Age (years) 58.32 ± 3.09 59.08 ± 3.52 t(231)= 1.50; p = .14

Education (years) 14.74 ± 2.59 15.25 ± 2.50 t(228)= 1.24; p = .22

Post-injury AFQT percentile score 52.71 ± 25.01 67.96 ± 22.04 t(227)= 3.94; p < .001**

WMS-III working memory primary index percentile score 49.19 ± 28.37 62.70 ± 27.76 t(225)= 2.99; p = .003*

NRS anxiety (medians) 1.00 1.00 U = 4087, z = 1.55, p = .12

NPI anxiety (medians) 0 0 U = 3830, z = 0.72, p = .47

State anxiety scaled scores (medians) 48.00 49.50 U = 4407, z = 0.64, p = .52

Trait anxiety scaled scores (medians) 51.00 54.50 U = 4135, z = 1.34, p = .18

SCID: PTSD Lifetime Prevalence (medians) 2.00 2.00 U = 3777, z = 2.23, p = .03*

SCID: Major Depressive Disorder Lifetime Prevalence (medians) 1.00 1.00 U = 4194, z = 1.35, p = .18

BDI total score (medians) 6.00 9.00 U = 4079, z = 1.47, p = .14

AFQT = Armed Forces Qualification Test. BDI = Beck Depression Inventory. NPI = Neuropsychiatric Inventory. NRS = Neurobehavioral Rating
Scale. PTSD = Post-traumatic stress disorder. SCID= Structured Clinical Interview for DSM Disorders. U = Mann-Whitney. WMS-III = Wechsler
Memory Scale.

*
Significant at p = .01,

**
Significant at p = .001.
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Table 3

White matter tracts where damage was associated with NRS anxiety.

% Structure Hemisphere Z-value Cohen’s d

5.56 Sagittal stratum Left 5.01 2.64

0.82 Posterior thalamic radiation Left 3.99 1.58

0.07 Superior longitudinal fasciculus Left 3.34 1.32

0.33 Fornix/stria terminalis Left 3.27 1.69

0.16 Uncinate fasciculus Left 3.27 1.69
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