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Abstract
Latent class regression models relate covariates and latent constructs such as psychiatric disorders.
Though full maximum likelihood estimation is available, estimation is often in three steps: (i) a latent
class model is fitted without covariates; (ii) latent class scores are predicted; and (iii) the scores are
regressed on covariates. We propose a new method for predicting class scores that, in contrast to
posterior probability-based methods, yields consistent estimators of the parameters in the third step.
Additionally, in simulation studies the new methodology exhibited only a minor loss of efficiency.
Finally, the new and the posterior probability-based methods are compared in an analysis of mobility/
exercise.
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1. Introduction
Latent class models (LCM) (Lazarsfeld & Henry, 1968; Goodman, 1974) are widely used in
social and psychological research for analyzing constructs thought not to be directly
measurable. The LCM aims to identify homogeneous subgroups of persons based on their
categorical, observed, surrogate variables. Often the purpose of such an analysis is to
characterize persons, for example to make diagnoses (Pepe, 2003). Several methods exist for
characterizing persons within an LCM framework; these are all based on the posterior
probabilities of class membership (Bolck, Croon, and Hagenaars, 2004).

LCM can be extended to latent class regression (LCR) that allows dependence of latent class
membership on explanatory variables. Estimation of both the LCM and regression parameters
may be accomplished simultaneously by maximum likelihood, for instance by using the EM-
algorithm (Dayton & Macready, 1988; Bandeen-Roche, Miglioretti, Zeger, and Rathouz,
1997; Bartolucci & Forcina, 2006), hereafter called one-step estimation. Although such
estimation indeed is employed, researchers often carry out an alternative analysis in three steps
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(Reyes, Henry, Tolan, and Wakschlag, 2009; Steiger, Richardson, Schmitz, Joober, Israel, and
Bruce, 2009; Markkula, Jarvinen, Leino-Arjas, Koskenvuo, Kalso, and Kaprio, 2009; Schorr,
Ulbricht, Schmidt, Baumeister, Ruge, and Schumann, 2008; Unick, Snowden, and Hastings,
2009; Funderbuck, Maisto, Sugarman, and Wade, 2008). First, the LCM is fitted without
considering explanatory variables. Then the resulting parameter estimates are used to “score”
the latent classes—often as predictions of latent class memberships. Finally, the effect, β, of
the explanatory variable is estimated by regressing the predicted latent class score on the
covariates. Ultimately, the predicted latent scores can be used as responses in various regression
analyses addressing different scientific questions with different sets of covariates within a
cohort. The use of this three-step estimation procedure may be motivated by the desire to
develop an index measuring the construct or because standard statistical programs such as SAS
and SPSS do not yet have ready means for fitting an LCR in a one-step procedure.

No existing methods for predicting latent classes yield consistent estimators of the regression
coefficients β in three-step analysis (Bolck et al., 2004; Croon, 2002). Errors-in-variables
theory (Carroll, Ruppert, Stefanski, and Crainiceanu, 2006) can be applied to correct for bias
(Croon, 2002; Bolck et al., 2004). Moreover, there has been relevant work on three-step
estimation procedures for other types of latent variable models. In factor analysis, Skrondal
and Laake (2001) showed that both the so-called “Bartlett” and least squares scores (Johnson
& Wichern, 2007) yield consistent estimators of β. Alternatively, Croon (2002) showed how
errors-in-variables theory may be applied to correct the bias. For a latent trait model, with a
continuous latent variable and discrete outcomes, Lu and Thomas (2008) recently studied the
performance of Bartlett-like scores. They found that a weighted maximum likelihood estimator
produces nearly consistent estimates of β if the discrete outcomes have sufficiently many
categories.

In this paper we study the three-step procedure for LCR. The outline of the paper is as follows:
In Section 2 we describe known methods for predicting latent class scores. These are all based
on the posterior probabilities; in Section 3 we propose a new method for assigning values to
the latent class variable aiming to reduce the bias in three-stage estimation. The method is not
based on the posterior probabilities but inspired by Bartlett scoring; in Section 3.1 an analytical
argument is provided demonstrating how these scores may be used to consistently estimate the
structural parameters, β; in Section 4 a simulation study, estimation and inference from the
posterior probability-based three-step methods and the new approach are compared with results
of one-step estimation of the LCR; in Section 5 we apply our method in comparison with one-
step estimation and the posterior probability-based methods to data from The Salisbury Eye
Evaluation Project (West, Munoz, Rubin, Schein, Bandeen-Roche, and Zeger, 1997), to study
the age- and comorbidity-adjusted association between visual acuity and a latent measure of
“mobility/exercise tolerance” among older adults; finally Section 6 gives a discussion.

2. Background
2.1. Latent Class Regression

Let Yi = (Yi1, …, YiJ) denote a vector of J latent class indicators for person i, i ∈ {1, …, N}.
For convenience we have assumed Yij, j ∈ {1, …, J} to be binary indicators. The results may
easily be extended to polytomous indicators; when needed the required modifications are noted.
Let xi be a vector of P covariates, let M be the number of latent classes, and let Si identify the
class membership for person i. We assume for all i ∈ {1, …, N} and m ∈ {1, …, M} that, given
class membership, the distribution of Yi does not depend on the covariates. This is the
assumption of non-differential item functioning (non-DIF), also termed a homogeneous model,

Petersen et al. Page 2

Psychometrika. Author manuscript; available in PMC 2013 May 05.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Also, local independence is assumed, so that, given the class membership, Si, the indicators
are independent:

The LCR model assumes

(1)

where ηm(xi) = Pr(Si = m|xi) is the structural model component. This is often modeled using a
generalized logit link:

(2)

Coefficients in this model βmp have the interpretation of log odds ratios (by convention, as
compared to the last or reference class, M):

Here, the odds ratios is with respect to a one unit difference in xp, holding all other covariates,
denoted as x−p, constant. To achieve the desired interpretation the constraint βM = 0 is adopted.

2.2. The Posterior-Probability-Based Three-Step Procedures
Step 1—The first step consists of fitting an LCM without any covariates, that is, model (1)
with only M − 1 intercepts in the linear predictor in model (2):

(3)

Let π̂jm and η̂m, j ∈ {1, …, J}, m ∈ {1, …, M} be the resulting maximum likelihood estimators.

Step 2—To predict latent class scores, one uses π̂jm and η̂m, j ∈ {1, …, J}, m ∈ {1, …, M}
from Step 1 to estimate the posterior probabilities of class membership
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(4)

Arguably the most common latent class scores, S̃i, are modal assignments in which each person
is designated to the class with the highest posterior probability. In pseudo-class assignment a
class membership is drawn randomly from the distribution of posterior probabilities (4).
Multiple pseudo-class memberships are obtained by multiple random draws from the posterior
probabilities (4). Finally, one might retain the fitted posterior probabilities themselves as
scores.

Step 3—The regression of predicted class scores on explanatory variables depends on the
method used to predict in Step 2. The most common approach is to fit a polytomous regression
of modal assignments on covariates (Croon, 2002) as in (2). It is possible to apply the Croon/
Bolck correction factor (Croon, 2002; Bolck et al., 2004) in conjunction with this approach.
The Croon/Bolck correction uses the fact that the structural part of the model can be rewritten

as . The term Pr(S|S̃) is a measure of the bias in the
regression estimation in Step 3 and can be calculated as Pr(S|S̃) = Σy Pr(S|y)Pr(y|S̃). This
measure of bias is used in the Croon/Bolck correction to correct the bias of the Step 3 regression
Pr(S̃ = m|x). Analysis of pseudo-class assignments is analogous.

In the case of multiple pseudo-class assignments there are several class assignments, S̃h, h =
1, …, H for each individual. For each draw, one would conduct a polytomous regression
analysis yielding β̂h with estimated standard error SE(β̂h). A joint estimate is obtained as

, and the associated variance is calculated as

 (Wang, Brown, and Bandeen-Roche, 2005)

where  is the average of the estimated β values.

Using the posterior probabilities themselves as latent scores leads to an M − 1-dimensional
response variable for each person, q̂i = (q̂i1, …, q̂iM−1). This response might subsequently be
used in a number of ways. Appealing to the asymptotical normality of estimators q̂i given yi,
one approach is to analyze the posterior probabilities in a non-linear multivariate normal model
with mean

(5)

and an unstructured covariance matrix. The non-linear mean structure (5) is analogous to the
structural part of the LCR (2).

3. A New Method for Estimating Latent Class Scores
We were motivated by the Bartlett method for the latent factor model, which estimates an
individual’s latent variables as if they were fixed parameters in a linear regression of Yi on the
estimated matrix of factor loadings Λ (Johnson & Wichern, 2007),
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where εi ~ (0, Σ). Weighted least squares is typically employed yielding Bartlett scores f ̃i =
(Λ̂tΣ̂−1Λ̂)−1Λ̂tΣ̂−1Yi, which is the maximum likelihood estimator conditional on Λ̂ and Σ̂ if
εi is normally distributed.

Our key insight was to notice that the LCM (3) is a linear model for an individual’s item

response probabilities in terms of class membership, , where πj = (πj1, …,
πjM)t, j = 1, …, J, and G(Si) = [g1(Si), …, gM(Si)]

t = (1Si =1, …, 1Si =M)t is the vector of indicators
of class membership for individual i. Under the assumption of local independence, the surrogate
indicators are independent within each subject, and we have a linear association between Yi
and the conditional probabilities π = (π1, …, πJ)

t:

(6)

where πm = (π1m, …, πJm)t. Full analogy to the Bartlett method would have been to implement
maximum likelihood estimation by iteratively reweighed least squares (IRWLS) for the
likelihood functions,

(7)

But a direct solution of the likelihood equation is not straightforward, and the method breaks
down for patterns with all 0s or all 1s.

However, as we wish to estimate a vector of indicator functions of class memberships for each
subject, (1Si =1, …, 1Si =M)t, and we posit that subjects belong to exactly one class, we have
applied this restriction to the vector of class membership

. Let g(Si) be the first M − 1 elements of
G(Si), g(Si) = [g1(Si), …, gM−1(Si)]

t and let Π be a J × M − 1 matrix with Π = (π1 − πM, …,
πM−1 − πM). Substituting this into Equation (6) gives

(8)

It follows that scores of the latent variable can be estimated by regressing Yi − πM on Π. Note
that the response variable of this regression (8) no longer consists of discrete measures as in
the model (7) but instead consists of continuous measures. This fact is very useful for persons
where Yi1 = ··· = YiM, as the regression (8) then still is possible to fit. We suggest the following
three-step procedure:

Step 1—Fit the LCM (3) to the data.

Step 2—Estimate [g1(Si), …, gM−1(Si)] in the regression of the outcomes on the conditional
probabilities for each person by applying ordinary least squares (OLS) to
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(9)

yielding predicted scores [g̃1(Si) + ··· + g̃M−1(Si)]. The score for being in the class M can for
each person be calculated as 1 − g̃1(Si) − ··· − g̃M−1(Si). In the case of polytomous outcomes
the prediction method (9) is slightly modified. Instead of using π̂jm in (9), the expected value

of Yij given Si = m is used. This is given by , where the
sum is over all possible values of Yij.

Inspired by factor analysis terminology, we shall refer to these new predicted latent class scores,
g̃(Si), as least squares class (LSC) scores.

Step 3—Regress g̃(Si) on xi in an M − 1 dimensional normal model with the non-linear mean
function (2) and an unstructured covariance matrix Σ. For the time being we obtain the standard
error for β̂ as the naive estimator derived from this multivariate normal model, without taking
into account that π is estimated.

Note that the distribution of g̃(Si) given xi is difficult to specify and it is unwieldy to apply
maximum likelihood estimation. However, it is possible to achieve consistent estimates of β.
The estimation function from the Step 3 regression can be written as a generalized estimating
equation (GEE),

where D is a vector of partial derivatives ∂μ/∂β. If the mean of the left hand side is 0, then
the solution to the equation will be consistent under minor regularity conditions even when
Σ is misspecified (Liang & Zeger, 1986). A consequence of this is that the Step 3 regression
results in consistent estimates of β under the latent class modeling assumption because the
mean of the scores in the estimation function is specified correctly for such a model: E[gm(Si)|
x] = E(1(Si =m)|x) = ηm(x). That E[g̃m(Si)|x] has the same limiting mean is shown in next section.

In the two-class case the GENMOD procedure in SAS, assuming a normal distribution and a
logit link, can be used to estimate β and Σ in the Step 3 regression. For models with more
classes, we have developed a SAS program (see the Appendix) that maximizes the Step 3
estimation equation.

3.1. Analytical Properties of LSC
Setup: To enhance clarity we denote g̃(Si) explicitly in terms of its parameter inputs, g̃(Si; π).
The LSC score is then given by g̃(Si; π̂). Let A be an M − 1 dimensional square matrix given
by

(10)

and bi be an M − 1 dimensional vector given by

(11)
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Notice that A can be written as , where cj = (πj1 − πjM ··· πj, M−1 − πjM)t, and thus
a sufficient condition for A to be positive definite is that span{cj}j ∈ {1, …, J} = RM−1. If (1) is
identifiable the condition must hold, and thus A−1, exist.

Lemma 1—If the LCM (1) is identifiable such that A−1 is elementwise bounded in absolute
value by a constant K, and gm(Si) in model (6) is estimated by OLS under the assumption that
g1(Si) + ··· + gM(Si) = 1, then

Proof: Assume π to be known. Then the OLS estimator for g(Si) from (9) is given by g̃(Si;
π) = A−1bi. Now,

The assumption of non-DIF implies that Yi is independent of xi given Si, and therefore that

For the last statement of Lemma 1, we must account for the fact that π is estimated rather than
known. The marginalization property (Bandeen-Roche et al., 1997), states that the joint
distribution of outcomes sampled according to (1) has the latent class form when ignoring
covariates, in conjunction with the consistency of maximum likelihood estimation, provides

consistent estimates of π estimated in Step 1, . Let Â and b̂i be estimates of A and bi
obtained by plugging in π̂ in Equations (10) and (11); because A and bi are continuous in π
we have  and . Because all elements of π are bounded between 0 and 1, |A−1| <
K < ∞ and E|bi| < ∞, and all elements of both Â and b̂i are uniformly integrable, yielding
limN → ∞E[Â−1b̂i|g(Si)] = E[A−1bi|g(Si)] (Serfling, 1980).

Theorem 1—Under the conditions of Lemma 1, the proposed LSC method consistently
estimates β.

Proof: In Step 3, β is estimated in an M − 1 dimensional multivariate normal distribution with

a mean function, , given by (2). The function does not correspond to the full likelihood
of the LCR and we do not know the distribution of g̃(Si). However, the differentiated log of
the Step 3 regression can be written as
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(12)

This estimation function can be rewritten as the sum of two parts, one not accounting for that
π is estimated and the other reflecting just that

that is, AN + BN = 0. If BN is op(1), then the estimating equation is mean-asymptotically
equivalent to AN, which by Lemma 1 and theory elucidated by Liang and Zeger (1986) is a

consistent GEE under standard regularity conditions bounding  and the
likelihood. To this end,

 is op(1) because Â−1 is a continuous function of π̂,
, and |b̂im| ≤ J for each i, m, N.

 is op(1) provided regularity conditions bounding

 and Σ−1. Then, |b̂im| ≤ J for all i, m, N so that , and hence .

It can be seen that using the posterior probabilities qim = Pr(Si = m|Yi = yi) as scores will lead
to biased estimation in Step 3 as the conclusion of Lemma 1 is not true in that case. For the
case with two classes we have

and
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Thus, to obtain EYi|xi [q̃im|xi] = ESi|xi [Si|xi] it is necessary that EYi|Si [q̃im|Si =1] = 1 and EYi|Si
[q̃im|Si = 0] = 0. As posterior probabilities are restricted to be between zero and one, this is only
true if q̃i0 = 1 conditional on Si = 0, and q̃i1 = 1 conditional on Si = 1, which is a measurement
model without error. In summary, the posterior probability-based methods will be increasingly
biased the closer the posterior probabilities are to 0.5.

4. Simulation Study
A first set of simulation scenarios was designed to elucidate the small-sample performance of
posterior probability-based three-step procedures for estimating the structural parameter, β,
and to compare such with our LSC procedure and with the one-step maximum likelihood
method. We evaluated all the posterior probability-based three-step procedures presented
above: use of modal or pseudo assignments as responses in a logistic regression on the
covariates; correcting the results using modal assignments by the Croon and Bolck method;
and use of the posterior probabilities themselves as responses in a multivariate normal model
with mean function given by (5). A second set was designed to evaluate the performance of
the LSC procedure in more detail. Table 1 describes the models used.

In the first set of studies, we simulated data from four different models and studied how the
performance of the methods varied with the number of items, J, number of observations, N,
and the precision with which items measured class membership. Precision is high if the
conditional probabilities, π, are clearly distinguished between classes; we designated models
with πj1 = 0.1 and πj2 = 0.9, j = 1, …, J, as “precise” in measurement, and models with πj1 =
0.3 and πj2 = 0.7, j = 1, …, J, as “imprecise”, see Models a–d, Table 1. These three model
features were studied as these have been shown to be important for the factor analysis model
(Skrondal & Laake, 2001). We expected that the posterior probability-based methods would
be biased for less precise measurement models as described above. In all four studies there
were two dichotomous orthogonal covariates, each with a coefficient of 0.5 corresponding to
an odds ratio of 1.65; and an intercept β0 = 0, which corresponds to an equal number of persons
in each class. When applying multiple pseudo-class assignment, 20 draws were used (Wang
et al., 2005).

In the second set of studies, we aimed to challenge the naive standard error for the LSC method,
and thus compared only the three-step procedure based on the LSC with the one-step procedure.
This was done by decreasing the sample size, which influences the standard error of π̂; adding
a class, which raises the risk of misclassification; complicating the measurement component,
which again tends to increase the standard error of π̂; complicating the structural component,
which tends to increase the variability of the overall and Step 3 model fits; and finally
complicating both the measurement and structural components at the same time. For a detailed
description see Models e–j, Table 1. When planning the study we had intended to have N =
500 for all scenarios. However, for some models with imprecise measurement, model fitting
proved unstable; this occurred for both the one-step procedure and the three-step procedure.
To ensure stable convergence of the estimating algorithm, we increased the number of
observations for these models.

For each model, 500 data sets were simulated. In Step 3 the standard error used for the parameter
estimates is the naive standard error from the Step 3 regression, which does not account for
the measurement error in the estimation of the scores of the latent variable. Let β̂ denote the
structural parameter estimator generically with respect to method. For each of the models and
methods, six different performance measures are provided:

, where  and
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 is the standard model-based variance estimator from the third step; MSE = (E(β̂) −
β)2 + SD(β̂)2; Power = the proportion of Wald confidence intervals excluding zero; and the
Coverage = the proportion of Wald confidence intervals including the true value.

Generation of data and estimation of the LCMs were done in Mplus (Muthén & Muthén,
2007). Scoring (Step 2) and regression of scores on covariates (Step 3) were carried out in SAS
9.1. For the procedures employing posterior probabilities and LSC scores as responses, Step
3 was carried out using the IML procedure (see the Appendix). In the special case of a two-
class model, the GENMOD procedure in SAS was used assuming a normal distribution and a
logit link.

4.1. Simulation Study Results
In Table 2 we see the results from the first set of the simulation studies. We report only the
results pertaining to the coefficient of x1; results for the x2 coefficient and the intercept were
similar except as noted. For all four scenarios the LSC method produced nearly unbiased
estimates. The Croon and Bolck correction (Modal with correction) also nearly eliminated the
bias. For the LSC there was only a minor loss of efficiency. The naive LSC-based standard
error from Step 3 only slightly underestimated the true variability, so coverage and power for
the LSC results were similar to those from one-step LCR analysis. However, for the intercept,
the naive LSC-based standard errors underestimated the empirically observed standard error
on average by 45% in the model with imprecise measurement and lowest sample size (Model
b) (data not shown). The inferential bias of the intercept lessened in scenarios with more items

or higher sample size, for instance  for Model d.

For all the posterior probability-based methods, we observed the anticipated underestimation
of regression parameters. Among these methods, scoring by modal assignment performed best.
In the precise scenario (Model a), all methods yielded coverage and power that were similar
to one-step LCR. In such settings, correct inferences may be drawn even though the covariate
effect will be underestimated. With less precise measurement, the underestimation associated
with the posterior probability-based methods worsened appreciably, as did coverage and
power. Upon changing the number of items from four to eight in the model with imprecise
measurement, the coverage and power of the posterior probability-based methods improved
slightly, but the estimation remained substantially biased. Increasing the sample size from 500
to 1000, modestly improved power but eroded coverage. The results from the multiple pseudo-
class and posterior probability scoring methods were strikingly similar.

In Table 3 results are shown for the first four models from the second set of simulation studies.
The LSC method performed very well for all of these models with respect to both estimation
and inference. Performance was comparable to LCR except for Models g and h, where the LSC
method showed a slightly larger sampling variability.

Table 4 displays results for Models i and j. Beginning with Model i, there continued to be little
bias, but the observed sampling variability was somewhat larger for LSC than for LCR.
Moreover, the naive LSC-based standard error tended to underestimate the empirically
observed standard error of the intercept, resulting in low associated coverage, 0.856. For the
covariates the coverage was similar but the power was slightly smaller for the LSC method
compared to LCR. For Model j, where both the structural and measurement components of the
model were made challenging, there was still no evidence of bias; but LSC-based standard
error mis-estimated empirically observed standard error, on average for all covariates.
Coverage for the LSC method was appreciably inaccurate.
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5. Example: The Salisbury Eye Evaluation Project
The Salisbury Eye Evaluation Project (SEE) was an epidemiological cohort study designed to
characterize the contribution of visual impairment to visual and physical disability in older
adults. As an aspect of health that is often amenable to intervention and has particular
implications for older adults’ quality of life, vision is a potentially important risk factor for
disability (Rubin, Bandeen-Roche, Prasada-Rao, and Fried, 1994; West, Gildengorin,
Haegerstrom-Portnoy, Schneck, Lett, and Brabyn, 2002). Employing a unique combination of
state-of-the-art vision assessment with broad-spectrum assessment of disability, SEE is ideally
designed to the investigation of vision and physical disability. Here we apply the newly
developed methodology to study the association between mobility function in older adults and
presenting corrected binocular visual acuity, using LCM. To our knowledge LCM has not
previously been applied to study the association at issue; doing so is potentially advantageous
because self-report of task difficulty is susceptible to measurement error, and because LCMs
acknowledge that mobility function is a comprehensive construct. The analysis we present here
simplifies so as to effectively illustrate our methodology.

The SEE study has been previously described (Bandeen-Roche, Huang, Munoz, and Rubin,
1999; West et al., 1997; Munoz, West, Rubin, Schein, Fried, and Bandeen-Roche, 1999). In
brief, the SEE cohort is an age and race stratified random sample of Salisbury, Maryland.
Inclusion criteria were age between 65 and 84, community residency with better-than-invalid
health, and Mini-Mental State Examination score greater than or equal to 18.

We propose to make operational “mobility function” using a construct of “mobility/exercise
tolerance” that has previously been studied by LCM in the Women’s Health and Aging Study
(WHAS) (Bandeen-Roche et al., 1997; Guralnik, Fried, Simonsick, Kasper, and Lafferty,
1995). There, “mobility/exercise tolerance” was measured by five self-reported questions, all

of the type, “without help, do you have any difficulty in”: walking  mile, climbing 10 steps,
getting in and out of a bed or chair, doing heavy housework, and lifting up to 10 pounds. All
the questions were modeled as binary indicators of any reported difficulty. A three-class model
well characterized the empirical data.

In the SEE cohort we have similar questions; climbing 10 steps (climbing step), getting in and
out of a bed or chair (in/out chair), doing heavy housework (doing hhw), getting down a 5

pound object (get down), walking  mile (difficulty walk). Using these questions we attempted
to reconstruct the latent measure of mobility/exercise tolerance developed in WHAS. The
association between this latent mobility/exercise variable and visual acuity was adjusted for
age and comorbidity. All independent variables were modeled as binary variables, with visual
acuity dichotomized at worse than 0 logMAR (20/20); age, at 75 or greater; and comorbidity,
at three or more diseases. All methods described were compared using this model in complete-
case data. Due to a high amount of missing values we also compared the LCR and the LSC on
data with at most one of the outcomes missing. The LCR was fitted by maximum likelihood
under the assumption of missing at random. A similar approach was used for Step 1 in the LSC
method; in Step 2, the score was calculated for the available outcomes (four or five); and Step
3 was carried out just as in the case without missing values. To avoid problems with
multimodalities we always used 1000 different starting values for the LCM. In case of label-
switching between classes, the model was re-fitted with the maximum likelihood estimates of
π as starting values switched between classes.
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5.1. Result of Analysis
The cohort included 2520 persons who agreed to fully participate. There were 2128 (15.56%
with missing values) participants with no missing values in the variables to be analyzed,
comprising 1201 women and 927 men. Here 33.7% were 75 years of age or older, 42.3% had
at least three comorbidities, and 44.3% had visual acuity worse than 0 logMAR. The five
mobility/exercise tasks were endorsed as “difficult” for the following percentages: In/out
chair, 22.2%; climbing step, 34.2%; difficulty walk, 38.2%; doing hhw, 43.1%; and get
down, 22.1%.

When allowing one of the outcomes to have a missing value there were 2450 eligible
participants (2.78% with missing values), comprising 1410 women and 1040 men. Here 35.4%
were 75 years of age or older, 42.0% had at least three comorbidities, and 44.8% had visual
acuity worse than 0 logMAR. The five mobility/exercise tasks were endorsed as “difficult” for
the following percentages: In/out chair, 22.1%; climbing step, 34.4%; difficulty walk, 38.7%;
doing hhw, 43.0%; and get down, 21.9%.

Preliminary analysis persuaded us to model men and women separately. To select the number
of classes, we fitted LCMs on the five questions without any covariates (Bandeen-Roche et
al., 1997). There exist various methods for adjudicating the number of classes, but a large
simulation study recently suggested that the Bayesian information criterion (BIC) (Schwarz,
1978) is superior to frequently employed alternatives (Nylund et al., 2007) and we therefore
employed it here. Among women, three- and four-class models resulted in equal BIC. Among
men, BIC was smaller for the three-class model than for the four-class model (4238 versus
4261). We therefore present three-class models for both men and women. Both models were
empirically identifiable as they satisfied the criteria developed by Huang and Bandeen-Roche
(2004): The number of unique parameters in the saturated LCM (=31) is greater than the number
of parameters in the LCM (=17); all the parameters fitted were finite; the M vectors κ̂m with
probabilities of each possible pattern given class membership were linearly independent; and
the design matrix of the covariates had full rank.

Table 5 shows the estimated conditional probabilities, π̂, from this study (complete-case
analysis) and from the WHAS study. In general, the results were similar, with Class 1 exhibiting
high probabilities of reporting problems for all tasks; Class 3, low probabilities of reporting
any problems for all tasks; and Class 2, probabilities of reporting problems in between Classes
1 and 3. For the men, the conditional probabilities in Class 2 put more weight on difficulties
with in/out chair, climbing step and difficulty walk than for women in SEE or WHAS, and less
on get down and doing hhw.

Results from the complete-case analysis are shown in Table 6. As the LCM has three classes
the results are interpreted as from a multinomial logit model as described following Equation
(2) and given as the log odds ratios for being in Class 1 versus Class 3, and for being in Class
2 versus Class 3. We see that individuals with reduced visual acuity have a significantly higher
risk of being in the class with the worst mobility/exercise tolerance (Class 1) compared to the
best functioning (Class 3). Both more comorbidities and higher age were associated with a
significantly higher risk of being in Classes 1 and 2 compared to Class 3.

Turning to methods comparison: In general the results for the LSC method closely matched
those for LCR, with three exceptions that we detail in the next paragraph. The posterior
probability-based methods produced estimates that were closer to the null than for LCR and
LSC, but yielded inferences that were qualitatively similar. As in the simulations, results from
the multiple pseudo-class and posterior probability methods were very similar.
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As the exceptions, the LSC coefficient differed from the LCR coefficient for the age estimate
both for Class 2 versus Class 3 and for Class 1 versus Class 3 in men, and for the comorbidity
estimate for Class 2 versus Class 3 in women. One of the assumptions required for the accuracy
of the LSC method is that there is no association between outcome measures and explanatory
variables when conditioning on the latent measure, that is, non-DIF. We evaluated this
assumption in the LCR by a process of forward selection, allowing for class-specific DIF. A
significance level of 1% was used to account for multiple testing. We found that women in
Class 1 with more than three comorbidities were more likely to report problems with doing
hhw and get down than women with fewer comorbidities. For the men in Class 2 we found that
men 75 years of age or older more often reported problems with get down than younger men.
The difference between LSC and LCR estimates of the age coefficient could be explained by
the differential measurement of get down. It should be noted that none of the estimates in Table
6 account for DIF, including LCR.

When analyzing data where participants with one missing outcome were included, class
distribution and conditional probabilities were found to be similar to the complete-case
analyses both for men and women (data not shown). Again the LCR and the LSC produced
similar results. However, coefficients estimates from this analysis differed considerable from
those from complete-case analysis in as much as a factor of two, with both attenuation (LCR
coefficient for visual acuity in men = 0.39 versus 0.81, Class 1 versus Class 3) and amplification
(LCR coefficient for visual acuity in women = 0.91 versus 0.50, Class 1 versus Class 3). The
LCR and LSC regression coefficients differed most for women for age (LCR: 0.74 versus LSC:
0.47, Class 2 versus Class 3); an investigation of DIF demonstrated that women 75 years of
age or older more often reported problems with get down than younger women. There was
little difference in the age coefficients between the LCR and the LSC method for men for the
analysis with missing values, nor was there evidence of DIF in this case.

6. Discussion
We have proposed a method (least squares class scoring) to assign latent class values for use
as responses in subsequent regression analyses. For data distributed according to a latent class
regression model, the least squares class method yields consistent estimators for regression
coefficients in a three-step procedure. A simulation study found regression coefficients to be
approximately unbiased in finite samples. Moreover, there was only a minor loss in efficiency.
In general the naive standard error only slightly underestimated the true variability. Therefore,
power and coverage for the proposed method were similar to the results from latent class
regression analysis. However, for models with cases of low-prevalence classes and models
with a number of items with a very skewed outcome distribution, use of naive standard errors
in Step 3 mischaracterized sampling variabilities. Application of least squares class scoring in
the SEE data set yielded results that were generally close to those of the one-step latent class
regression.

A number of methods exist for predicting latent class scores in latent class models but none of
these consistently estimate regression coefficients in a subsequent analysis with covariates.
Using the modal-assignment rule and analyzing the scores in a logistic regression model
resulted in biased regression coefficients, but this method did seem to be the best of the posterior
probability based methods. Assigning latent class membership by pseudo- or multiple pseudo-
class assignment resulted in worse bias than modal assignment. Using posterior probabilities
as scores is dominated by the other methods and should be avoided. Especially in more precise
models, the Croon and Bolck correction method (Bolck et al., 2004) successfully removed the
bias in the modal-assignment method. However this method is rarely used, perhaps because it
is unclear how to handle continuous covariates.
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The least squares class method does not assign subjects to one class but gives an M − 1
dimensional score for each person. This complicates the interpretation of the scores. Also, even
though the scores are restricted to sum to one for each person, they do not have the probability
interpretation and can be outside the unit-interval.

The use of the three-step procedure confers an advantage that one does not need to estimate as
many parameters in the first step as when fitting a latent class regression. This could be
especially advantageous in studies with few observations. Moreover misspecification in one
part of a model may affect conclusions related to another part (Bollen, 1996). Multi-stage
regression has been reported to reduce this bias (Sánchez, Budtz-Jørgensen, and Ryan, 2009).

For the three-step method to be fully useful, we believe that further work is needed to extend
the procedure in three directions. First, work on how to account for differential item functioning
is needed. When analyzing the SEE data, the least squares class method yielded estimates
notably different from the latent class regression; concurrently there was evidence for
differential item functioning for these parameters. Second, work is needed to accommodate
available data for cases having some missing values, which often are prevalent. In the SEE
data, we investigated data allowing for at most one missing outcome, but in principle the least
squares class score can be calculated for records with a least two outcomes. However, a
challenge is that in records with few outcomes a larger variation in the least squares class scores
is to be expected. A more efficient analysis maybe achieved by using a weighted regression in
Step 3 to account for the larger variation in scores. Third, inference reported herein ignored
that parameters from Step 1 were estimated. Our findings showed the expected tendency for
such inference, i.e., that the naive standard errors tend to underestimate the true value. However,
for the range of simulation designs we considered, such inference was primarily adequate. Still
as a next step standard errors that fully account for multi-stage uncertainty should be developed.
Use of the sandwich or bootstrapping may provide alternatives, resulting in practical methods
to obtain better estimates of the standard errors.

In summary, the proposed method is attractive in large studies where one seeks to conduct
multiple regression analyses with a latent variable. Here, one can calculate the least squares
class scores and use them as responses in subsequent analyses. Our approach gains advantages
of consistency over the posterior probability-based approaches and produces surprisingly
accurate inferences as well.

3Question different than SEE: Without help, do you have any difficulty in lifting up to 10
pounds? (In SEE: Get down a 5 pound object)
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Appendix
SAS program to perform Step 3. This program performs maximum likelihood estimation in
the Step 3 regression.

proc iml;
use date1;
read all var {c_1,..., c_j−1)} into y [colname=varname];
read all var {x_1,..., x_P} into x [colname=covname];
close date1;
/*Make function for calculating −log(likelihood)*/
start lik(th) global(y,x);
apar=(ncol(x)+1)#ncol(y)+ncol(y)#(ncol(y)+1)/2; /*Number of parameters*/
beta=shape(th[1,1:ncol(y)*(ncol(x)+1)],ncol(x)+1,ncol(y));/*beta estimates*/
s=sqrsym(th[(ncol(x)+1)*(ncol(y))+1:apar]); /*read variance matrix*/
/*Mean Structure*/
xcov=j(nrow(y),1)||x;
xbe=j(nrow(y),nrow(beta),.);
xbeta=j(nrow(y),ncol(y),.);
DO i=1 to ncol(y);
xbe=repeat(shape(beta[,i],1,nrow(beta)),nrow(xcov),1)#xcov;
xbeta[,i]=exp(xbe[,+]);
END;
mu=j(nrow(y),ncol(y),.);
mu=xbeta/(1+repeat(xbeta[,+],1,ncol(y)));
/*log likelihood*/
li=(nrow(y)/2)#log(det(s))+0.5#((((y−mu)*inv(s))#(y−mu))[,+])[+];
return(li);
finish;
apar=(ncol(x)+1)#ncol(y)+ncol(y)#(ncol(y)+1)/2; /*Number of parameters*/
th0=shape({0 0.5 0.5 0.3},1,apar); /*Starting values*/
optn={0 2}; /*0 means minimized 2 is what output will be printed*/
call nlpnra(rc,th1,‘lik’,th0,optn); /*Making Newton Raphson,*/
CALL NLPFDD( f, g, h, “lik”, th1); /*Calculates hessian matrix*/
stderr = sqrt(abs(vecdiag(inv(h))))‘;
print th1; print res;
quit;
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In the line starting with “th0”, one have to give some starting values for the parameters. These
have to be given in following order: IS1, …, ISM−1, x1S1, …, x1SM−1, x2S1, …, xPSM−1, var
(S1), cov(S1, S2), var(S2), cov(S1, S3), cov(S2, S3), var(S3), …, var(SM−1), where ISm is the
intercept for class m and xpSm is the parameter estimate of covariate p on class m. We
recommend that one tries serval different sets of starting values, as local maxima can be
reached. As starting values for the covariance matrix for the LSC scores, we suggest the
empirical covariance matrix for the LSC predictions.
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Table 6

SEE cohort: Estimated association expressed as log odds ratios (95% confidence limits) between covariates and
the three classes of mobility/exercise tolerance.

Method Intercept Visual Acuity Comorbidity Age

Women, Class 1 versus Class 3

LCR −2.22 (−2.80; −1.64) 0.50 (0.08; 0.91) 2.78 (2.29; 3.26) 1.14 (0.69; 1.58)

LSC −1.93 (−2.39; −1.48) 0.44 (0.04; 0.83) 2.81 (2.10; 3.53) 1.19 (0.74; 1.65)

Modal −1.51 (−1.78; −1.24) 0.31 (−0.01; 0.63) 2.11 (1.78; 2.44) 0.92 (0.58; 1.25)

Modal with correction −1.871 0.401 2.571 1.051

Pseudo −1.21 (−1.46; −0.96) 0.37 (0.07; 0.67) 1.89 (1.58; 2.21) 0.61 (0.18; 1.04)

Multiple pseudo −1.50 (−1.81; −1.19) 0.34 (0.00; 0.69) 1.98 (1.63; 2.32) 0.84 (0.45; 1.22)

Posterior probabilities −1.46 (−1.70; −1.21) 0.35 (0.09; 0.62) 1.93 (1.64; 2.23) 0.78 (0.50; 1.06)

Women, Class 2 versus Class 3

LCR −0.83 (−1.28; −0.37) 0.19 (−0.21; 0.59) 1.58 (1.14; 2.02) 1.05 (0.64; 1.47)

LSC −0.91 (−1.38; −0.43) 0.21 (−0.33; 0.76) 1.98 (1.05; 2.90) 0.88 (0.30; 1.47)

Modal −0.76 (−0.99; −0.54) 0.11 (−0.19; 0.41) 1.15 (0.84; 1.47) 0.73 (0.42; 1.05)

Modal with correction −0.721 0.141 1.461 0.971

Pseudo −0.58 (−0.79; −0.36) 0.16 (−0.13; 0.44) 0.95 (0.64; 1.26) 0.34 (−0.09; 0.76)

Multiple pseudo −0.76 (−1.03; −0.48) 0.14 (−0.20; 0.47) 1.04 (0.66; 1.41) 0.63 (0.27; 1.00)

Posterior probabilities −0.76 (−0.91; −0.60) 0.13 (−0.08; 0.35) 1.06 (0.81; 1.32) 0.63 (0.40; 0.87)

Men, Class 1 versus Class 3

LCR −3.42 (−4.38; −2.46) 0.81 (0.19; 1.43) 1.81 (1.17; 2.44) 0.72 (0.10; 1.34)

LSC −3.81 (−4.93; −2.69) 0.73 (0.09; 1.36) 1.86 (0.88; 2.84) 1.15 (0.46; 1.85)

Modal −2.41 (−2.77; −2.05) 0.41 (0.03; 0.78) 1.29 (0.92; 1.67) 0.58 (0.20; 0.97)

Modal with correction −3.491 0.661 1.651 0.891

Pseudo −2.43 (−2.80; −2.07) 0.40 (0.02; 0.78) 1.33 (0.95; 1.72) 0.56 (0.17; 0.95)

Multiple pseudo −2.47 (−2.85; −2.09) 0.41 (0.00; 0.81) 1.32 (0.91; 1.73) 0.56 (0.14; 0.97)

Posterior probabilities −2.52 (−2.93; −2.11) 0.45 (0.11; 0.78) 1.31 (0.93; 1.70) 0.61 (0.27; 0.95)

Men, Class 2 versus Class 3

LCR −1.53 (−1.98; −1.08) 0.31 (−0.10; 0.72) 1.27 (0.87; 1.67) 0.65 (0.19; 1.11)

LSC −1.59 (−2.07; −1.11) 0.44 (−0.08; 0.96) 1.19 (0.64; 1.74) 0.07 (−0.57; 0.71)

Modal −1.89 (−2.20; −1.58) 0.20 (−0.17; 0.56) 0.91 (0.55; 1.26) 0.30 (−0.08; 0.68)

Modal with correction −1.611 0.271 1.171 0.411

Pseudo −1.85 (−2.15; −1.55) 0.23 (−0.12; 0.58) 0.88 (0.54; 1.22) 0.50 (0.13; 0.86)

Multiple pseudo −1.86 (−2.20; −1.51) 0.22 (−0.21; 0.66) 0.90 (0.51; 1.29) 0.35 (−0.08; 0.78)

Posterior probabilities −1.81 (−2.06; −1.57) 0.23 (−0.04; 0.50) 0.84 (0.58; 1.11) 0.35 (0.07; 0.63)

1
Confidence limits not calculated as no standard error is available
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