Skip to main content
. Author manuscript; available in PMC: 2013 May 5.
Published in final edited form as: Magn Reson Med. 2011 Aug 25;67(2):353–362. doi: 10.1002/mrm.23010

Table 1.

Outline of the Iterative reVERSE Algorithm

Inputs:
rfd(·): RF design function, returning an RF pulse
B1,max: peak-RF-magnitude target
Gmax: maximum gradient amplitude
 α: attenuation factor of B1,max for the use in VERSE, e.g., α = 0.9
T: hardware update time
B1+(r): transmit RF field
 ΔB0(r): main-field inhomogeneity
Outputs:
B1[n], G[n]: reVERSE pulse waveforms
Algorithm:
  1. Initialize a pulse.

    1. design an excitation trajectory: G(t).

    2. set B1[n] = 0 (or a small-tip-angle solution).

  2. Design an RF pulse: B1[n]=rfd(B1[n],G(t),B1+(r),ΔB0(r)).

  3. Stop if max{|B1[n]|} ≤ B1,max and sample the gradient waveform: G[n] = G(nT).

  4. Reduce the peak RF power via VERSE.

    1. interpolate RF waveforms: B1[n] ⇒ B1(t).

      calculate the RF-to-gradient amplitude ratio: W(s) = B1(t)/|G(t)|, s=γ0tG(τ)dτ.

    2. calculate the gradient upper bound: Gu(s) = min{αB1,max/|W (s)|, Gmax}.

    3. find the time-optimal gradient waveform G(t), given Gu(s), using Eq. 10 of Ref. (19).

      recalculate the RF waveform: B1[n] = W (sn)|G(nT)|, sn=γ0nTG(τ)dτ.

  5. Goto 2.