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Abstract
Quantitative structure–activity relationship (QSAR) models have been developed for a dataset of
3133 compounds defined as either active or inactive against P. falciparum. Since the dataset was
strongly biased towards inactive compounds, different sampling approaches were employed to
balance the ratio of actives vs. inactives, and models were rigorously validated using both internal
and external validation approaches. The balanced accuracy for assessing the antimalarial activities
of 70 external compounds was between 87% and 100% depending on the approach used to
balance the dataset. Virtual screening of the ChemBridge database using QSAR models identified
176 putative antimalarial compounds that were submitted for experimental validation, along with
42 putative inactives as negative controls. Twenty five (14.2%) computational hits were found to
have antimalarial activities with minimal cytotoxicity to mammalian cells, while all 42 putative
inactives were confirmed experimentally. Structural inspection of confirmed active hits revealed
novel chemical scaffolds, which could be employed as starting points to discover novel
antimalarial agents.
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1 Introduction
Malaria remains one of the most severe infectious diseases in the world. It leads to more
than 300 million new clinical cases and ca. 0.7 million deaths each year, mostly among
children1,2. About half of the world population, particularly that of underdeveloped
countries, is at high risk for malaria infection3.

Malaria is caused by unicellular eukaryotic parasites of the genus Plasmodium. Of the five
types of Plasmodium parasites that can infect humans, Plasmodium falciparum is the most
lethal strain4. Because of drug resistance, certain prophylactic and therapeutic drugs, such as
chloroquine, have lost or are losing their clinical effectiveness. Therefore, novel effective
antimalarial compounds continue to be in high demand5.

A powerful modern approach to discovering potential antimalarial compounds is high
throughput screening (HTS)5–10. Despite their popularity, current HTS approaches have
some important disadvantages. Screening large chemical libraries often leads to very high
false positives rates and is still costly. In order to reduce the cost of HTS, the following
techniques are frequently applied to reduce the size of chemical library used for screening:
(i) test only approved drugs, bioactive compounds, and natural products known to be
valuable sources of leads9; (ii) screen the most diverse subsets of chemicals to identify
potent scaffolds and then follow up using focused screening9. These approaches often result
in active compounds; however, the success rate of finding tractable hits via screening of
HTS libraries is typically low.

One of the major factors that have considerable effects on the success rate of HTS is the
composition of chemical library. In order to increase the success rate as well as reduce the
overall cost of experimental screening, chemical libraries should be refined before
conducting HTS. For example, Chong et al.6 identified 189 out of 2,678 existing drugs with
more than 50% inhibition of parasite growth at 10µM concentration, which implies a success
rate of 7%. Similarly, Weisman et al.9 reported a success rate of 6% for a library of known
drugs, bioactive compounds, and natural products. Although such a success rate is relatively
high compared with studies on other drug targets, achieving much higher hit rates is still
very desirable considering the time and financial resources required for HTS experiments.
Therefore, rational approaches such as virtual screening (VS) can help by effectively
identifying and prioritizing compounds predicted actives for further experimental tests,
thereby reducing the experimental effort and boosting the overall success rate.

VS is a computational drug discovery approach that is employed to evaluate large chemical
libraries and identify small numbers of virtual hits for subsequent experimental validation.
VS has been traditionally associated with structure-based approaches when the three-
dimensional structure of the target protein is known so docking and scoring could be used to
select the most probable hit compounds. When targets are unknown or their structures
unavailable (as is the case for some antimalarial drug discovery studies), ligand-based
strategies relying on the knowledge of chemical structures of active compounds only can be
successfully used for VS11.
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Our group along with others have been advocating for the increased use of validated
Quantitative Structure-Activity Relationship (QSAR) models in VS12–16 (recently reviewed
in17). QSAR modeling methods apply machine learning and statistical approaches to
establish quantitative relationships between chemical descriptors and biological activities of
compounds tested experimentally. The resulting externally predictive QSAR models can be
used to screen large virtual libraries to identify putatively active compounds and prioritize
them for experimental testing11. This approach shifts the traditional focus of QSAR
modeling from achieving statistically significant training set models (where the results are
presented in the form of statistical parameters) towards exploiting validated models to
prioritize chemicals for subsequent biological evaluation. This focus brings QSAR modeling
in tune with the ultimate needs of experimental medicinal chemists to discover bioactive
compounds.

There have been several reports in the literature on QSAR studies of antimalarial
compounds18–24; however, only few authors have used QSAR models for VS. For example,
Mahmoudi et al.22 carried out a QSAR study using a dataset of 395 compounds tested
against P. falciparum chloroquine-susceptible strain (3D7) and performed VS on compounds
from the Merck Index. One of their Linear Discriminant Analysis (LDA) based models was
able to correctly classify 95% of 104 test compounds into active and inactive classes. Then,
they successfully predicted the IC50 values of these test compounds with a reasonable
accuracy (R2 = 0.76) using a Multiple Linear Regression (MLR) model involving
topological indices as compound descriptors. These models were further used to screen
2,000 compounds from the Merck Index and 22 compounds were selected and evaluated in
vitro. Six out of the 22 compounds showed antimalarial activities at nanomolar
concentrations. Marrero-Ponce et al.23 developed simple LDA-based QSAR models for the
prediction of antimalarial activity using TOpological MOlecular COMputer Design -
Computer Aided “Rational” Drug Design (TOMOCOMD-CARDD) fingerprints. When
using both non-stochastic and stochastic atom-based quadratic fingerprints, the correct
classification rates for leave-group-out cross-validation were, on average, 94% and 93%,
respectively. They also applied QSAR models to predict antimalarial activity of several
acyclic β-enamino esters and arylaminomethylenemalonates and identified a highly active
molecule as a promising lead to design novel antimalarial compounds. Montero-Torres et
al.24 also developed LDA QSAR models using TOMOCOMD-CARDD strategy, and 83%
of test set compounds were classified correctly. Then they evaluated another external set of
17 newly synthesized compounds and compared the predictions with in vitro test results;
only one compound showed higher activity than chloroquine. In general, chemical databases
screened in these studies were relatively small and covered a limited number of chemical
scaffolds. The relatively small size of databases for VS makes it difficult to discover
additional active hits and, especially, novel scaffolds, which are in urgent demand
considering the rapid emergence of drug-resistant strains of malaria parasites.

In this study, we have analyzed a dataset of 3133 compounds classified as either active or
inactive in inhibiting the growth of P. falciparum chloroquine-susceptible strain (3D7)9, by
following our general combinatorial QSAR strategy25,26 and predictive QSAR modeling
workflow17. The resulting QSAR models were rigorously validated using internal test sets,
and were applied to the external evaluation set compounds demonstrating high prediction
accuracy. These internally validated and externally predictive models were then used to
screen in silico the ChemBridge database27 of approximately 450,000 chemicals. 176
compounds were identified as putative actives using our models, and were then
experimentally tested in P. falciparum growth inhibition assays. The experimental validation
results indicate both reliability and usefulness of our computational models as efficient
predictors to identify novel antimalarial agents.
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2 Methodology
2.1 Datasets

A library of 3,133 compounds was screened for their antimalarial activities at St. Jude
Children's Research Hospital (the dataset is available on ChemBench http://
chembench.mml.unc.edu/, or from Dr. R. K. Guy upon request) using in vitro P. falciparum
growth inhibition assays (see Experimental Section). 158 out of these 3,133 compounds had
reproducible potency (EC50) better than 2 µM and were considered as active inhibitors8,
whereas the remaining 2975 compounds were considered as inactives. This entire dataset of
3,133 compounds was used for QSAR model development and validation. However,
because of the substantial prevalence of inactive compounds, the latter class was down-
sampled prior to model developments using different strategies as described in the Results
section below. The ChemBridge chemical library included within the ZINC database27

(Version 7) was used for VS. After data curation using the standard protocol developed and
implemented in our laboratory at UNC28, 454,638 organic compounds were retained for VS.

2.2 Computational Methods
2.2.1 Molecular Descriptors
2.2.1.1 Dragon Descriptors: An ensemble of 929 molecular descriptors was computed with
the Dragon software (version 5.4)29 for all compounds (with explicit hydrogen atoms) in our
dataset. Descriptors included: 0D-constitutional descriptors (atom and group counts), 1D-
functional groups, 1D-atom centered fragments, 2D-topological descriptors, 2D-walk and
path counts, 2D-autocorrelations, 2D-connectivity indices, 2D-information indices, 2D-
topological charge indices, 2D-Eigenvalue-based indices, 2D-topological descriptors, 2D-
edge adjacency indices, 2D-Burden eigenvalues, and various molecular properties such as
octanol-water partition coefficient. Descriptors with low variance (standard deviation lower
than 0.0001) or missing values were removed. Furthermore, if the correlation coefficient
between any two descriptors exceeded 95%, one of them was removed. The final set used in
this QSAR study included 298 descriptors. These descriptors were range-scaled, so that their
values were within the interval [0, 1]. Definition and calculation procedures for Dragon
descriptors and the related references are given in the Handbook of Molecular Descriptors30.

2.2.1.2 ISIDA-2D Fragment Descriptors: The ISIDA Fragmentor software (freely
available at http://infochim.u-strasbg.fr) was used to calculate 2D fragment descriptors31,32.
Two different types of fragments are included in ISIDA: “sequences” (I) and “augmented
atoms” (II). Three sub-types, AB, A, and B are defined for both types. For the fragments I,
they represent sequences of atoms and bonds (AB), of atoms only (A), and of bonds only
(B). Only shortest paths from one atom to the other are used. For each type of sequence, the
minimal (nmin) and maximal (nmax) numbers of constituent atoms are defined (for this
study, nmin=2 and nmax=7). An “augmented atom” represents a selected atom with its
environment including either both neighboring atoms and bonds (AB), atoms only (A), and
bonds only (B). Atomic hybridization (Hy) is taken into account for augmented atoms with
the A sub-type. In this study, 429 fragment descriptors were considered.

2.2.2 QSAR Modeling Approaches
2.2.2.1 Dataset Division for Model Development and Validation: Previously, we and
other groups33,34 demonstrated that, generally, there is no correlation between the statistical
parameters of QSAR models for the training set, such as leave-one-out (LOO) cross-
validation R2(q2), and the correlation coefficient R2 between predicted and observed
activities of the test set. This statement is also true for classification QSAR models: high
classification accuracy for the training and the test set usually do not correlate with each
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other33,34. Thus, acceptable statistics for the training set only is insufficient to ascertain that
the model also has high external predictive power and therefore QSAR models should be
rigorously validated using external sets of compounds which were not used to train or select
the models34.

Following the standard QSAR modeling workflow17, the antimalarial dataset was randomly
split into a modeling set (number of compounds depended on the modeling strategies, cf.
Section 3.1 and 3.2) and an external evaluation set of 70 compounds (selected before
modeling, cf. Section 3.1 and 3.2). The modeling set was additionally divided multiple times
into chemically-diverse training and test sets using the Sphere Exclusion program developed
in our computational group and described elsewhere35. The Sphere Exclusion algorithm
divides the modeling set into multiple pairs of training and test sets to guarantee that at least
in the entire descriptor space, (i) all representative points of the test set are close to at least
one representative point of the training set, i.e., test set compounds are within the
applicability domain defined by the training set; (ii) given the relative sizes of the training
and test sets, the highest portion of the representative points of the training set are close to
representative points of the test set; (iii) and the training set is a representative subset of the
entire modeling set, i.e., there is no subset in the modeling set not represented by a similar
compound in the training set35.

Multiple QSAR models were developed using these training sets and validated using the
corresponding test sets. Models with high prediction accuracy assessed by statistical criteria
(vide infra) were used for consensus prediction of external evaluation set compounds: each
compound was predicted by all models for which it fell within the applicability domain
(vide infra), and the consensus predicted value for each compound was rounded to the
closest integer (class). The predictivity of the models was evaluated by the consensus
Correct Classification Rate (CCR), which is defined below in Formula 3b, for the external
evaluation set.

2.2.2.2 Variable Selection k-Nearest Neighbors (kNN) Classification Algorithm: A
classification algorithm based on the k-nearest neighbor principle and variable selection was
used to develop QSAR models. The program employs a leave-one-out (LOO) cross-
validation procedure on the training set and a simulated annealing algorithm in order to
select subsets of descriptors that afford models with the highest LOO cross-validation CCR.
The procedure starts with the random selection of a predefined subset of descriptors from all
descriptors. When the number of nearest neighbors k is higher than one, estimated activities
ŷi of compounds excluded by LOO procedure are calculated using the following formula:

(1)

where yj is the binary activity of the jth nearest neighbor. Weights wij are defined as:

(2)

where dij are Euclidean distances between compound i and its jth nearest neighbor. If k=1,
then

(1a)
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The predicted values are rounded to the closest integer. After each run, CCR (used as an
objective target function) and other statistical parameters are calculated as follows:

(3a)

(3b)

(3c)

(3d)

(3e)

Then, a predefined small number of descriptors are randomly replaced by other descriptors
from the original pool, and a new CCR value is obtained. If CCR(new) > CCR(old), the new
set of descriptors is accepted; otherwise, if CCR(new) ≤ CCR(old), the new set of descriptors
is accepted with probability p = exp ((CCR(new) - CCR(old))/T), or rejected with probability
(1-p), where T represents the simulated annealing temperature parameter. During this
process, T is decreasing until a predefined threshold. Thus, the optimal (highest) CCR is
achieved36,37. For the prediction, the final set of selected descriptors is used, and
expressions (1) and (2) with rounding the predicted activity to the closest integer are applied
to predict activities of test set compounds. Prediction is estimated as unreliable, if a
compound is outside of the applicability domain of the model. The model’s applicability
domain is defined by a distance cutoff (i.e., chemical similarity threshold) value between a
compound being predicted and its k nearest neighbors of the training set. The applicability
domain of QSAR models is discussed below in more detail.

Although there are many different performance metrics (Matthew index, Cohen’s kappa,
etc.), we relied primarily on CCR as most relevant for this virtual screening study (see38 for
additional discussion on comparing these metrics).

2.2.2.3 Support Vector Machines (SVM): The description of the original SVM algorithm
could be found in many publications, e.g.,39. Briefly, molecular descriptors are first mapped
onto a high dimensional feature space using various kernel functions. Then, SVM finds a
separating hyperplane with the maximal margin in this high dimensional space in order to
separate compounds with different activities. Models built with this machine learning
technique allow the prediction of a target property using a set of descriptors solely
calculated from the structure of a given compound. In this study, we used the WinSVM
program developed in our group (freely available for academic laboratories upon request)
implementing the open-source libSVM package39. The WinSVM program provides users
with a convenient graphical interface to prepare input data; to split datasets into training and
test sets; to set up parameters for SVM grid calculations, including iterative and
simultaneous grid optimization of SVM parameters; to launch and follow calculation
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progress in a powerful graphical interface; to select models with the best prediction accuracy
on both training and internal test sets; and to apply them to the external evaluation set as an
ensemble consensus model. The program also allows one to visualize molecular structures
and produce various plots, making the use of SVM easier and more appropriate for QSAR
modeling in order to obtain robust and predictive models and apply them to virtual
libraries16.

2.2.3 Selection and Validation of QSAR Models—As mentioned above, model
validation is crucial for QSAR modeling. To evaluate the predictive power of a model, CCR
(Eq. 3b) values for the training, test, and external evaluation set were calculated. We used
sensitivity (SE) and specificity (SP) (Eq. 3c and 3d) as well. SE and SP reflect the accuracy
of predicting the compounds of active and inactive classes, respectively. We considered a
QSAR model to have an acceptable predictive power, if both of the following conditions
were satisfied:

i. CCR for the LOO cross-validation of the training set (i.e., ) was at least
65%, and CCR for the test set (i.e., CCRtest) was also at least 65%;

ii. For both training and test sets, SE and SP (i.e., , SEtest, SPtest) were at
least 60%.

2.2.4 Applicability Domain (AD)—Formally, a QSAR model can predict the target
property for any compound for which chemical descriptors can be calculated. However, if it
is highly dissimilar from all compounds of the training set, reliable prediction of its activity
is unlikely. The concept of AD, previously implemented and widely used in our
laboratory12,40,41, was applied to detect and avoid unreliable predictions. In this study, we
defined AD as a distance threshold DT between a compound under prediction and its closest
nearest neighbors of the training set. It was calculated as follows:

(4)

Here, ȳ is the mean Euclidean distance between each compound and its k-nearest neighbors
in the model space of the training set (i.e., k is the parameter optimized during QSAR model
generation, and the distances are calculated using descriptors selected by the optimized
model only), σ is the standard deviation of these Euclidean distances, and Z is a user-defined
parameter. We set the default value of this parameter Z at 0.5, which formally places the
allowed distance threshold at the mean plus one-half of the standard deviation. We also
defined the AD in the entire descriptor space. In this case, the same formula (4) is used, k=1,
Z=0.5, and Euclidean distances were calculated using all descriptors. Thus, if the distances
of the external compound from its k nearest neighbors (see above) in the training set within
either the entire descriptor space or the selected descriptor space exceeded these thresholds,
no prediction was made (see example below).

2.2.5 Robustness of QSAR Models—Y-randomization (randomization of response) is
a widely used approach to validate the robustness of QSAR models. It consists of rebuilding
models using randomized activities of the training set and subsequent assessment of the
model statistics. It is expected that models obtained for the training set with randomized
activities should have significantly lower values of CCR for the training or the test set than
the models built using training set with real activities, or at least these models should not
satisfy some of the validation criteria mentioned above. If this condition is not satisfied,
models built for this training set with real activities are not reliable and should be discarded.
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This test was applied to all training sets obtained by data splits into training and test sets and
it was repeated three times for each split.

2.3 Virtual Screening and Consensus Prediction Thresholds
The ChemBridge database was screened to identify compounds with potential antimalarial
activity. After chemical data curation, Dragon descriptors were generated for each
compound and normalized based on the maximum and minimum values of each descriptor
in the modeling set. Each validated kNN-Dragon model was then used to predict the
activities of compounds that were within the AD. The results for each individual prediction
were combined into a consensus prediction: the mean predicted activity was calculated for
each compound that was within the respective ADs of multiple models.

Different Consensus Prediction Thresholds (CPTs) were then used to improve the prediction
accuracy. Indeed, each individual model could only make binary predictions of compounds
as either active (value of 1) or inactive (value of 0). However, since we integrate predictions
from the ensemble of models (that passed the acceptance criteria), we could have a situation
where different models disagree in their predictions, i.e., a fraction of models may predict
the activity of a compound as 1 (active) whereas the remaining fraction of models will
predict the activity as 0 (inactive). Thus, the averaged (consensus) predicted activity for each
compound is in the [0, 1] range. Formally, compounds with the predicted activity higher
than or equal to 0.5 are classified as active and those with the predicted activity lower than
0.5 are classified as inactive. Obviously, the closer the average predicted value to 1 or 0 is,
the higher is the concordance among all models and the higher is our confidence in
annotating compounds as active or inactive, respectively. Thus, two additional thresholds
reflecting this concordance among predictions can be established as a supplementary
model’s applicability domain: for instance, selecting only external compounds with
predicted activity above 0.9 or below 0.1 would limit the selection of compounds from VS
library to a set with higher confidence (but of course it would reduce the total number of
compounds for which prediction could be made). Therefore, CPTs were employed in this
study to select compounds with high prediction confidence: for instance, CPT 0.9/0.1
means: (i) compounds with predicted activity higher than the upper threshold (0.9) were
classified as actives; (ii) compounds with activity lower than 0.1 were classified as inactives;
and (iii) compounds with the average predicted activity between the two thresholds were not
assigned to any class (inconclusive). The inconclusive compounds were not included when
the models’ prediction accuracy was calculated. Different CPTs were tested in this study,
from 0.55/0.45 to 0.9/0.1 to analyze their impact on model predictivity.

The percentages of models that were used to make prediction for each compound in the VS
database were recorded as well. It was our working hypothesis that the higher was the
percentage of models that had a compound within their respective applicability domains and
the smaller was the prediction variance across all models, the more accurate the predicted
biological activity for this compound should be. Thus, a compound was selected as a
hypothetical hit, if and only if (i) it was predicted by at least 50% of the selected models
(i.e., it was found within the ADs of these models) and (ii) among those models, at least
90% of them predicted this compound as active. Furthermore, additional filters
(implemented in the MOE software42) were also applied to make sure those hits were drug-
like molecules. These filters only kept compounds with calculated logP from −0.4 to 5.6,
molecular weight from 160 to 480, number of H-bond donors less than 5, and number of H-
bond acceptors less than 1043,44.

It should be pointed out that variable selection kNN QSAR method optimizes the selection
of a small number of descriptors to produce a statistically acceptable QSAR model. By
default, any successful QSAR model captures the correlation between variations in
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descriptor values and those of the target property. Thus, the significant correlation could be
achieved with a small subset of all descriptors. However, some other descriptors may serve
as essential determinants of the compound pharmacological class but not be included in the
model because of their low variances across the training set (cf. pharmacophoric groups that
by default are the same for all active compounds). Therefore, if one searches a database with
a small number of variables selected by QSAR models, a similarity screen of the database
using the entire pool of descriptors (global similarity) is necessary in addition to model-
based activity prediction.

2.4 Hierarchical Cluster Analysis
In this study, we employed the Sequential Agglomerative Hierarchical Nonoverlapping
(SAHN) method implemented in the ISIDA/Cluster program32. Briefly, each compound
represents one cluster at the start. Then, m compounds are merged iteratively into clusters
using their pair wise Euclidean distances stored in an m × m symmetric distance matrix. The
two closest objects (molecules or clusters) are iteratively merged to form a new cluster, and
then, the distance matrix is updated with the distances between the newly formed cluster and
the others, according to the user-specified type of cluster linkage (“complete link” in this
study). The process is repeated until one cluster remains. The parent-child relationships
between clusters result in a hierarchical data representation or dendrogram. We used ISIDA/
Cluster to obtain both dendrogram and the heat map of the proximity matrix (see detailed
example in Figure 6)16.

3 Results and Discussion
3.1 Similarity-Based Sampling (SBS) QSAR Modeling Strategy

The chemical library of 3133 compounds tested for antimalarial activity included many
more inactive (about 95%) than active (about 5%) compounds. To address this bias (very
common in HTS sets), we applied a similarity search procedure using Tanimoto similarity
coefficient based on MACCS key fingerprints in MOE, to exclude a large fraction of
inactive compounds (dissimilar to actives) in the library (the similarity threshold of 0.83 was
set empirically to ensure inactive/active ratio of selected subset to be between two and one).
This approach to down-sample the bigger class makes the modeling exercise more difficult
because the challenge now is to discriminate active versus inactive compounds that are most
similar to actives. Thus, all 158 active compounds and 271 inactive compounds selected by
similarity search formed a reduced dataset for QSAR analysis. Of these, 70 compounds (27
actives and 43 inactives) were randomly selected as an external evaluation set, and the
remaining 359 compounds (131 actives and 228 inactives) comprised the modeling set. Both
Dragon and fragment descriptors were calculated for each compound, whereas kNN and
SVM QSAR modeling methods were applied as described in the Methods section. Statistical
parameters of selected models and the results of model validation are given in Table 1.

To enable the comparison among different models, all 70 compounds in the external
evaluation set were predicted without taking the ADs into account. For models developed
using kNN with Dragon descriptors, 383 models that satisfied the acceptance criteria (see
Methods section) were selected to predict the antimalarial activity for each compound in the
external evaluation set as the average of these 383 predicted values (each individual value
being 1 or 0). The accuracy, CCR, sensitivity, and specificity for the external evaluation set
were 81%, 81%, 78% and 84%, respectively. For the other three types of models, similar
results were obtained (Table 1).

It is of interest to analyze external evaluation set compounds which were predicted
incorrectly. Table 2 shows three compounds that are structurally similar to their nearest
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neighbors in the descriptor space, but belong to a different antimalarial activity class. This
observation explains why the antimalarial activities for these external compounds are
inaccurately predicted (in the kNN method, the target property of a given compound is
calculated as the average of experimental measurements of its nearest neighbors, i.e., most
chemically similar compounds). In addition, such analysis may also reveal possible
mislabeling of certain compounds in the library. For instance, compounds SJ000285490 and
SJ000285587 are very similar to each other; the only structural difference is that a hydroxyl
instead of a ketone group is present in the first one. However, these two chemicals are
annotated differently: the first one is reported to be inactive, whereas the second one is
active. Considering such minor structural change might not be enough for the gain/loss of
activity, additional experimental tests are highly recommended to verify the antimalarial
activities of these two compounds45.

Another method to explore and understand why some chemicals were mis-predicted by our
models is to study the distribution of active/inactive compounds in the chemical descriptor
space and search for clusters and outliers. Thus, the principal component analysis (PCA) of
the descriptor matrix was carried out. Two-dimensional projection of the chemical space
(i.e., the subspace of first two principal components) is shown in Figure 1a. Red and purple
dots represent the 158 active and 271 inactive compounds, respectively, selected by the
similarity-based sampling approach. Obviously there is no clear separation between both
classes. However, one can distinguish a relatively large cluster of inactive compounds and
several small groups of either active or inactive compounds. The presence of this large
cluster of inactive compounds affects the distribution of pair wise distances (Figure 1b):
there is an extra peak at Euclidean distances equal to 0.4 for inactives. As a consequence,
prediction accuracy for inactive compounds, especially those belonging to this large cluster
is likely to be better than average. This may explain why all our QSAR models are
characterized by higher prediction specificity than sensitivity. Actually, this is a general
phenomenon for imbalanced datasets: the prediction accuracy for the minority class is worse
than that for the majority class. However, in our study, the active class still has high
prediction accuracy, which could also be explained by the representative compound-point
distribution of both classes in the chemical space: due to the existence of a large cluster of
inactive compounds, fewer inactive compounds are distributed in the areas of the chemistry
space occupied by the active compounds (Figure 1a).

Our previous experience suggests that consensus prediction always provides the most
accurate results40, and naturally avoids the search for the best individual model based on
training and test sets statistics. In this study, all four different types of models were used
concurrently for consensus activity prediction for each compound. The accuracy, CCR,
sensitivity, and specificity of the consensus prediction for the external evaluation set were
79%, 77%, 70% and 84%, respectively; these values are close to those obtained with the
best individual models (Table 1).

The Y-randomization test was used to prove the robustness of QSAR models. For example,
there were 383 kNN-Dragon models that satisfied the acceptance criteria (see Methods
section) for training and test sets. However, no models satisfying these criteria were
obtained, if the activities of training sets were randomized. These results indicate that our
models are statistically robust.

In this SBS modeling strategy, 2704 of the 2975 inactive compounds in the library were not
included in the modeling process, because they were structurally more dissimilar to the 158
actives than those inactives selected by the SBS procedure. As the second stage of the model
validation procedure, we applied our selected SBS models to make predictions for these
2704 inactive compounds in the library. Naturally, we expected to find these compounds to
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be either outside of the models’ applicability domain or inactive. Indeed, 2001 of these
compounds were out of the AD calculated based on all Dragon descriptors (Z=0.5).
Applying models to the remaining 703 compounds within the AD led to a prediction
accuracy of 60%. Meanwhile, kNN-fragment, SVM-fragment and SVM-Dragon models
showed slightly higher accuracies, ranging from 62% to 71% (Table 1). In addition to the
possible reasons for incorrect prediction of external evaluation set compounds considered
above, there are two more possible explanations as to why some of the excluded inactive
compounds were predicted as actives. First, compounds that are not close in the global
chemical space (defined by the entire descriptor set) may become nearest neighbors in the
local chemical space defined by descriptors selected by the model. In other words, the
nearest neighbors (in the reduced descriptor space of models built with variable selection) of
these excluded inactives might be active. Another possible explanation is based on the use of
different similarity measures for excluding inactive compounds dissimilar to actives and for
building QSAR models. In this work, the 2704 inactive compounds were excluded by
Tanimoto distances based on MACSS key fingerprints. This implies they were not close to
the actives in the chemical space described by MACSS descriptors. At the same time, in the
modeling procedure, Euclidean distances were used as a measure of dissimilarity between
compounds in the descriptor space defined by Dragon or fragment descriptors.

3.2 Diversity-Based Sampling (DBS) QSAR Modeling Strategy
Although the SBS modeling results were reasonable, we wondered if better models could be
obtained by using the entire antimalarial library of 3133 compounds. Because the original
library was highly unbalanced (158 actives versus 2975 inactives), it was not sensible to
build binary QSAR models for the entire dataset. Thus, we have employed a DBS QSAR
modeling strategy as follows.

After excluding the same external evaluation set of 70 compounds as for SBS models, we
randomly divided the remaining subset of inactive compounds into 10 sets and combined
each set with the same set of 131 active molecules. Thus, each modeling set contained a
subset of 292 to 294 unique inactive compounds and always the same 131 active
compounds. 10 sets of kNN-Dragon models were then developed based on these 10 new
modeling sets, and used to predict the same external evaluation set of 70 compounds. The
consensus predicted activity of each compound was calculated by averaging the predicted
values obtained from all ten sets of models. The workflow of this modeling procedure is
illustrated in Figure 2.

The predictions for external evaluation compounds by each set of models in DBS modeling
are listed in Supplementary Table 1. It should be emphasized that external prediction
accuracies of all the ten sets of models (i.e., M0~M9 in Figure 2) are lower (Supplemental
Table 1, CCR from 60% to 67%) than that of SBS models (Table 1, CCR from 72% to
81%). This observation directly validates the SBS models and is consistent with the results
obtained by us previously12. For the similarity-based sampling approach, only inactive
compounds in the library that were most similar to active compounds were selected. For the
diversity-based sampling approach, the same external evaluation set of 70 compounds was
excluded, and then each inactive compound of the remaining part of the library was
randomly included in one and only one modeling set. Due to this difference in sampling
procedures, the SBS models could distinguish active and structurally similar inactive
compounds relatively well. Therefore it is understandable that the prediction accuracy for
the same external evaluation set compounds by DBS models was not as good as that by SBS
models. Another possible explanation for this observation is that the biological activity
(EC50) predicted by both SBS and DBS models was derived from parasite growth inhibition
assay (details in Method and Experimental Sections), and it is highly possible that
compounds inhibited the growth of parasites through different biological mechanisms. SBS
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method limited the number of possible mechanisms involved in each modeling set by
gathering structurally similar chemicals; however, DBS method was more likely to result in
modeling sets with diverse mechanisms of action. Consequently, compared with SBS
models, the likelihood for DBS models to identify descriptors with strong correlation to the
endpoint is lower, since the signal from any single mechanism is diluted. This could result in
a lower predictive accuracy of DBS models.

3.3 Impacts of CPTs on Models’ Predictivity
So far, for the consensus prediction of both SBS and DBS models, a given compound was
considered as inactive if its calculated activity was lower than 0.5. Conversely, if the
consensus value was higher than or equal to 0.5, the compound was considered as active.
Using a single, rigid threshold (0.5 in this study) to distinguish active vs. inactive molecules
may lead to inaccurate predictions, especially when predicted values are close to this
threshold. To circumvent this problem and improve the predictivity of our models, we
applied additional CPT restrictions as described in the Methods. For example, if CPT was
0.9/0.1, and the consensus predicted activity of a compound was higher than 0.9, the
compound was predicted as active; if it was lower than 0.1, the compound was predicted as
inactive. If the calculated activity was between 0.1 and 0.9, the prediction was
“inconclusive” and thus, this compound was not counted in the estimate of prediction
accuracy, which inherently led to a decrease in the chemical space coverage of models.

We then studied whether the prediction accuracies of both SBS and DBS models were
improved by using CPTs. Dependence of prediction accuracy on the CPT thresholds for
external evaluation set is shown in Figure 3. Results indicated that CPT thresholds improved
the prediction accuracies of the SBS and DBS models in a drastically different way. When
we applied a CPT of 0.9/0.1 to the consensus prediction of the SBS model, CCR, sensitivity,
specificity, and coverage were equal to 87%, 83%, 91% and 66%, respectively; thus, as
expected, the statistical parameters of the consensus model improved as compared with
those obtained with a single activity threshold of 0.5 (Table 1) but at the expense of reducing
the chemical space coverage from 100% to 66%. Perhaps surprisingly, all statistical
parameters of DBS models at the same CPT value (i.e., CCR, sensitivity, and specificity)
reached their theoretical upper limit, i.e., 100%, but the chemical space coverage was
reduced to only 11%. Therefore, we can conclude that both CPTs and the sampling strategy
contribute to the significant increase of prediction accuracy for DBS models (but of course,
at the expense of much lower coverage).

Even though formally better prediction accuracy was achieved, the prediction coverage of
DBS models dramatically decreased to 11% when the CPT was equal to 0.9/0.1, whereas it
dropped to 66% only for SBS models. To ensure the reliability of consensus prediction by
DBS models, a compound was marked as “no prediction” if at least five sets of DBS models
predicted it as “inconclusive". As CPT became stricter, more chemicals were predicted as
“inconclusive”. Therefore, fewer chemicals were retained in the consensus prediction, which
led to the rapid decrease of the prediction coverage. Meanwhile, SBS models were not
subjected to such constraint, because they only have one prediction for each compound. This
partially explains why the prediction coverage of DBS models decreased much faster than
that of SBS models (Supplementary Table 2). At the same time, the remaining eight
compounds (CPT = 0.9/0.1) that were still within the applicability domain of the DBS
models were predicted with 100% accuracy.

This analysis suggests that users should consider the goals of their QSAR studies carefully
when deciding whether to employ SBS or DBS modeling approaches. If the goal is to
predict as many compounds as possible, or derive a relatively large set of candidates from
VS, the SBS modeling approach is recommended because the prediction coverage will
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remain high, even if CPT is employed. If prediction accuracy is a major concern (e.g., when
experimental resources are limited so a relatively small set of compounds should be selected
for testing), DBS modeling approach is more appropriate, provided that large datasets are
available for modeling.

3.4 Analysis of Molecular Descriptors
Several descriptors were found to be most frequently used in accepted models, suggesting
that they probably play a critical role in expressing the antimalarial activity of organic
compounds. We specifically analyzed the Dragon descriptors used in kNN models. In order
to make the interpretation of descriptors easier, only functional group descriptors calculated
by Dragon are discussed. The most frequently used Dragon functional group descriptors in
the kNN-Dragon QSAR models are shown in Table 3, along with their descriptions and
frequencies of occurrence in the 383 kNN models that had optimal and acceptable
predictivity. These structural features could help provide meaningful interpretations of
possible mechanisms of antimalarial activity. Meanwhile, it needs to be pointed out that
none of the descriptors alone could explain the observed distribution of antimalarial
activities. Thus, we stress that each individual model depends on the combined use of all
selected descriptors.

When analyzing the most frequently used descriptors, we noticed that seven of them had
significant differences between the mean values for active versus inactive compounds.
These variations could potentially imply that these descriptors could serve as indicators of
antimalarial activity. Four descriptors (nCrq, number of ring quaternary C; C-018, the
number of fragment “=CHX”; C-011, the number of fragment “CR3X”; and nRCOOR, the
number of esters (aliphatic); see Table 3 for their descriptions) have higher mean values for
inactive compounds than for active compounds (Figure 4). This result suggests the negative
contributions of the corresponding functional groups to the antimalarial activity of
chemicals. Three descriptors (nArNH2, number of primary amines (aromatic); nArNR2,
number of tertiary amines (aromatic); and nCbH, number of unsubstituted benzene carbons)
have lower values for inactive compounds than for active compounds, and the presence of
the corresponding groups in chemicals might increase the antimalarial activity.

ISIDA fragment descriptors were also analyzed by calculating the frequency of their
occurrence in active and inactive compounds (Figure 5a). We noticed that 316 fragments
had differences of their occurrence in actives vs. inactives higher than or equal to 5% (and
for 89 fragments, the difference was higher or equal to 20%). In other words, certain
fragments occurred more frequently in active than in inactive compounds, and vice versa.
Most fragments associated with actives (Figure 5b) are related to amine derivatives (e.g., C-
N, C-C-N-C, and C-C-C-N) or aromatic rings including nitrogen atoms (e.g., C*N and
C*N*C; * represents aromatic bonds). Although this information is not sufficient to
conclude that the presence of these fragments could endow chemicals with antimalarial
activities, they should be viewed as having high priority for chemists to consider for
synthesis and modifications of potential antimalarial compounds.

It is interesting to point out that the fragment descriptors representing protonatable amines,
such as pyridine and pyrazine, were found to occur more frequently in active than inactive
compounds. This observation is in agreement with earlier reports that some antimalarial
drugs, e.g., chloroquine, accumulate by a weak base mechanism in the acidic food vacuoles
of malaria parasites46.
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3.5 Hierarchical Cluster Analysis
The chemical library used in this study is structurally diverse. To gain deeper insight into
this dataset, we conducted the cluster analysis of the dataset of 429 molecules selected by a
similarity-based sampling approach (158 active and 271 inactive compounds). Our main
goal was to identify small groups of structurally similar compounds and assess whether they
possessed similar antimalarial activities. For this purpose, compounds were clustered using
ISIDA fragment descriptors and the hierarchical algorithm of ISIDA/Cluster as described in
the Methods section. The resulting dendrogram and the associated distance matrix
represented by a heat map are given in Figure 6. Analysis of the dendrogram revealed 31
clusters with relatively high levels of chemical similarity among compounds (Table 4).
Three clusters (Cluster ID 31, 22, and 29, see Table 4) were of the highest interest because
all compounds in these clusters belonged to the same activity class. Their structures are
shown in Table 5. Four peptides make up Cluster 31, and all of them have antimalarial
activity. Previous evidence showed the antimalarial effects of peptide inhibitors of a P.
falciparum cysteine proteinase47, suggesting that peptides might be promising agents for
antimalarial treatments48. Cluster 22 includes six terpenes, none of which has antimalarial
activity. Six cardiac glycosides and one terpene glycoside compose Cluster 29, and they
showed no antimalarial activity in the parasite growth inhibition assays. Therefore, it is
suggested that terpenes and cardiac glycosides are of lower priority for future antimalarial
HTS tests.

3.6 VS of ChemBridge Database
VS of the ChemBridge database using our SBS QSAR models initially identified an
ensemble of compounds predicted to be active by at least 50% of the models with a stringent
AD cutoff (Z=0.5). Drug-likeness filters (see Method section) were then used to remove
chemicals that were unlikely to be orally bioavailable. Furthermore, as discussed earlier, the
DBS modeling approach is more appropriate when a relatively small set of chemicals with
high prediction confidence is expected from VS. Therefore, DBS models and strict CPTs
(CPT=0.9/0.1) were applied for hit refining. Finally, given the commercial availability, we
considered the remaining 176 organic compounds as putative hits possessing antimalarial
activity (Figure 7). In parallel, 42 compounds predicted as inactives were selected as
negative controls for experimental confirmation. These 176 VS hits and 42 inactives were
then purchased and tested in P. falciparum growth inhibition and mammalian cell drug
susceptibility assays (see Experimental Section). Structures and experimental results for
these 176 VS hits and 42 inactives are available in the Supporting Information
(Supplementary Table 3 and 4).

3.7 Experimental Validation of VS Hits
Out of the 176 VS hits that were experimentally tested, 18 compounds were confirmed to
have moderate antimalarial activity, with EC50 ranging from 2 to 8 µM. Furthermore, 7
additional compounds had EC50 less than 2µM in P. falciparum growth inhibition assays
against either 3D7 or K1 strains, suggesting a hit rate for relatively potent compounds as
high as 4.0% (Table 6 and Supplementary Table 3). The most potent VS hit (SJ000565000)
had an EC50 value of 95.6 nM. Therefore, in total 25 (14.2%) VS hits were proved to
possess antimalarial activity. At the same time, none of the 42 putative inactives were found
to have antimalarial activity (EC50 >10 µM, Supplementary Table 4), confirming the high
specificity of our models. This high specificity could ensure the minimum loss of potential
antimalarials when refining the hit list in the HTS library. Additionally, results from the
drug susceptibility assays against two mammalian cell lines (HepG2 and BJ) showed that
our confirmed VS hits had relatively large therapeutic windows, and might have low toxicity
in humans.
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We then compared our VS hit rate with the one obtained from HTS. In a comprehensive
antimalarial HTS campaign reported by Guiguemde et al.8, 561 out of 309,474 chemicals
were confirmed to have EC50 ≤ 2µM against either 3D7 or K1 malaria strains, indicating a
hit rate of 0.18%. For comparison, our QSAR models using the same activity threshold
featured a significantly higher hit rate of 4.0 %. This result illustrates that rigorously
developed QSAR models when applied to VS presents an effective means to refine HTS
library, identify putative hits and thus, increase the success rate of biological testing.

Importantly, to estimate the structural novelty of confirmed 25 VS hits, we calculated the
pairwise Tanimoto similarity coefficients (using MACCS fingerprints) between the
confirmed VS hits and their nearest neighbor compounds from the actives in the modeling
set as well as from Guiguemde HTS hits (Figure 8a). Results showed that about 40% of the
confirmed VS hits were structurally dissimilar (Tanimoto coefficient < 0.7) with the
modeling set actives or Guiguemde HTS hits. We then compared the retrieving power of
QSAR models with that of similarity search (Figure 8b), and results indicated that our
QSAR models could identify the confirmed VS hits much more efficiently. Both analyses
demonstrated the power of QSAR-based VS in identifying novel antimalarial agents.

To refine this analysis of chemical novelty of VS hits, we compared the chemical structures
of confirmed VS hits with those in Guiguemde HTS hits. Core structures were generated
using the same protocol mentioned in the Guiguemde’s paper. 22 unique core structures
were derived from the 25 confirmed VS hits, implying a high chemical diversity.
Meanwhile, 481 core structures were extracted from Guiguemde’s 1,300 primary HTS hits.
After comparison, only 6 core structures of confirmed VS hits could be found in Guiguemde
primary HTS hits. 16 novel core structures were thus found in the confirmed VS hits (Table
6 Supplementary Table 5). These “active” core structures should be of great interest for
medicinal chemists who are searching for new antimalarial agents.

Finally, we explored a set of fragments frequently present in confirmed VS hits compared
with the modeling set actives or Guiguemde HTS hits (Figure 9). This could indicate their
positive contributions to the antimalarial activity. Actually, comparing confirmed VS hits
with modeling set inactives provided some evidence that these fragments could help gain
antimalarial activities for chemicals (Figure 9c). Meanwhile, we noticed that the “amino
alcohol” motif was represented in a significant number of ISIDA fragments (Figure 9b), and
this class of chemicals is known to possess antimalarial activities9. These results suggest that
the use of these “key” fragments during lead optimization could help find more potent
antimalarial agents and/or modify existing active structures for enhanced activity.

4 Conclusions and Future Work
We carried out a combi-QSAR analysis for a library of 3133 organic compounds with
known antimalarial activities. Since the dataset was highly imbalanced (only 158 active
compounds), we applied similarity- and diversity-based sampling approaches to downsize
the set of inactive compounds and generate balanced modeling sets for QSAR studies. For
SBS models, only a subset of inactive compounds that were most structurally similar to the
actives was included; In DBS models, the structural information associated with the inactive
compounds of the entire library was fully utilized. For external validation of QSAR models
developed for both similarity- and diversity-based sampling datasets, the same external
evaluation set of 70 compounds was used. We rigorously validated all QSAR models and
demonstrated that they afforded high prediction accuracy for the external evaluation set. We
also applied more restricted activity thresholds, i.e., CPTs, in the consensus prediction of
both SBS and DBS models. For SBS models, the CCR of the external evaluation set was
87% (CPT=0.9/0.1), whereas for DBS models, the CCR was as high as 100% (CPT=0.8/0.2
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and CPT=0.9/0.1). Restricting the CPTs increased the accuracy but decreased the chemical
space coverage for the prediction of the external evaluation set. Therefore, adjusting CPTs is
necessary in order to obtain better balance between prediction accuracy and chemical space
coverage. It needs to be pointed out that although DBS models gave better prediction
accuracy than SBS models, the decline of coverage of DBS models was inevitably far
greater than that of SBS models (the prediction coverage of DBS models with CPT=0.9/0.1
decreased to 11%, whereas that of SBS models remained as high as 66%). Therefore, users
should decide which approach is more appropriate for QSAR-based predictions depending
on their goals and resources, and make the necessary trade off. One could also suggest the
use of the Pareto approach instead of using a hard cut off49.

The analysis of most frequent descriptors selected by QSAR models helped interpreting the
antimalarial activity in terms of chemical features. For example, we found that some
functional group descriptors, such as aromatic ketones and primary amines, were frequently
used in kNN-Dragon models, suggesting they may play a critical role in defining
antimalarial activity. These results may facilitate the synthesis and modification of novel
antimalarial compounds, and shed light on their possible biological mechanisms of action.

Virtual screening of the ChemBridge database using our predictive SBS and DBS models
resulted in the selection of 176 VS hits and 42 inactives. Experimental testing verified the
high specificity of our models. Moreover, 25 (14.2%) VS hits were confirmed to have
antimalarial activity better than 8 µM. These confirmed VS hits were structurally dissimilar
from previous HTS hits and modeling set actives; they could be studied as starting points to
discover novel antimalarial agents.

In summary, we have developed internally validated and externally predictive QSAR
models for antimalarial activity. We have shown that by using the SBS and DBS modeling
strategies as well as CPTs, it is possible to develop QSAR models with high external
prediction accuracy. VS of large chemical database helped refine HTS library and greatly
improve hit rate of experimental testing. Models developed in this study could be used for
antimalarial activity prediction of chemical libraries; they can be accessed via the
ChemBench portal (http://chembench.mml.unc.edu) established in our laboratory. We will
gladly apply our models to screen any chemical libraries of interest to any researchers
interested in antimalarial compound discovery.

5 Experimental Section
5.1 P. falciparum Growth Inhibition Assay

All compounds were tested for the inhibition of P. falciparum 3D7 strain growth in
concentration-response experiments spanning a series of concentrations from 10 µM to 5
nM8. Parasites were incubated in purified human erythrocytes and media, with or without
test compounds for 3 days. Samples of cultures were stained with the DNA dye YOYO-1
and measured by UV flow cytometry. Parasite growth in each sample was correlated with
fluorescence signals and was determined relative to infected erythrocytes without test
compound. The positive control was mefloquine (consensus EC50 is 0.0398 µM), the
reference compound was chloroquine (consensus EC50 is 0.0268 µM), and the negative
control is DMSO. All experiments were carried out in triplicate and the experiments
themselves carried out twice, on two different days. Concentration response curves were fit
and EC50 values were estimated. Each EC50 value represented was the median value from 2
fully independent replicates of dependent triplicates. The 95% confidence limits were
calculated as well. These data were then uploaded to the Collaborative Drug Discovery
(CDD) database50 and used for sharing the datasets between laboratories.
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5.2 Mammalian Cell Drug Susceptibility Assay
Hep G2 and BJ cell lines were purchased from the American Type Culture Collection and
were cultured according to recommendations. Exponentially growing cells were plated in
white polystyrene flat bottom sterile 384-well tissue culture treated plates (Corning), and
incubated overnight at 37 °C in a humidified 5% CO2 incubator. DMSO inhibitor stock
solutions were pin-transferred (V&P Scientific) the following day in concentration-response
experiments spanning a series of concentrations from 10 µM to 5nM. Plates were placed
back in the incubator for 72 h incubation and equilibrated at room temperature for 20 min
before addition of 25 µl Cell Titer Glo (Promega) to each well. Plates were shaken on an
orbital shaker for 2 min at 500 rpm. Luminescence was read after 15 min on an Envision
plate reader (Perkin Elmer)8. All experiments were carried out in triplicate and the
experiments themselves carried out twice, on two different days. Concentration response
curves were fit and EC50 values were estimated.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
(a) Distribution of active and inactive compounds in the space defined by first two principal
components (Dragon descriptors were used in the calculation of principal components); (b)
Distributions of Euclidean distances between active (red) and between inactive (purple)
compounds.
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Figure 2.
Workflow of DBS modeling procedure and consensus prediction.9
9 P0~P9: predictions for a query compound by all 10 sets of models; the predicted values are
between 0 and 1 since they are the average prediction values of all accepted models in each
set;
CP1~CP2: if the consensus prediction value for a compound is between upper CPT and 1, a
compound is predicted as active; if it is between 0 and lower CPT, it is predicted as inactive;
otherwise prediction is inconclusive. A compound is predicted, if it is predicted by at least
five sets of models (M1-M10) as active or inactive.
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Figure 3.
Dependence of the consensus prediction sensitivity, specificity and coverage of 70 external
evaluation set compounds on CPTs (kNN-Dragon models). (a) SBS models; (b) DBS
models.
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Figure 4.
Dragon functional group descriptors with different mean values for active vs. inactive
compounds in modeling set. Annotations of descriptors are given in Table 4. 8F10

10 Z-score was calculated for each descriptor and labeled on according column.
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Figure 5.
(a) Frequency analysis of ISIDA fragment descriptors (X axis) for active (red) vs. inactive
(purple) compounds; (b) List of fragment descriptors that are more frequent in actives than
in inactives.
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Figure 6.
Pairwise Euclidean distance-based heat map (right) for 429 chemicals and the corresponding
clustering dendrogram (left). 9F11

11 The map is colored according to the chemical similarity between compounds (blue-violet,
high similarity; yellow-red, low similarity); small clusters with high levels of chemical
similarity can be identified on the diagonal of the matrix.
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Figure 7.
A workflow for VS of the ChemBridge chemical library to identify potential antimalarial
compounds and prioritize them for subsequent experimental assays. QSAR models indicate
both predictive SBS and DBS models.
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Figure 8.
(a) Similarity of confirmed VS hits to the Guiguemde HTS hits (solid line) and to the
modeling set actives (dotted line) 10F12; (b) Yield curve of retrieving 25 confirmed VS hits
from ChemBridge database using different methods.
12 Two chemicals were considered as structurally dissimilar if Tanimoto coefficient < 0.7.
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Figure 9.
Fragments present more frequently in confirmed VS hits than in modeling set actives or
Guiguemde HTS hits. (a) Dragon fragment descriptors; (b) ISIDA fragment descriptors; (c)
Examples of chemical structures containing importat fragments 11F13

13 For Dragon fragments: --: aromatic single bond; X: heteroatom; Al/Ar: aliphatic/aromatic
group; nCbH/nCb-: unsubstituted/substituted benzene C; O-060: Al-O-Ar ; / Ar-O-Ar /
R..O..R / R-O-C=X; H-046/H-052: H attached to C0(sp3) with no X/1X attached to next C
For ISIDA fragments: * : aromatic bonds; = : double bond; - : single bond.
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Table 2

Examples of external evaluation set compounds mis-predicted by kNN-Dragon models and their nearest
neighbors in the modeling set.
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Table 3

Most frequently used Dragon functional group descriptors in 383 kNN-Dragon models.

Name of
Descriptors

Percentage
Frequency (%)

Description Illustration

nCrq 52 Number of ring quaternary C(sp3)

nArCO 46 Number of ketones (aromatic)

O-057 28 Fragment = phenol / enol / carboxyl OH OH

nCONN 24 Number of urea (-thio) derivatives

cC-018 21 Fragment = CHX CHX

C-011 21 Fragment = CR3X CR3X

C-019 19 Fragment = CRX CRX

nArNH2 19 Number of primary amines (aromatic)

nP 18 Number of Phosphorous atoms P

nArOH 18 Number of aromatic hydroxyls

nArNR2 18 Number of tertiary amines (aromatic)

nRCOOR 18 Number of esters (aliphatic)

nRCOOH 17 Number of carboxylic acids (aliphatic)

nCbH 16 Number of unsubstituted benzene C(sp2)

Notes
Y = Al or Ar;
Al = H or aliphatic group linked through C;
Ar = aromatic group linked through any atom;
X = electronegative atom (O, N, S, P, halogens).
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Table 5

Clusters containing compounds of either active (Cluster 31) or inactive (Cluster 22 and 29) compounds.
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