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Abstract
A crucial question that must be addressed in the drug development process is whether the
proposed therapeutic target will yield the desired effect in the clinical population. Pharmaceutical
and biotechnology companies place a large investment on research and development, long before
confirmatory data are available from human trials. Basic science has greatly expanded the
computable knowledge of disease processes, both through the generation of large omics data sets
and a compendium of studies assessing cellular and systemic responses to physiologic and
pathophysiologic stimuli. Given inherent uncertainties in drug development, mechanistic systems
models can better inform target selection and the decision process for advancing compounds
through preclinical and clinical research.

Computational methods have made exciting contributions to pharmaceutical research and
development. Computer-aided drug design has been established as a valuable tool for the
design of new drugs, with many success stories since the 1980s [1]. Pharmaceutical
companies have invested substantially in bioinformatics approaches, and it has been
predicted such approaches will have an important role in pharmacogenomics and
personalized medicine [2]. Already, the FDA has recognized the importance of informatics
approaches to generate novel biomarkers to personalize cancer therapies [3].

Mechanistic modeling approaches can yield insights from data throughout the drug
development process. For example, in the context of metabolomics, it is well-established
that systems models facilitate insights from high-throughput data [4]. Even when models are
not specifically constructed for pairing with high-throughput data, they can be informed
from the literature and preclinical studies. Much of the utility of systems modeling for
advancing therapeutics lies in the ability to develop hypotheses regarding the characteristics
of a disease system. Such approaches to pharmaceutical research parallel systems biology.
They are driven by the ability to formulate testable hypotheses, are inherently quantitative
because they use a quantitative modeling framework, integrate potentially high dimensional
data from multiple sources, and enable global mechanistically based analysis of the
physiologic system [5]. Notably, such integrative approaches can assist in translating a result
from an in vitro study or animal model to better predict efficacy in a clinical context.
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Our purpose is not to provide a comprehensive review of computational methods used in the
pharmaceutical industry. For example, we intentionally do not delve into the discussion of
data mining approaches or PK/PD modeling. Rather, our focus is large mechanistic models
of biological systems [6], especially those with applications in drug development. Such
approaches have demonstrated value to industrial research programs [7], and we posit that
they will become an integral component of research practice as the pharmaceutical industry
transitions to increasing utilization of computational approaches as a component of an
evolving research paradigm. Notably, a growing body of literature facilitates discussion of
two mechanistic systems modeling methods that can inform drug research and development.
One is a biosimulation technique that links clinical disease phenotypes to increasingly
granular mathematical representations of pathophysiologic processes. The second constructs
functional, computable cellular networks from the molecular building blocks of genes and
proteins to elucidate the impact of pathologic or therapeutic alterations on network operating
states and hence clinical phenotype. As we will discuss in the case studies, both approaches
may directly facilitate the in silico evaluation of systems-level pharmaceutical action, are
amenable to intelligent alterations of assumptions to address best-case and worst-case
scenarios, identify important preclinical research experiments, provide a method to interpret
high-throughput data sets, can guide drug repositioning, and can guide the development of
biomarkers. Finally, we discuss how mechanistic systems models can inform the
prioritization of research programs to help improve the return on investment for the costly
process of drug development.

Clinical phenotype-driven models of disease pathophysiology
Perhaps the most renowned example of a phenotype-driven model of pathophysiology is the
minimal model of Bergman and Cobelli, for which clinical results were first published in
1981 [8]. The minimal model is a carefully validated framework [9] that models glucose and
insulin dynamics in response to an intravenous glucose tolerance test. Fitting the model to a
data set results in parameter estimates that are particularly useful for determining insulin
sensitivity and the responsiveness of β cells to glucose on an individual patient basis. While
the minimal model reports the disposition index, an indicator of risk for developing type 2
diabetes [10], this simple model cannot be used to investigate the efficacy of many new
therapeutics in the absence of clinical data. Although such small-scale models have great
utility in extracting important information from data [6,11], it would not be possible to form
a priori predictions, for example, of the effects of insulin secretagogues, such as glyburide,
on plasma glucose levels. As we will discuss shortly, a different formalism must be
developed to achieve the potential for prediction. The components of a phenotype-driven
model, required data and represented aspects of the phenotype are described in Fig. 1a.

Model building
A process for constructing phenotype-driven models has been developed based on American
Diabetes Association guidelines and is depicted in Fig. 2a [12,13]. Ostensibly, constructing
such models requires expertise in a therapeutic area and sufficient knowledge of disease
pathophysiology. There is some flexibility in deciding which level of mechanistic detail to
include when constructing phenotype-driven models. Fortuitously, as computing power has
increased, it is possible in practice to construct models with as much detail for which there
are data with sufficient confidence and relevance. To be of utility for drug development, the
salient features contributing to the disease and accessible to therapeutic targeting, as
identified by experts in the therapeutic area, should be integrated into the model. Rather than
observing the response of the system to defined perturbations and fitting model parameters
accordingly, the goal can be to integrate isolated measures together to predict system
responses. Such phenotype-driven, or ‘top-down,’ modeling can therefore become useful for
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in silico evaluations of the clinical efficacy of a target [14] and for exploring which
pathways are most important to mediate a clinical response.

As illustrated in Fig. 2a, a large system of deterministic ordinary differential equations is
developed to track the status of the system with time. The size of these large mechanistic
models varies roughly between ten and hundreds of ordinary differential equations [6]. The
literature is used to derive parameter estimates directly or define reasonable boundaries for
parameter constraints, which must then be optimized. Hundreds to thousands of parameter
values must be assigned to run large mechanistic biosimulations. Fortunately, despite
potential uncertainty in parameter estimates, detailed investigation of the properties of
systems models suggests validation through evaluation of model predictions is a sound
strategy that enables reliable biological investigation [15].

An important consideration is the time and cost associated with the development of the
phenotype-driven models. Depending on the scope of the model, it can take a skilled team a
year or more to develop a comprehensive, functional model consistent with available data. It
has been reported that on average, the development of a new drug requires approximately
$800 million and 14 years [16-18]. While the investment to develop an informative
simulation is small relative to the drug development project, it is a challenge that must be
taken into consideration if one is planning to use such a tool to guide research and decision-
making. The data in Table 1 may assist in the development effort. If an existing model can
be adapted for application, it may help to decrease the development time.

Therapeutic applications
Mechanistic systems modeling has been employed in several therapeutic areas, as illustrated
in Table 1. The phenotype-driven models are very specialized for each therapeutic area, as
they are designed to capture relationships between unique clinical outputs and disease
mechanisms. The models may contain sufficient detail to simulate the effects of existing
therapies in addition to investigational compounds, and they can enable in silico screens of
multiple targets. Several examples to introduce how model outputs can be used to inform
drug development decisions are given in Table 2. Smaller models with a minimal
representation of pathophysiology [8], and shorter model development timelines, can be
employed in a complementary manner to the larger systems models discussed here. On a
related note, how best to use statistical versus mechanistic approaches to optimally benefit
drug discovery and development is a topic of recent discussion at scientific conferences
[19,20] and the development and refinement of systems models as organizational core assets
to help guide target selection in a therapeutic area has been proposed in the context of
biodesign [21]. The question of how to integrate the efforts of different modeling groups is a
challenge that must be addressed to fully realize the value offered by each approach.

An excellent study illustrating the investigation that can be performed with large phenotype-
driven models was published by Rullman et al. for the case of a model of rheumatoid
arthritis [22]. Notably, development of the rheumatoid arthritis model began with the goal of
simulating the essential aspects of the clinical manifestation of rheumatoid arthritis,
inflammation and the degradation of bone and cartilage, and developed a mathematical
framework with sufficient resolution to capture the dynamics of cellular behaviors and the
cytokine network. First, a model constraint and calibration process was performed. The
parameters for a simulated patient were adjusted to yield average clinical responses to
therapies for which clinical trial data existed (e.g. methotrexate, etanercept and anakinra).
Comparison of the result for the calibrated model for cyclosporin A against trial data then
served as a check of the model calibration. The calibration solution that was validated
against known therapeutic responses and constrained with acceptable cellular
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concentrations, mediator concentrations and cellular activities became a ‘reference virtual
patient’ that formed the basis for subsequent analyses.

The reference virtual patient was then used to evaluate efficacy of new targets in the context
of the representation of the pathophysiological system, to perform in silico screens of
multiple targets, and was amenable to alterations of assumptions to evaluate alternate
scenarios of efficacy. For example, Rullman et al. analyzed the effect of knocking out either
IL-12 or IL-15 in rheumatoid arthritis, an assumption equivalent to adding a blocking
monoclonal antibody, assuming sufficient dosing and transport to the synovial tissue. The
simulation results for the IL-15 knockout were in qualitative agreement with clinical data
from a phase 2 trial. Although confirmatory data were not yet available for IL-12, it was
predicted that inhibition of IL-12 would be less efficacious than the current first-line
therapy, methotrexate. In all, the effect of individually inhibiting 31 targets was simulated,
with varying assumptions of the roles for each target in the pathway. To clarify, the
literature data around a particular target can be quantitatively variable. The approach
allowed Rullman et al. to postulate how variability, whether due to data uncertainties or true
biologic heterogeneity, affected predicted efficacy in best- and worst-case scenarios. Thus,
once construction of a mechanistic systems model is complete, it is relatively
straightforward to interrogate and to form recommendations for drug targets, or
combinations of drug targets, that are clinically efficacious in the context of the
pathophysiological system. The leading targets can be used to guide subsequent experiments
to verify the predictions of effects on downstream processes at the preclinical stage and
cross-validate model assumptions.

Biological network simulations
Simulations of biological networks offer an alternative method to investigate disease
pathophysiology and to evaluate the effects of pharmaceuticals in the context of a
mechanistic biological system. Rather than initiating development with the disease
phenotype and reconstructing the relevant physiology, a model of the entire network is
developed. The activity of the network in disease and health is simulated, and modulation of
the disease network by therapy can be investigated. There are several cellular networks
relevant to drug discovery, including interaction networks, regulatory networks, signaling
networks and metabolic networks. Integrating all components of cellular function will be a
challenge and a thorough review of each is beyond the scope of this review. We choose to
focus here on metabolic networks. Arguably, metabolic networks are the most complete, and
a full computable model of the human metabolic network has been developed for study [23].
Metabolic networks therefore represent a relatively mature knowledge base available in a
computable format and are ready to facilitate rigorous, holistic study. Notably, the
metabolome is smaller and downstream of both the genome and proteome [24]. We might
therefore expect metabolism to carry information more closely related to the operating state
of a cell and to be perturbed in disease states. The components, scope and output of genome-
scale metabolic models (GEMs) are described in Fig. 1b.

Model building
The process for constructing a GEM is depicted in Fig. 2b and has been reviewed
extensively [4,25-27]. Notably, GEMs were initially developed for bacteria for reasons that
arguably include the early availability of genomic data and relative ease of experimentally
verifying model growth phenotype predictions [26]. One important distinction for the
human, a multicellular organism, is the metabolic adaptation necessary to support
specialized tissue functions. For example, the active metabolic pathways in an adipocyte are
different from the liver.
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The construction and mathematical basis of GEMs is different from the phenotype-driven
models discussed previously. GEM construction can be described as a bottom-up,
informatics-driven process because it begins with large lists of cellular parts: the annotated
genome, metabolic reactions and enzyme components [27]. However, as reviewed
previously and demonstrated again when constructing a human GEM [23,27], manual
curation and validation are crucial to obtain a high-quality reconstruction. Mathematically,
the metabolic conversion reaction network is defined by a large stoichiometric matrix of
metabolic transformations in the cell. To date, investigations have primarily focused on
steady-state network properties. Reaction flux constraints are used to guide the analysis, and
detailed knowledge of the kinetic rates of individual reactions is therefore unnecessary. This
constraint-based approach instead characterizes the possible operating states of the network
at steady-state. Flux balance analysis and approaches to characterize metabolic network
properties have been reviewed in detail elsewhere [28]. Although some progress has been
made toward kinetic mass action stoichiometric simulations [29], steady-state-based
approaches have already yielded insights as will be discussed shortly.

Similar to phenotype-driven modeling, it is generally preferable to adapt an existing model
to expedite research. Fortunately, this requirement has been taken into account when
constructing the human GEM, H. sapiens Recon 1, which broadly incorporates metabolic
reactions from all tissues. Similar to other biochemically, genetically and genomically
structured (BiGG) genome-scale reconstructions, Recon 1 includes gene-protein mappings
[30]. Gene-protein mappings make it possible to adapt the pathways included in the
simulation to obtain tissue-specific representations of metabolism based on available RNA
expression microarray data. Therefore, in addition to predicting metabolic fluxes, the GEM
provides a ‘context for content,’ enabling the researcher to better interpret large data sets in
the context of the metabolic system [4,26,31].

Omics data integration has proven to be a crucial step in developing tissue-specific models
of metabolism. For example, Recon 1 was informed with microarray and proteomic data to
develop reaction flux predictions for the heart, kidney, brain, liver, lung, pancreas, prostate,
spleen, skeletal muscle and thymus [32]. Additional reports have used omics data sets to
develop computable models of the macrophage [33,34], kidney [35], brain [36], liver [37]
and erythrocyte [38]. A third model of liver metabolism has also been constructed by
integrating Recon 1 with an independent network reconstruction of human metabolism [39]
and extensive manual testing of the resulting reconstruction [40]. The extensively validated
model of liver metabolism has also facilitated the development of new algorithms for tissue-
specific model development by serving as a reference [41]. Additionally, models of the
adipocyte, hepatocyte and myocyte have been metabolically integrated together [42], an
important advance for modeling complex diseases. Manual curation is a labor-intensive but
crucial component of the process, because fully automated methods may miss crucial organ
functions. For example, purely automated methods yielded a kidney that lacked the ability to
excrete urea [35]. Notably, unless a high purity of cell-type specific RNA has been obtained,
the result of customization may be a network that represents a compendium of local tissue
functions. Table 3 describes additional studies and resources for integrating omics data sets
into analysis with GEMs.

Therapeutic applications
Before exploring the application of computable metabolic systems models, it is important to
gain an appreciation for the translationally relevant questions that they can address. As these
models are constructed in a bottom-up fashion, they may not directly simulate clinical
endpoints. Using the example of type 2 diabetes, a clinical measure of primary interest
would be the peak plasma glucose following an oral glucose tolerance test. Although
metabolic network models are not constructed with such endpoints in mind, they can be
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used, for example, to formulate detailed hypotheses regarding the effects of alterations in
hepatic glucose metabolism.

Therapeutic areas that have been explored with tissue-specific adaptations of GEMs are
included in Table 1. A breadth of in silico techniques that can be applied to interpret cancer
etiology and develop therapies have been reviewed elsewhere [43], and we discuss here a
recent study by Folger et al. to highlight the power and utility of GEM-guided analyses [44].
Cancer is a promising therapeutic area for the application of GEM-approaches. Metabolic
alterations are known to occur in cancer, suggesting that metabolic pathways can be targeted
that would be specifically deleterious to cancer growth. Folger et al. adapted Recon 1 using
the methodologies mentioned previously [37] to create two metabolic representations of
cancer. First, a generic model of cancer metabolism was constructed using a core set of
reactions deduced from shared expression profiles among the NCI-60 collection of cell lines.
Second, a model of nonsmall cell lung cancer was constructed. Notably, the study by Folger
et al. demonstrates the utility of the human GEM to interpret high-throughput data in the
context of target discovery. The phenotypic results of shRNA gene silencing experiments
are available for the NCI-60 lines and served as model validation. In the generic model, all
199 genes that supported optimization of a cancer growth objective were found to be
experimentally essential. As expected, the nonsmall cell lung cancer model outperformed
the generic model when compared with essentiality data specific to the cell line. Having thus
validated the model, Folger et al. developed predictions for cancer targets using a cytostatic
score, a ratio that takes into account the cytostatic effect on cancer cells while minimally
perturbing crucial ATP flux for the entire human network. They predicted 52 single gene
targets that have a high cytostatic score. Notably, 13 of the 52 cytostatic single gene targets
are targeted by approved noncancer drugs, suggesting these drugs might be repositioned for
cancer. An intriguing possibility for targeting cancer is to exploit synthetic lethality,
targeting pairs of genes that when knocked out only in combination result in the arrest of
metabolic function. Many more synthetic lethal gene pairs with a high cytostatic score were
discovered. Of the 133 synthetic lethal combinations with a high cytostatic score, 99 were
not predicted to reduce the growth of healthy cells and eight were predicted to be potentially
damaging to liver function. Additionally, synthetic lethal combinations with one
downregulated partner in cancer may be viable therapeutic targets. Of 342 total synthetic
lethal combinations, 72 pairs were identified that fit this criterion. Folger et al. also highlight
the iterative nature of model construction, noting that revised tissue models may alter the
synthetic lethal predictions. Future revisions to Recon 1 may further improve predictions.

Triangulation of translational systems biology models: could the phase 3
failure of torcetrapib have been prevented?

A unique example illustrating how different systems simulation methodologies can be
integrated into decision support processes in the pharmaceutical industry can be found
among the cholesterol-modifying drugs that have been developed to reduce the risk of
cardiovascular events. Pfizer’s Lipitor® (atorvastatin) is a tremendously successful drug that
blocks cholesterol synthesis in the liver through competitive inhibition of HMG-CoA
reductase [45]. In some patient populations, Lipitor has been demonstrated to reduce
cardiovascular events such as heart attacks and strokes [46]. Annual sales were $12.8 billion
in 2008 alone [Doing Things Differently, Pfizer Annual Review 2008]. Furthermore, it has
been observed that a reduction in the levels of cholesterol-ester transfer protein (CETP)
results in an increase in HDL-C and a reduction in LDL-C [47], a cholesterol profile
normally associated with a reduced risk of cardiovascular events. Pfizer developed a CETP
inhibitor, torcetrapib, to be taken in combination with the highly successful atorvastatin.
However, the clinical program was terminated after a large phase 3 trial enrolling 15,000
patients (Investigation of Lipid Level Management to Understand its Impact in
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Atherosclerotic Events, ILLUMINATE) found an increase in blood pressure and mortality
in the group treated with combination atorvastatin and torcetrapib [48].

The late-stage failure of torcetrapib highlights the risks taken by the pharmaceutical industry
when developing novel therapeutics. Importantly, the outcome has gained the attention of
several translational systems biology studies, affording a unique opportunity to directly
compare the predictions offered by each. Each provides unique hypotheses relevant to the
safety and efficacy of torcetrapib.

A study by Powell et al. [49] employing phenotype-driven simulation methods predicted that
the atorvastatin/torcetrapib combination would not improve atherosclerotic endpoints,
represented by atheroma volume, as measured clinically by intravital ultrasound (IVUS).
Notably, as the model employed by Powell et al. only accounts for the action on the target
and not the specific structure of the inhibitor, the predicted lack of an improvement in
atheroma volume is a potential deficiency of other CETP inhibitors, and not specific to
torcetrapib. Although the CETP inhibitor altered the plasma HDL cholesterol profile, the net
catabolism of cholesterol did not increase. A follow-up study by Wahba et al. [50] in a
virtual patient cohort included two additional CETP inhibitors, dalcetrapib (JTT-705) and
anacetrapib (MK-0859), with background statin therapy and found little improvement in the
hazard ratio for coronary heart disease risk. However, the results suggested a subpopulation
of virtual patients with high triglyceride and low HDL levels would benefit from CETP
inhibition. Wahba et al.’s study was timely because it was presented as dalcetrapib and
anacetrapib were undergoing phase 3 clinical trials (http://clinicaltrials.gov/, trials
NCT01323153, NCT01059682 and NCT01252953) [51,52]. Subsequently, Roche
terminated phase 3 trials for dalcetrapib due to a lack of efficacy (http://www.roche.com/
media/media_releases/med-cor-2012-05-07.htm).

Although structural biology is not a focus of the current review, a study by Xie et al.
formulated a salient hypothesis regarding the hypertensive side effect of torcetrapib [53], as
observed in the ILLUMINATE trial. Xie et al. employed a novel method whereby the
binding site structure for torcetrapib on CETP was extracted, the binding pocket was used to
search for local structural homology in additional proteins with structural information using
a novel alignment method, and high-ranking alignments were used for docking studies with
ligand. CETP inhibitors were predicted to interact with several members of the nuclear
receptor family involved in the regulation of the renin angiotensin aldosterone system
(RAAS), inflammation and proliferation: LXRα/β, PPARα/γ/δ, GCR, RXR and VDR.
Torcetrapib was predicted to bind the most strongly to the broadest array of positive
regulators of RAAS and weakly to the negative regulator, suggesting torcetrapib would have
the most pronounced effect on blood pressure. The result is consistent with the phase 2 data
available from the two other CETP inhibitors, which have not been reported to exhibit a
hypertensive effect [54-59].

A simulation of renal metabolic function integrating structural biology methods was
performed to evaluate the effect of torce-trapib on the renal regulation of blood pressure
[35]. A model of renal metabolism was constructed from Recon 1, and the structures of the
enzymes mediating the metabolic reactions were screened for similarity to the binding site
for torcetrapib to CETP. A novel optimization objective was developed to ensure the kidney
processed metabolites involved in the regulation of blood pressure and had an adequate
supply of renal ATP. Perhaps most interesting, the inhibition of prostaglandin I2 synthase by
torcetrapib was predicted to strongly disrupt PGI2 production, a potent vasodilator capable
of reducing blood pressure, and peroxisomal acylcoenzyme A oxidase 1, which was
predicted to affect renal absorption of citrate and amino acids. Notably, in order of
decreasing affinity, anacetrapib, torcetrapib and dalcetrapib were predicted to more strongly
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bind PTGIS than the endogenous ligand, prostaglandin H2. Chang et al. also extended their
approach to investigate pharmacogenomics, and made observations regarding genetic
alterations that would yield renal metabolism more susceptible to the off-target effects of the
CETP inhibitors. The similar predicted effect of anacetrapib and torcetrapib on blood
pressure, given the enhanced binding relative to the endogenous ligands of PTGIS and
ACOX1, does not appear to be entirely consistent with the lack of an observed effect of
anacetrapib on blood pressure in clinical trials so far. However, these postulated
mechanisms may still have a role in the clinical phenotype given differences in PK and
ADME have not been included when applying and interpreting the stoichiometric model.
There also may exist concurrent and dominant effects due to nuclear receptor binding, as
discussed previously.

Had the safety predictions for CETP inhibitors been made in advance of clinical studies,
they might have brought attention to potential issues. The binding studies raise an
unaddressed possibility for long-term effects of CETP inhibitors on blood pressure,
inflammation and cancer. These results raise the concern that systems biology approaches
may hinder the development of clinically safe and beneficial pharmaceuticals by falsely
predicting side effects or yielding overly pessimistic predictions for efficacy. Therefore, just
as reliable in vitro systems are used to verify predictions for compound effects on pathways
are accurate, methods to verify whether predicted side effects could manifest clinically
should be used. There are existing tools that may help, such as physiologically based
pharmacokinetic (PBPK) methods to help predict the drug concentration in tissues [60].
Analysis of the interaction network of the off-target proteins may also yield insights into the
potential for side effects [61-63]. Analyses may suggest additional, precautionary endpoints
to monitor in phase 1 trials, hopefully avoiding failures in later stages.

Biomarkers
In the Critical Paths Initiative, the FDA has emphasized the importance of biomarkers in the
drug development process and has established programs to foster the development of new
biomarkers [64]. Biomarkers present the opportunity to identify patients at the greatest risk
for rapid disease progression, stratify patients to select for those most likely to respond to an
investigational therapy, and potentially may serve as surrogate endpoints for clinical trials.
However, one must be very cautious when applying surrogate endpoints. The previous
example of CETP inhibitors illustrates the danger. Although HDL-C is known to negatively
correlate with the risk for atherosclerosis and cardiovascular events, thus far there is much
debate regarding whether HDL-C directly modulated through CETP inhibition in the human
will result in an improvement in plaque-related endpoints [65]. Also, as emphasized by
Powell et al. [49], recent studies targeting cardiovascular risk factors did not result in an
improvement in cardiovascular outcomes, despite the desired improvements in the targeted
risk factors themselves [66-68].

These caveats aside, the mechanistic systems modeling approaches discussed here have
served as important contributors to biomarker identification. For example, a novel biomarker
predictive of bone erosion in rheumatoid arthritis was discovered using the model of
rheumatoid arthritis discussed previously [69]. The marker, CXCL13, is a cytokine
primarily involved as a chemotactic factor for B cells. Mechanistically, one initially would
not suspect processes primarily mediated through macrophage-derived osteoclastic as well
as osteoblastic functions would be predicted by CXCL13. The result, which was confirmed
clinically, illustrates the ability of mechanistic modeling of pathophysiology of large
systems to yield unexpected and practical results.
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Using Recon 1, Shlomi et al. describe a computational method to develop predictions for
markers of genetic metabolic diseases [70]. By cross-referencing the reactions in the model
with the Online Mendelian Inheritance in Man (OMIM) database, 304 metabolic disorders
were tested for biomarkers. By quantifying differences in the transport reaction flux into the
cell, 176 diseases were predicted to yield at least one distinguishing analyte. A manual
inspection of metabolic disorders in the OMIM database with a high-quality set of 17
disorders of amino acid metabolism suggested a precision of 0.76 and recall of 0.56. The
result is good considering the number of assumptions that were made. Fluxes, not
concentrations, of metabolites are used as proxies for the change in metabolite in body
fluids. The entire human GEM was used without developing tissue-specific models or
accounting for the exchange of metabolites across tissues through the serum. The lack of
regulatory constraints could also lead to false predictions. Despite the simplifications, the
method resulted in a roughly tenfold enhancement in biomarker detection performance, as
compared with randomly generated biomarker sets. The approach therefore already has
provided suitable biomarker suggestions.

Discussion
Moving beyond hypothesis testing, when there is sufficient confidence in the simulation
predictions, mechanistic systems simulations can be used as much more than a tool to guide
preclinical research. It has been reported that failing an unsuccessful compound early, in
phase 1 rather than phase 3, may substantially reduce the costs of drug development. A
roughly 10% improvement in the success rate of phase 3 trials, from better lead selection or
failing bad compounds early, is predicted to result in an average cost reduction of greater
than $200 million per approved therapeutic [71]. Reliable bad news should be greeted as
actionable information, but other options must be available for an organization to respond in
an optimal fashion to predictions of failure. Indeed, as pharmaceutical companies are highly
incentivized to pursue high risk targets to minimize competition [72], data used to improve
estimates of a probability of success measure have tangible benefits. The best scenario is one
where the systems modeling results are informing decisions across therapeutic areas in an
organization. The concept is illustrated in Fig. 3. In the unfortunate scenario that all of the
current lead candidates in a therapeutic area lack potential, resources can be more fully
redirected to the development of new leads, other therapeutic areas where there is a better
potential for the portfolio, or to acquisitions.

The modeling approaches reviewed here each offer unique advantages and compromises.
For example, clinical phenotype-driven models enable the inclusion of complex interaction
networks of varying scales. Intercellular and interorgan feedback mechanisms can be
simulated. It is also straightforward to deduce the clinical phenotype from a simulation
result because clinical outputs are used to guide model creation. However, it can be
challenging to inform such models with the omics data sets that have been increasingly
adopted by industry.

Computable network models enhance the ability to functionally interpret networks. For
example, GEMs have elucidated fundamental theories of how cells may respond to
alterations in dietary conditions, including the feasibility of gluconeogenesis [73] and
epigenetic pathologies [74]. Metabolic models integrating the interaction of multiple,
distinct cell types have recently been reported [33,36,42], and several therapeutic areas that
will benefit from further efforts in this direction. Metabolic reconstructions may have a role
in translating therapeutics into humans in early research: it is noteworthy that a model of
murine metabolism has recently been published by refining Recon 1 in the context of
murine-specific data [75]. There has also been recent work investigating therapeutic
modulation of metabolic network state to a healthy phenotype [76-78]. Ultimately this work
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may further contribute to the development of drug targets in additional therapeutic areas, as
opposed, for example, to therapeutic areas such as cancer or infectious disease, where the
primary goal is to selectively disrupt metabolism. It has also been noted that our
understanding of metabolism in simple bacteria such as Bacillus subtilus is incomplete
[26,79], and it is very possible entirely new metabolic pathways in the human will be
discovered as GEMs help to uncover knowledge gaps. Two knowledge areas that could use
refinement in human GEMs are intracellular transport and lipid metabolism.
Intercompartmental transport reactions may have important effects on the network [80], but
have not been well described in the primary literature. Notably, a further discussion of
applying Recon 1 to study pathophysiology has been published [81].

Systems modeling approaches may have an important role in the personalization of
medicine. It has been established that mechanistic systems models can be used to identify
biomarkers of responding subpopulations [82]. Although we have not discussed population-
level measures in detail, systems modeling approaches already have demonstrated promise
informing therapeutic decisions with statistical calibration of population clinical measures,
reflecting underlying mechanistic heterogeneity [49,82]. Admittedly, many challenges
remain for the acceptance of personalized medicine approaches [83]. It very possible
insights and biomarkers to stratify patients will be discovered by merging omics data sets
with the systems modeling techniques discussed here. For example, the NCI-60 lines used
by Folger et al. represent a first approach at mining for drug targets in cancer using
customized metabolic models [44]. Future efforts may explore how alterations in expression
patterns, for example in different breast cancers, impact which targets will yield the best
clinical results.

Concluding remarks
Systems modeling techniques have made contributions and exhibit additional promise across
therapeutic areas of interest to pharmaceutical companies, including asthma, cancer,
cardiovascular disease, diabetes and rheumatoid arthritis. Notably, systems models directly
facilitate in silico target evaluation, help to address best-case and worst-case scenarios, help
to identify and prioritize pre-clinical research, provide a method to interpret high-throughput
data sets, can guide drug repositioning, and can guide the development of biomarkers. The
variety of mechanistic systems modeling approaches available can be complementary in
their application, as illustrated by the studies with torcetrapib. Systems models are
integrative in their incorporation of mechanistic knowledge; likewise, they should be applied
in an integrative manner across a pharmaceutical research pipeline. Then, they may help to
alleviate the productivity crisis experienced by the pharmaceutical industry.

Systems modeling requires an appropriate business and research environment to be an
effective strategy for an organization. In an internally competitive research environment,
predicted therapeutic outcomes will probably bias the acceptance of the predictions and the
ability of an organization to respond optimally. However, in a cooperative research culture,
broadly applying system models across compounds in a therapeutic area will help to select
those that exhibit the most promise of advancing the overall strength of the research
program. Predictions giving an indication of clinical efficacy can help to inform how
resources for preclinical and clinical research and development are prioritized.
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FIGURE 1. The scope, input and output of two modeling paradigms
(a) Phenotype-driven models integrate biological processes relevant to disease across length
scales, from molecular mediators to tissue responses. Once the model is built and parameters
are defined, either from the literature or experimental measures, a simulation solves a large
system of ordinary differential equations. The result is the prediction of the dynamics of
therapeutic and mediator concentrations, cell populations and composition, and tissue-level
function. Simulations must span multiple time scales to capture important events such as the
administration of therapeutics as well as clinical disease progression. (b) Genome-scale
metabolic models use knowledge of metabolic reactions in a given cell type to construct
stoichiometrically defined reaction networks. Reactions are frequently associated with
enzymes from known genetic loci, which makes the task of informing the model with high-
throughput data, such as proteomics or transcriptomics, more tractable. The network is often
assumed to be at steady-state, with constant reaction, metabolite consumption and
metabolite production rates. The formulation of cellular goals, or objectives, enables the
application of methods from linear programming. Flux balance analysis and related
mathematical approaches result in a description of allowable fluxes, the rates at which
reactions are used for metabolic conversions, in the network. This description of the network
state can be further analyzed to deduce cellular function, including the optimization of goals
such as growth, ATP production, or glucose production, as well as the effect of perturbations
in the network originating from disease or therapy.
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FIGURE 2. Construction of large-scale mechanistic models
(a) The process of constructing a phenotype-driven model is reviewed here briefly. In the
design phase, the model scope, including crucial model behaviors, components and
validation behaviors are identified. This phase includes an extensive literature review to
ensure important aspects of the disease and validation data are identified. Next, the
development of the architecture involves defining the equations that will govern the model
behavior and developing parameter estimates. An internal validation step is performed. The
calibration may use both manual and automated optimization techniques. Frequently,
acceptable perturbations to multiple aspects of the biology, such as therapeutics with distinct
mechanisms of action, are used. Often, the goal is to match average population behaviors,
and such a carefully calibrated internal validation result serves as a reference virtual patient.
During external validation, the responses to additional perturbations (not included in the
calibration step) are tested. The model can then be applied for research purposes. However,
the model may be recalibrated as additional data become available. An existing model may
also be used as a basis for exploring new targets as additional information about relevant
pathways becomes available, although such a model enhancement will require a similar,
albeit smaller, process of design, architecture development, internal validation and external
validation. (b) The process of constructing a genome-scale metabolic network reconstruction
is illustrated. First, a general network reconstruction must be built. An annotated draft
genome is integrated with databases containing the relevant enzymes and network reactions.
After assigning gene protein reaction associations and performing an initial manual curation
step, the reconstruction should be converted to a computable format. Once this is done,
additional quality control and manual curation steps can be performed, such as verifying that
metabolic pathways support fluxes and inspecting dead-end reactions. Once these steps are
satisfactorily completed, one has a high-quality metabolic network reconstruction that may
be revised as the knowledge base grows. For application to different therapeutic areas,
tissue-specific adaptations of the generic model must be constructed.
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FIGURE 3.
Portfolio and organization-level pipeline management decisions can be improved using
systems modeling approaches. It is important to note that predictions derived from modeling
yield increased or decreased confidence in the clinical success of a therapy, and therefore
may be incorporated directly into corporate strategy. A hypothetical scenario is shown
where a company is developing nine leads, all of which have been vetted for high potential
returns, across three therapeutic areas. Modeling has improved confidence in the likelihood
of success of two cancer targets, and dedicated research and development resources can be
allocated as needed to maximize productivity through lower risk, high reward projects. In
this scenario, the cardiovascular leads under development have not demonstrated great
potential for translating through the pipeline through phase 3 successfully, and the company
may want to explore acquisition options.
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TABLE 1

Systems models with demonstrated application to drug development

Therapeutic area Companya Platform Refs Notes

Anemia Entelos PhysioLab [84]

Anemia (hemolytic) Academic Multipleb [23] Short investigation of glutathione
synthetase and glutamate-cysteine
ligase in context of full Recon 1

Asthma Entelos PhysioLab [5,82,85-87] c

Cancer Academic Multipleb [41,44,88-90] d

Cardiovascular Entelos PhysioLab [49]

Cardiovascular Academic Multipleb [23] Short investigation of HMG-CoA
inhibition in context of full Recon 1

Central nervous system Rhenovia Pharma SAS RHEDDOS [91]

Central nervous system Academic Multipleb [36] d

Type 1 diabetes Entelos PhysioLab [13] NOD mouse model

Type 2 diabetes Entelos PhysioLab [92,93] c

Type 2 diabetes Academic, GT Life
Sciences, Intrexon,
Genomatica

Multipleb [42]

Drug-induced liver injury Entelos PhysioLab [94]

Leigh’s syndrome Academic Multipleb [95] Mitochondrial focusd

Infectious disease and
biodefense

Academic Multipleb A. baumannii [96], M. tuberculosis
[33,97-100], B. cenocepacia [101], F.
tularensis [102], L. major [103,104],
V. vulnificus [105], P. aeruginosa
[106], S. aureus [107] and S.

Typhimurium [108]e

RAAS Entelos PhysioLab [109,110]

Rheumatoid arthritis Entelos PhysioLab [5,22,69,111,112]

Sepsis Immunetrics [113-115]

a
We only include large mechanistic disease models reported in journal publications or at scientific conferences.

b
GEMs are often available in Systems Biology Markup Language (SBML) format, which can be used with several software packages, including

MATLAB [116]. The COnstraint-Based Reconstruction and Analysis (COBRA) toolbox is one especially useful tool for simulating network states
[117].

c
Of note, smaller, ‘medium scale’ models that capture mechanistic aspects of pathophysiology for use in drug development have been reported at

conferences by Rosa & Co. for asthma [118] and diabetes [119-123].

d
Metabolic network model informed with tissue-specific data.

e
Although not purely human simulation, we include several examples of probing for metabolic drug targets in lethal pathogens or metabolic

network integration with the host to illustrate another important application of metabolic systems modeling.
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TABLE 2

Examples illustrating how model outputs yield insights relevant to drug development decisions

Model type Primary model outputs Drug development insight Study description and reference

Genome-scale metabolic model Biomass production (cellular
growth rate)

Preclinical target identification It was computationally predicted that
the loss of function in fumarate
hydratase that occurs in hereditary
leiomyomatosis and renal-cell cancer
results in susceptibility to disruption of
a heme degradation pathway. This
result was then verified in vitro [89].

Phenotype-driven model Forced Expiratory Volume
in One Second (FEV1) and
the activity of 501 pathways
in multiple virtual patients

Preclinical target verification Phosphodiesterase-4 (PDE4) was
evaluated as target for the treatment of
asthma. Biosimulation identified
pathway-level effects of PDE4 most
predictive of improvements in FEV1,
yielding pathway-level outcomes that
can be monitored during an in vitro
screen to verify advancement to clinical
trials [5,82].

Phenotype-driven model Mortality, organ failure and
a panel of 18 analytes

Clinical trial design and marker
identification

The model of severe sepsis was trained
with data from patients with
community-acquired pneumonia that
underwent a 30-day hospital stay and
treatment. Thirty-day mortality
following discharge was predicted with
84% overall accuracy. The model
training process identified analytes
likely important for the prediction of
trial outcomes (mortality). The accuracy
of the model with a ‘virtual clinician’
suggests the model can be used to help
design trial treatment protocols [115].

Phenotype-driven model ACR-N score, JSN score
and BES in response to
multiple therapeutics in a
cohort of virtual patients

Clinical trial design and
competitive differentiation

Simulations were run for a large set of
virtual patients. Virtual patients that
responded well to NKG2D inhibition,
but not currently approved therapies,
were identified, illustrating anti-
NKG2D will potentially fulfill an
unmet clinical need in rheumatoid
arthritis therapy. Additionally,
simulations predicted the need to
maintain methotrexate therapy for
optimal efficacy, an important
consideration for trial design.
Subsequent in silico studies were
proposed to identify how common these
patients are in the clinic and also to
identify stratifying biomarkers [112].
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TABLE 3

Methods for informing GEMs with omics data sets

Algorithm name and reference Brief description

None specified [124] Transcript absent decisions from microarray data are used to eliminate network reactions

iMATa (integrated Metabolic Analysis Tool)
[125]

Predicts a set of reaction fluxes based on microarray and proteomic data

GIMMEb (Gene Inactivity Moderated by
Metabolism and Expression) [126]

Uses microarray data, an expression threshold, and required metabolic functions to
propose allowed network reactions and penalties

E-Flux [127] Alters allowed reaction flux ranges based on gene expression data

MBA (Model Building Algorithm) [37] Proposes a parsimonious set of reactions that is consistent with multiple high-throughput
data sources

IOMAc (Integrative Omics-Metabolic Analysis)
[128]

Predicts reaction fluxes that are consistent with proteomics and metabolomics
measurements

tFBA [129] Maximizes consistency of reaction fluxes with changes in gene expression

MADEd (Metabolic Adjustment by Differential
Expression) [130]

Uses statistical changes in metabolic gene expression to enable network reactions

INIT (Integrative Network Inference for
Tissues) [41]

Uses the Human Protein Atlas as a primary data source to create tissue-specific models
and also allows for the accumulation of network metabolites

GIMMEp (Gene Inactivity Moderated by
Metabolism and Expression by Proteome) [34]

Expands on the original GIMME method by integrating proteomic data to identify
additional required metabolic functions

a
iMAT is available online (www.cs.technion.ac.il/~tomersh/methods.html). Versions of the iMAT algorithm are also available in the COBRA

toolbox and TIGER.

b
GIMME is available in the COBRA toolbox [117] (http://opencobra.sourceforge.net/openCOBRA) as well as in TIGER.

c
IOMA is available online (http://www.cs.technion.ac.il/~tomersh/methods.html).

d
MADE is available online (http://bme.virginia.edu/csbl/downloads.php) as well as in TIGER (Toolbox for Integrating Genome-scale metabolic

models, Expression data and transcriptional Regulatory networks) [131] (https://bitbucket.org/csbl/tiger/downloads).
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