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Abstract
Cortically-controlled prosthetic systems aim to help disabled patients by translating neural signals
from the brain into control signals for guiding prosthetic devices. Recent reports have
demonstrated reasonably high levels of performance and control of computer cursors and
prosthetic limbs, but to achieve true clinical viability the long-term operation of these systems
must be better understood. In particular, the quality and stability of the electrically-recorded neural
signals requires further characterization. Here, we quantify action potential changes and offline
neural decoder performance over 382 days of recording from 4 intracortical arrays in 3 animals.
Action potential amplitude decreased by 2.4% per month on average over the course of 9.4, 10.4,
and 31.7 months in 3 animals. During most time periods, decoder performance was not well
correlated with action potential amplitude (p > 0.05 for 3 of 4 arrays). In two arrays from one
animal, action potential amplitude declined by an average of 37% over the first 2 months after
implant. However, when using simple threshold crossing events rather than well isolated action
potentials, no corresponding performance loss was observed during this time using an offline
decoder. One of these arrays was effectively used for online prosthetic experiments over the
following year. Substantial short-term variations in waveforms were quantified using a wireless
system for contiguous recording in one animal, and compared within and between days for all
three animals. Overall, this study suggests that action potential amplitude declines more slowly
than previously supposed, and performance can be maintained over the course of multiple years
when decoding from threshold crossing events rather than isolated action potentials. This suggests
that neural prosthetic systems may provide high performance over multiple years in human
clinical trials.

1. Introduction
Neural prostheses, also termed Brain Machine Interfaces (BMIs) or Brain Computer
Interfaces (BCIs), are an emerging class of medical technology with the potential to improve
the quality of life for severely disabled patients. In particular, intracortical signals from
multi-electrode arrays that penetrate 1-2 mm into cortex can provide useful control signals.
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Performance from these systems can be high, which motivates determining how long it can
be maintained. For example, discrete selections of visual targets on a screen can be made at
a rate of 6.5 bps [1], which approximately corresponds to typing on a keyboard at
approximately 15 words per minute. For continuous control, cortical signals have been used
to guide a computer cursor to targets on a screen [2–13]. Recent work has demonstrated
increased speed and reduced variability [13–15]. Further motivating clinical translation,
cortical signals have also been used to control the arm and hand on an anthropomorphic
robotic arm for self-feeding in primates [16]. offline, information from other degrees of
freedom, such as fingers and wrist, have been extracted as well [17]. The clinical need for
such control signals is high, since there is a substantial population of paralyzed patients, and
state of the art prosthetic limbs currently have more degrees of freedom than one can easily
control with conventional approaches [18].

However, to conduct a risk-benefit assessment for human patients, it is important to quantify
the stability of cortical BMI performance. The major focus of previous work on this question
has been to characterize the tissue response to electrode implantation. On the shortest time
scale, after implantation, effects such as edema and hemorrhage are observed [19]. Within
weeks, the brain largely recovers from the acute effects [20,21], but it is possible that the
extent of this trauma determines the number of viable neurons surrounding the electrode for
long term recording [22]. This early period is associated with minimal recorded neural
activity [23]. On the timescale of 1-4 months, there is also an encapsulation response, in
which astrocytes and microglia form a tight insulative sheath around the electrode [21,24],
which can remain in place for years [25]. This has been suggested as the primary mechanism
for the degradation of single unit activity over time [26]. One study reported large declines
in single unit activity using microwire probes on similar timescales [23]. This effect may
reach steady state as early as 12 weeks post implant [21,24,25,27]. However, many BMI
studies have been completed using the “Utah” array (as well as microwires) for over 6
months. The Utah array, which is a monolithic array of 100 silicon microelectrodes, is
particularly important to understand because it has been FDA approved for use in human
patients [7,8,28]. This long-term use raises the question of how histological and
electrophysiological measurements are related. More generally, it also raises the question of
what fraction of overall signal quality degradation is caused by biological response as
opposed to materials and engineering failures.

The discrepancy regarding timescale might be related to the perceived importance of single
unit activity (clearly differentiable action potentials arising from individual neurons). Many
histological and electrophysiological studies have assumed that single unit activity will be
well correlated with BMI performance. Until recently, this was a reasonable assumption
since early BMI results emphasized the use of single units [1–3]. In these systems, the
activity of individual neurons is differentiated by separating action potentials with
distinctive waveforms, a mathematical process termed “spike sorting”. However, with
present algorithms, spike sorting leads to very little improvement in BMI performance [11,
29–31]. In fact, high performance studies recently reported have used only “threshold
crossing” events, in which the firing rate of one unit per electrode is determined by counting
the number of times that the voltage falls below some multiple of the RMS voltage,
regardless of whether this activity results from more than one neuron [11,13–15]. Since
these studies used at least one array implanted for more than one year, it is important to
revisit whether decline in the amplitude of action potentials (Vpp) actually corresponds to
performance loss.

Several previous studies have examined these questions. One previous study examined day-
to-day stability in recordings from the Utah array in a feline model and saw substantial
interday changes in neural waveforms which correlated with measures of inflammation [32].
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However, they did not quantify the effects on decoder performance with this animal model.
A number of papers have attempted to track single units across a few days [28,33–35]. Most
relevant to the current study, one study examined the ratio of Vpp to the standard deviation
in voltage in three macaques with Utah arrays, and found no significant decline [36].
However, if the decline is more subtle than previously supposed, the particular metric used
to measure it may not detect the effect over the time periods studied, and it would not be
noted subjectively during experiments if it was not also reflected in decoder performance.
This study also did not attempt to systematically examine the information content on these
arrays over many months, as measured by decoder performance over time.

In this report, we analyzed neural data from 382 days in 3 monkeys and 4 intracortical arrays
over various periods during 3.6, 9.4, 10.4 and 31.7 months of implantation. These data were
characterized in terms of the peak to peak voltage of action potentials as well as offline
decoder performance. Voltage decline over long time scales was slow but significant, with
several noticeable “events” in which there were rapid changes. Over time, decoder
performance was rarely correlated with Vpp, when simple threshold crossings were used.
On shorter timescales, large but reversible changes in Vpp were quantified. This study
empirically demonstrates not only that average Vpp decays more slowly than previously
supposed, but that decoder performance may decline even more slowly. In particular, it
declines in a less direct fashion when using threshold crossings (i.e. multi-unit activity)
instead of relying on well-isolated action potentials originating from single neurons.

2. Methods
2.1. Behavioral Tasks

All protocols were approved by the Stanford University Institutional Animal Care and Use
Committee. We trained three rhesus macaques to perform 2D reaches to visual targets, as
shown in Figure 1a. Two monkeys, I and L, were prospectively selected for this study after
having completed previous studies [37–39]. A third animal, J, was retrospectively selected
for this study on account of having an observed Vpp decline during the course of a previous
study [40] as well as substantial longitudinal data from an ongoing study [13]. For these
three animals, we were interested in quantitatively comparing prosthetic performance over
time. Thus, we analyzed data from stereotypical tasks, during each time such a task was run
on a subset of days for more than 30 days.

These data consist of 382 daily datasets from 3 animals and 4 arrays across 3.6, 9.4, 10.4
and 31.7 months of recording, as shown in Figure 2. To our knowledge this represents the
largest cortical dataset analyzed for array stability. Waveform voltage data could be obtained
from all 382 datasets. A subset of this data, 184 datasets, included long periods of identical
tasks. These periods are shown in the dashed boxes in Figure 2. During these periods,
decoder performance could be quantitatively compared over time. Two animals had multiple
periods where they performed a consistent task over more than 30 days. Point-to-point
reaches were performed in complete darkness except for the illuminated target. Hand
position was optically tracked with a reflective bead attached to the distal joint of the index
or middle finger and measured at 60 samples/sec (nominal sub-millimeter resolution) using
a Polaris system (NDI, Waterloo, Ontario, Canada). For the non-BMI datasets, the task was
sequenced using Tempo software (Reflective Computing, St. Louis, MO). For the pre-BMI
training trials, which consisted of real center-out reaches, the task was sequenced using
custom Matlab and Simulink code executed on a real-time xPC target. All monkeys were
highly trained for many months prior to implantation, such that there was likely little to no
learning occurring during the present study. For all animals the task was a simple center-out
reach task [41]. However, animals varied in the number of targets (4,7,8) and radius of the
targets (80-120 cm), in addition to other small changes. However, performance measures for
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a specific animal were internally consistent, allowing quantitative comparisons over time,
but not between animals. The number of trials used was identical for each animal, and
included at least 25 trials per condition. All animals received a liquid reward for successful
trials.

2.2. Electrophysiology Recordings
One or two commercially available silicon “Utah” arrays (Blackrock Technologies Inc., Salt
Lake City, UT, USA) containing 100 electrodes each were implanted into PMd/M1 of these
animals using standard neurosurgical techniques [42]. Neural data were recorded using a
Cerebus system (Blackrock Microsystems, Salt Lake City, UT) while the monkey was
participating in a neuroscience experiment for 1-5 hours during the day. For monkey L only,
wireless data were recorded using HermesC [37,43], pictured in Figure 1b. These data were
recorded on 39 particular days while the animal was in the home cage from 20 channels at a
time. Wireless data were obtained 91% of the time except during the in-rig experiments,
animal transfers, and rare equipment failures. While this system has the capability of
recording threshold-crossing data from all 20 channels simultaneously, only the single
broadband channel was used in this study. The device was programmed to switch between
each of 20 channels every 23 seconds and record data at 15.7 ksps such that waveform shape
could be recorded 24 hours a day at a duty cycle of approximately 4%. Therefore, the
wireless data were obtained at half of the sampling rate as the wired recordings and were
only recorded for 23 seconds every 8 minutes.

Vpp from spike sorted neurons was required for many analyses presented in this paper. Due
to the large size of the dataset, an automated spike sorting algorithm was required. Neural
units were isolated offline using noise whitened principal components and a mixture of
Gaussian models for clustering [30,44] as illustrated in Figure 1c. This spike sorting
algorithm was augmented with a bipolar shape heuristic to eliminate any non-neural artifacts
that might appear as sorted units. A large proportion of the data were manually verified to
ensure that no artifacts were included. When well-isolated single units were required for an
analysis, unit quality was rated manually for a small number of datasets. Units were
classified as putative single units, single units with some contamination by other units, and
multi-units. The number of putative single units in early datasets was 34, 27, and 28/38 for
animals I, L, and J/J (Monkey J had 2 arrays).

For measuring offline decoder performance, as described below, data were not spike sorted.
Instead, a threshold was set at −4.5x the RMS voltage on a particular electrode, and this
multi-unit’s activity was decoded similarly to a single unit. Several prior studies have
reported little or no gain in performance using sorted spikes rather than threshold crossings
[11,30], as discussed above. This was verified using 39 datasets that were manually spike
sorted, resulting in only a 4% performance improvement. Using threshold crossings also
simplified standardization across animals and time periods, as data for monkeys L and J
were collected as part of ongoing online BMI experiments, in which −4.5x RMS threshold
crossings were used.

2.3. Neural Data Analysis
For estimating prosthetic decoder performance offline, two different decoders were used: a
discrete and a continuous decoder. For the discrete decoder, a naive Bayes classifier was
used, similar to one we have used previously [1]. The average firing rate of the threshold
crossings on a particular electrode on a particular day was modeled as a Poisson distribution
with a characteristic mean firing rate λ for each angle, measured with 500 ms of neural data
after the target appears. For each block of single trials in each direction, all other reaches
were used to train a model which was then tested on those trials. Decoders were trained and
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tested on data within the same day. To decode the target angle, the likelihood of each angle
was calculated as in Equation 1:

(1)

where θ is target angle, N is the number of neurons, and yt is the number of spikes that
occurred during the integration window. The angle with the highest probability was then
selected. Using this type of decoder, performance can be evaluated with percent correct.

A continuous decoder was also constructed offline using a linear filter [3, 6, 7, 33]. The
firing rate and position was averaged over 100 ms bins during each trial. The linear model
used the firing rates of the units at ten sequential 100 ms time lags. Position was modeled as
a function of firing rate using a linear Wiener filter. In Equations 2 and 3, the firing rate
matrix X has ten columns for each unit, and horizonal and vertical position is found in
matrix Y.

(2)

(3)

Both X and Y have rows corresponding to the total number of 100 ms bins in the
experiment. The resulting linear decoder, matrix B, is computed through linear regression.
The model was tested using cross validation with 20 folds. I.e., for each 5% of the data,
neural decoders were generated using the other 95% of the data, and tested on that 5%. The
final performance value was averaged across all such 5% pieces. Continuous performance
was quantified using a correlation coefficient with actual hand position, as well as the
average distance to the target during the decoded reach.

3. Results
3.1. Long Timescales

The simplest way to characterize electrode stability across many months is to examine the
peak to peak amplitudes (Vpp) of the largest action potentials on each channel. Figure 3
shows this Vpp averaged across electrodes (with high noise electrodes removed) for 4 arrays
in 3 animals. Three out of four arrays showed a statistically significant negative trend during
this time (p < 0.001). The size of the effect was, +0.3% (I, not significant), −6.1% (J-1),
−2.8% (J-2), and −0.6% (L) per month. The arrays with fewer months of recording show
larger effects, which is consistent with a trend that slows down over time.

This data is characterized by long periods with a small negative change and shorter periods
with large changes, which may be relevant to determining the mechanism of these changes.
For example, in Monkey J, both arrays showed decline during the first 2 months after
implantation. This can be seen more easily by viewing only the channels with observed
isolated action potentials on day one, shown in Figure 4a, rather than all channels as in
Figure 3. The overall Vpp declined by 47.0% and 28.2% (p < 0.001). Subjectively, during
experiments well-isolated action potentials were observed to decline substantially in
number. However, in one of these arrays that continued to be used for online BMI
experiments over the following year it is clear that this trend did not continue at the same
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rate. For the 8.5 months following, voltage declined by only 2.0% per month. Another
period of decline was observed at the end of 27 months (2.2 years) of recording from
Monkey L. During the initial 27 months, this array’s Vpp declined by 17.2% (0.6% per
month). However, during the following 2.5 months, as shown in Figure 4b, it declined by
35% (and then recovered by 15%). This event was concurrent with an infection at the
implant site, but there is no obvious mechanism to explain the changes in voltage. In all
animals, Vpp declined slower than what would be expected if the glial scar response sealed
off the electrode in the first 12 weeks.

To determine how the voltage changes might affect decoder performance, offline
performance was evaluated in two ways. First, a discrete prediction of which target the
animal was reaching to provided a percent correct value. Second, an offline implementation
of a continuous linear decoder mapped neural firing rates to hand position. Quality of the
continuous decode was measured by correlation coefficient between predicted and actual
hand position. However, correlation coefficient can remain stable in the face of large
absolute changes in decoder performance. Therefore, a second metric, mean distance to
target, was also calculated during the decoded reach as in [45,46].

For three out of four animals, decoder performance was not significantly correlated with
Vpp. Figure 5 shows all three performance metrics below the voltage amplitude traces in
Monkeys I and J. Performance variation was not significantly correlated with voltage
variation in these arrays (p>0.05 except one p = 0.02, which is not significant when
corrected for multiple comparisons). In the remaining data from the second array in monkey
J, it continued to be uncorrelated with voltage over months 4-11, during which a different
task with more targets was run and decoded offline (23 datasets). Performance by itself
during these periods showed no significant negative trends, despite the negative trends in
voltage during the first two months for both arrays in Monkey J. These data show that action
potential amplitude cannot be used as a proxy for measuring BMI performance.

Similar data for monkey L is shown in Figure 6. This array is older than the others, having
been implanted for over 2.5 years. There were two periods with identical tasks across
periods longer than 30 days, which are graphed on either side of the ellipses near day 350 in
Figure 6, such that absolute performance cannot be compared across this boundary, but
trends can be examined within each period. During the first period, variation in performance
was correlated with variation in voltage for all three measures (ρ = 0.45, p < 0.01).
However, there were no significant trends in performance during this time. During the
second period, performance using all three metrics was highly correlated with voltage (ρ =
0.67, p < 0.001) and decreased along with the voltage (p < 0.001). During the final 5 days of
recording, performance had nearly recovered, with an average discrete percent correct of
93% predicting which of 8 targets the animal was reaching towards and an average
correlation coefficient with hand position of 0.85. This is despite the fact that Vpp had only
recovered from approximately half of the loss.

3.2. Short Timescales
In addition to long term trends, short-term variation in neural waveforms was observed over
the course of hours and between days. Figure 7 shows data from the wireless incage
recordings. The example electrode in Figure 7A had single unit action potentials that were
sometimes visible and sometimes undifferentiable from the multi-unit hash. These short
term changes occur despite the fairly stable average unit voltage shown in Figures 3 through
6. Voltage data for 19 channels of wireless recording are shown in Figure 7B. For each
electrode, the 95% envelope of voltage waveform snippets was found and normalized to the
average voltage on that electrode across all days so that percentage deviations could be
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examined. Peak to peak voltages ranged from 66% to 236% of these mean values. The speed
of changes is apparent from the abrupt changes between adjacent 1 hour bins.

During experiments in which the animal sat in a primate chair with a fixed head position,
smaller changes in neural waveforms were also observed. Figure 8 shows normalized
voltage data from hand verified single units in one dataset per animal. Over the course of the
experiment, the Vpp’s progressively deviate from their initial value, as shown by the
standard deviation traces. The final standard deviation from the initial values was 9.0%,
6.4%, and 14.8% over 1, 2, and 5 hours.

For all experimental days and animals, the data were spike sorted in an automated fashion,
and the Vpp of the largest sorted unit on each channel was calculated. Changes in these
waveform amplitudes were measured within single experimental sessions, as well as across
many days. A histogram of changes that occurred (per hour) over 1-5 hrs while the animals
were seated in the rig is shown in Figure 9a. With 21310 unit-day pairs, this distribution
shows an average absolute change of 3.2% per hour, though 6% of the waveforms changed
by over 10%. Across days, changes were more substantial with an average absolute change
from the mean voltage of 23.7%, as shown in Figure 9b. Again, there were outlying changes
that could be very large with 14.6% of the waveforms changing by over 50% between two
given days. These results are consistent with previous studies in which large changes were
observed between days [32, 36]. The wireless data above provides the fast timecourse of
these changes.

4. Discussion
Action potential amplitude (Vpp) declines reported in this study were slow, with an average
decline of 2.4% per month. Older implants had slower rates of decline, consistent with a
slowing trend. These data are consistent with a prior study [36], which described no trend
presumably because these changes are rare, slow, and subtle enough to require many months
of data. Also, no significant trend is visible using all sorted units rather than only the largest
units on each electrode. For monkey J, these data may also be consistent with tissue
response studies in which there is a period of rapid decline in the amplitudes of single units
during the first 12 weeks [21, 23, 27]. To our knowledge this is the first study to correlate
decoder performance with array voltage over multi-month timescales, though preliminary
work has appeared previously [47, 48]. Vpp was not well correlated with performance when
using threshold crossings, which suggests that the presence and amplitude of single units
cannot be used as a measure of BMI performance. While the performance discussed here
was assessed with offline decodes, Monkeys J and L were simultaneously participating in
online BMI experiments. During this time, no noticeable decline in online decoder
performance was noted subjectively, except during the period shown in Figure 6, where
offline performance declined as well. While offline decodes may not be a good predictor of
absolute online performance [45], they may still be useful for estimating the information
content over time. Also, the arrays presented here were representative of the arrays observed
in our laboratory.

In this study, the performance was analyzed while retraining the decoder every day. This
improves performance because of the short term waveform changes shown in Figures 7
through 9, which lead to a changing subset of neurons comprising the multi-unit. It has been
suggested that this may be an obstacle for clinical systems. During online monkey
experiments, this requires approximately 15 min of training data and is fully automated in
software. No manual supervision of spike sorting is required when using threshold
crossings. High performance has also been demonstrated with fewer training trials [10].
Other signals sources such as ECoG have demonstrated stable performance using the same
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model parameters [49,50] for up to 8 months [51], but this may reflect a tradeoff between
performance and stability. It might be possible that after some number of years, ECoG
signals would outperform intracortical array signals on the same task, but that remains
unconfirmed. However, with micro-ECoG implants, it might be possible to increase the
amount of cortical coverage beyond what is possible using intracortical arrays for
applications such as finger decoding [52–54].

To improve intracortical arrays so that they can last for decades, it is important to
characterize the type and speed of signal changes. On short timescales, reversible changes in
action potential amplitude can occur very quickly. Motion is likely responsible for some of
these changes [55]. However, their speed would suggest movements of many tens of μm in
a homogenous medium [56]. This does not include non-linear effects, such as touching a
neuron. If there are substantial movements of the array, this underscores the importance of
the glial sheath, which enables an electrode to move with less damage to surrounding neural
tissue [21]. Changes in electrode or tissue impedance could also result in waveform changes
[24]. No matter what the cause, these changes make it very difficult to maintain single units
over time.

Fortunately, spike sorting does not substantially improve decoder performance [11]. This
could be because only a subset of channels have multiple units, and only a subset of those
have opposed directional tuning [30]. On average, combining units may tend to decrease the
Poisson noise. Also, human spike sorters have been shown to ignore units containing useful
information on account of poor isolation [29]. In this study, threshold crossing events were
detected whenever voltage went below −4.5 × the RMS voltage on that particular channel.
In addition to eliminating the need for supervised spike sorting, this approach enabled online
BMI experiments to be conducted with older arrays than previous work [13].

Neural data from all arrays in this study were recorded for more than 12 weeks, at which
time the glial sheath has probably already formed. The slow long-term decline in action
potential voltage across many months may reflect consolidation of this process, neuron
migration away from the site, or accumulating adverse events such as head accelerations or
infections. Importantly, Vpp declines on the timescales of months and years may have as
much or more to do with materials and engineering failures, and future research is needed to
assess this contribution. In this study, large changes in voltage were observed without
concurrent changes in performance when using threshold crossings. A number of effects, for
example gliosis or loss of electrode insulation, could cause action potential amplitude to
decrease. However, if there was no cell migration away from the electrode, one would still
expect the same population of neurons to be recorded at a lower voltage. Therefore, one
would expect performance using threshold crossings to remain constant, as described in the
Results. While single units might no longer be clearly differentiable, the remaining activity
on these channels would still be primarily neural, and probably above the inherent noise of
the electrode and amplifiers. If the voltage declined into this noise floor or an alternative
process became dominant, the performance would eventually correlate with voltage, similar
to the effect observed in Monkey L at 27 months post implant. Of course, while this
description is consistent with data presented here, only a small number of arrays were
examined. Future work examining multi-year old arrays may be warranted. This study also
predicts that one could simulate older arrays by using threshold crossings even while single
units are present. Wireless systems may be helpful in running array lifetime studies
concurrently with conventional experiments [38]. Additionally, fully implantable devices
may become crucial for long term device stability [43,57,58]. In this and previous studies,
array stability at multiple years is likely confounded by the ability to maintain a
transcutaneous link.
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This study suggests that the average action potential amplitude on electrode arrays may
decay more slowly than previously supposed and that decoder performance can decay at an
even slower rate. This is enabled by the use of simple threshold crossings events rather than
well isolated action potentials from single neurons. This further enables and motivates the
translation of cortical BMI work into quality of life improvements for disabled patients.
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Figure 1.
(a) Illustration of experimental setup. Animals made 2D reaches to radial targets. (b)
Wireless recording device used for Monkey L [37] (c) Neural data was processed through
various filters, and through a principal component based automatic spike sorter [30]. Data
were first filtered, peaka-ligned and noise whitened in the leftmost panel. Then, waveforms
were projected into 4D principle component space, where units were clustered using an
expectation-maximization based mixture of gaussian models, producing the classification
shown on the right.
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Figure 2.
Chart showing when datasets were collected. Tick marks represent 1 day of recording. Gray
line represents time each animal was implanted. Dashed boxes indicate times where a
consistent center out reach task was performed over more than 30 days such that offline
BMI performance could be analyzed. Color and number denotes different but self-consistent
tasks. Period with wireless data denoted by black arrow.
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Figure 3.
(a) Voltage from largest unit on each channel averaged across channels for 4 arrays in 3
animals, where color denotes a specific array. (b) Average change per month in each array.
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Figure 4.
(a) Voltage from largest unit averaged across the 28 and 38 channels on two arrays from
Monkey J that had observed single unit activity in initial dataset during first 2 months of
recording (b) Similar data from Monkey L after 2 years of recording. All data is smoothed
across a 10 day averaging window to reveal trends.
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Figure 5.
Top row shows average voltage amplitude across electrodes with observed single unit
activity on day one on 3 arrays in 2 animals during periods where the same task was
performed for more than 20 days. The number of single unit channels was 34, 28, and 38
electrodes for I, J-A, and J-B. Lower rows show offline decoder performance. For discrete
target decoders, performance is measured by percent correct. For a continuous linear decode,
performance is measured with correlation coefficient to actual hand position and mean
distance to target over the course of the trial. Red lines denote significant trends. No
smoothing filters were used.
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Figure 6.
Top row shows voltage amplitude from largest unit on each electrode averaged across
electrodes for Monkey L. Ellipses denotes discontinuity on x axis near month 12. The
performance data to the left and right of these ellipses come from different tasks, denoted by
symbols, with different average performance, but are self-consistent on either side. Data is
more sparse at the beginning of the second period because various training paradigms were
attempted, and only a subset of the days included an identical 8 cm center out task with
more than 200 trials, though this became standard later on. The same performance metrics as
Figure 5 are shown below. On the first task, no significant trends are present. On the second
task, voltage declines and recovers significantly (p<0.001), and is significantly correlated
with changes in performance using all 3 metrics (p<0.001). No smoothing filters were used.
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Figure 7.
(a) Example waveforms across days from wireless dataset. Unit is regularly visible and
occasionally disappears. (b) Average voltage in 1 hour bins calculated on 19 of 20 active
channels across 13 days of wireless recording starting 328 days after implantation. Voltage
is normalized to mean voltage on that channel. White space denotes time without wireless
recording, usually during daily experimental session. Arrows denote the channel which was
plotted in (a).
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Figure 8.
Changes in single unit amplitude during normal experiments while seated with a fixed head
position. Voltage normalized to the size of the single unit at the beginning of the experiment
to show percentage change in three animals. Red lines denote the standard deviation from
zero.
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Figure 9.
Distribution of percent changes in waveform voltage amplitude from largest unit on an
electrode (a) Per hour during 1 - 5 hour experiments (b) Between 2 experimental days on the
same electrode.
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