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A De Novo Mutation in the b-Tubulin Gene TUBB4A
Results in the Leukoencephalopathy Hypomyelination
with Atrophy of the Basal Ganglia and Cerebellum

Cas Simons,1 Nicole I. Wolf,2 Nathan McNeil,3 Ljubica Caldovic,4 Joseph M. Devaney,4

Asako Takanohashi,4 Joanna Crawford,1 Kelin Ru,1 Sean M. Grimmond,5 David Miller,5

Davide Tonduti,6 Johanna L. Schmidt,4 Robert S. Chudnow,7 Rudy van Coster,8 Lieven Lagae,9

Jill Kisler,10 Jürgen Sperner,11 Marjo S. van der Knaap,2 Raphael Schiffmann,3 Ryan J. Taft,1,12,*
and Adeline Vanderver4,12,*

Hypomyelinationwith atrophy of the basal ganglia and cerebellum (H-ABC) is a rare hereditary leukoencephalopathy that was originally

identified by MRI pattern analysis, and it has thus far defied all attempts at identifying the causal mutation. Only 22 cases are published

in the literature to date. We performed exome sequencing on five family trios, two family quartets, and three single probands, which

revealed that all eleven H-ABC-diagnosed individuals carry the same de novo single-nucleotide TUBB4A mutation resulting in nonsy-

nonymous change p.Asp249Asn. Detailed investigation of one of the family quartets with the singular finding of an H-ABC-affected sib-

ling pair revealed maternal mosaicism for the mutation, suggesting that rare de novo mutations that are initially phenotypically neutral

in amosaic individual can be disease causing in the subsequent generation.Modeling of TUBB4A shows that themutation creates a non-

synonymous change at a highly conserved asparagine that sits at the intradimer interface of a-tubulin and b-tubulin, and this change

might affect tubulin dimerization, microtubule polymerization, or microtubule stability. Consistent with H-ABC’s clinical presentation,

TUBB4A is highly expressed in neurons, and a recent report has shown that an N-terminal alteration is associated with a heritable dys-

tonia. Together, these data demonstrate that a single de novo mutation in TUBB4A results in H-ABC.
Hypomyelination with atrophy of the basal ganglia and

cerebellum (H-ABC [MIM 612438]) is a rare leukodystro-

phy described by Van der Knaap et al. in 2002.1 To date,

only 22 individual cases have been reported. It is character-

ized by variable onset (from infancy to childhood), devel-

opmental delay, extrapyramidal movement disorders (dys-

tonia, choreoathetosis, rigidity, opisthotonus, and

oculogyric crises), progressive spastic tetraplegia, ataxia,

and, more rarely, seizures.1 MRI plays a fundamental role

in the diagnostic work-up because neuroradiological find-

ings are pathognomonic; diagnostic criteria include the

combination of hypomyelination, cerebellar atrophy,

and absence or disappearance of the putamen,1 all features

that have been comprehensively confirmed in a recent au-

topsy case.2 The disease appears to be sporadic in nature

given that there are no previously published sibling

groups. The lack of familial groups has thus far foiled at-

tempts at identifying a causative mutation or rare variant.

It has also been somewhat uncertain whether H-ABC

represents a single disorder or the common neuroradio-

logic manifestations of a heterogeneous group of disorders.

The reported finding of low levels of 5-methyltetrahydro-

folate in the cerebrospinal fluid (CSF) of one affected indi-
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vidual resulted in a therapeutic trial with folinic acid,

which led to an improvement.3,4 It was then suggested

that H-ABC could be related to cerebral folate defi-

ciency3,4 and, conversely, that because CSF analysis was

normal in some affected individuals, H-ABC could be

considered a symptomatic representation of heteroge-

neous disorders.5 Additionally, an H-ABC-affected individ-

ual with a partial response to L-dopa has been reported,6

and a 21-month-old boy with Down syndrome and a neu-

roradiologic presentation consistent with H-ABC has been

described.7

The advent of exome-sequencing technology provides

the opportunity to study individual H-ABC cases and to

establish whether this disorder is indeed a single mono-

genic entity or a clustering of heterogeneous leukoence-

phalopathies. To understand the genetic underpinning of

H-ABC, we recruited affected individuals and their family

members via the Myelin Disorders Bioregistry Project or

the Amsterdam Database of Unclassified Leukoencephalo-

pathies with approval from the institutional review board

at Children’s National Medical Center, the Baylor Neuroge-

netic Institute, VU University Medical Center, or the Uni-
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Figure 1. MRI Findings in H-ABC
Axial T2-weighted images (first three col-
umns) and sagittal T1-weighted images
(fourth column) of individual HA107 at
the age of 3.5 years (A–D), individual
HA27 at 21 years (E–H), and an unaffected
individual at 14 years (I–L). We included
the unaffected individual to demonstrate
the low signal on T2-weighted images
of normal myelinated white matter, the
normal volume of the putamen, and the
normal volume of the cerebellum. Note
the relatively high T2 signal of the cerebral
white matter in the two affected individ-
uals (A, B, E, and F); this indicates lack of
myelin. No putamen is visible in the
affected individuals (B and F) (arrows are
where the putamen should be). The cere-
bellar atrophy is already present in the
younger individual (D) but is worse in
the older individual (H).
obtained for each study participant. Genomic DNA sam-

ples were collected from blood samples provided to the

biorepositories, and in the case of family LD_0638, addi-

tional genomic DNA was isolated from buccal and saliva

samples.

A total of 11 individuals from ten unrelated families ful-

filling the MRI criteria for H-ABC diagnosis were included

in this study (Figure 1 and Table 1). All affected individuals

presented in infancy or early childhood with predominant

motor dysfunction, which often manifested as delayed

acquisition of milestones or unsteady walking. Most of

these individuals had deterioration of motor skills, often

marked initially by hemidystonia. Gait progressively dete-

riorated in all cases, and independent and even supported

ambulation was lost over time. Language and cognitive

development appeared relatively preserved, although

over time, dysarthria increasingly impaired communica-

tion. Receptive language was often normal: many children

functioned at age-appropriate levels.

To identify the disease-causing mutation or variant, we

performed exome sequencing on each of the 11 affected

individuals, the unaffected parents in seven of the families,

and one unaffected sibling. In brief, exomes were captured

with the SeqCap EZ Human Exome Library v.3.0 and

sequenced on an Illumina HiSeq 2000 with the 100 bp

paired-end read-sequencing protocol at the Queensland

Centre forMedical Genomics or the VUUniversityMedical

Center sequencing center. Reads were aligned to the refer-

ence human genome (UCSC Genome Browser hg19) with

the Burrows-Wheeler Aligner (BWA),8 and downstream

processing of sequence data was done with Picard v.1.8,
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SAMtools v.0.1.18,9 and the Genome

Analysis Toolkit (GATK) v.2.2.8.10

Variants (SNPs and indels) were iden-

tified with GATK according to version

four of the GATK Best Practice

Variant Detection guide11 or Varscan
v.2.2.5.12 Variants were annotated with the use of Anno-

var13 with UCSC Known Genes models, and known poly-

morphisms were identified with dbSNP135, 1000

Genomes (April 30, 2012, release), and the National Heart,

Lung, and Blood Institute (NHLBI) Exome Sequencing

Project (ESP) Exome Variant Server (ESP6500 release),

and minor allele frequencies were recorded from each

data set. Subsequent analysis and identification of candi-

date variants was performed with an in-house workflow

incorporating the annotated variant data and pedigree in-

formation.

We produced 8–30 Gb of sequence for each individual,

yielding a mean depth of 65-fold coverage and an average

of 95% of target bases sequenced at least 18 times (Table S1,

available online). A single heterozygous de novo mutation

in TUBB4A (MIM 602662; RefSeq accession number

NM_006087) was identified in all affected individuals

(Table 2; Sanger sequencing validation is shown in

Figure S1) but was absent from all unaffected parents and

siblings with the exception of the mother in family

LD_0638 (more below). Thismutation—c.745G>A (RefSeq

NM_006087.2) (g.6495765C>T) (RefSeq NC_000019.9)—

is not present in dbSNP135, the 1000 Genomes Project

database, or the NHLBI Exome Variant Server, consistent

with its presumed pathogenicity and the relative popula-

tion incidence of H-ABC.

TUBB4A (also known as TUBB4 and TUBB5) is a member

of the highly conserved b-tubulin protein family that

forms heterodimers with a-tubulins and then in turn forms

copolymers that assemble into microtubules, an essential

component of the cytoskeleton. TUBB4A is primarily



Table 1. Clinical Manifestation of Individuals with H-ABC

Individual

LD_0313.0 LD_0345.0 LD_0440.0 LD_0605.0 LD_0638.0A LD_0638.0B HA04 HA07 HA23 HA27 HA107

Gender male female male female male male female male male male female

Ethnicity white Arab white Hispanic Asian Asian white white white white white

Age at
presentation

1.5 years 1 years 3 years 9 months 2 years 4.5 years 1 years 20 months 6 months 2.5 years 2 years

Current age 11 years 7 years 39 years 30 years 5 years 8 years 23 years 21 years 19 years 29 years 6 years

Presenting
sign

mild gait
instability;
unclear
speech

gait
instability;
delayed
speech

motor motor mild gait
instability;
unclear speech

dystonia and
dysarthria

delayed motor
development;
hypotonia

delayed motor
development;
spasticity

delayed motor
development;
hypotonia

progressive
motor
problems

delayed speech
development;
lack of motor
developmental
progress

Initial motor
development

delayed; best
skill was
unsupported
walking at
17 months;
normal fine
motor skills

delayed; best
skill was the
ability to
take a few
unsupported
steps at 1 year

delayed delayed delayed; best
skill was
unsupported
walking at
2 years

normal delayed; able to
stand at 12 months;
walked with support
at 24 months;
walked a few steps
without support at
33 months

normal; sat at
11 months;
pulled to stand
at 12 months;
walked with
support
18 months

delayed; sat
at 18 months;
walked with
support at
3.5 years

normal; walked
without support
at 16 months;
walked on toes

normal; walked
without support
at 13 months;
wide-based gait

Onset of motor
deterioration

4.5 years;
hemidystonia

2 years 3 years 7 years 4.5 years;
hemidystonia

4.5 years;
hemidystonia

7 years 2 years;
deterioration
of hand function

6 years 2.5 years 4 years

Loss of
supported
walking ability

5 years 2 years 10 years 10 years supported
walking at last
examination
at 5.5 years

supported
walking at last
examination
at 7.5 years

8 years 9 years ? 14 years 4 years

Spasticity þ þ þ þ þ þ þ þ þ þ þ

Ataxia þ þ þ � � � þ þ þ þ þ

Tremor � � þ þ � þ þ þ þ þ þ

Choreoathetosis þ � þ � � � þ þ þ � �

Dystonia þ þ þ � þ þ þ þ þ þ þ

Rigidity � þ þ � þ þ þ þ þ þ þ

Dysarthria þ þ þ þ þ þ þ þ þ þ þ

Oculomotor
abnormalities

nystagmus;
oculomotor
apraxia;
hypometric
saccades

none none none hypometric
saccades

none oculomotor
apraxia

normal normal rotatory and
pendular
nystagmus

none

Vision normal normal normal normal normal normal decreased normal normal normal normal
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expressed in the nervous system,14–16 and its role in H-ABC

is supported by several studies showing that neurological

disorders characterized by abnormal neuronal migration,

differentiation, and axon guidance and maintenance

have been attributed to mutations in the a-tubulin- and

b-tubulin-encoding genes TUBA1A (MIM 602529),

TUBA8 (MIM 605742), TUBB2B (MIM 612850), and

TUBB3 (MIM 602661).17,18 Indeed, an autosomal-domi-

nant mutation (c.4C>G [p.Arg2Gly]) in TUBB4A was

recently identified in an extended family affected by dysto-

nia type 4 (DYT4 [MIM 128101]; Figure 2A).16 This disorder

is characterized by a ‘‘whispering’’ dysphonia, generalized

dystonia, and gait ataxia with onset in the second to fourth

decade. In contrast to individuals with H-ABC, however,

individuals with DYT4 are reported to have a normal

MRI.20 Although H-ABC is a hypomyelinating leukoence-

phalopathy, it is distinguished from other disorders in

this class by the presence of abnormalities of the deep

gray nuclei, suggesting neuronal involvement. Further

pathologic studies will be necessary to establish whether

the H-ABC-related TUBB4A mutation results in cytoskel-

etal abnormalities in neurons and glia.

TheTUBB4A c.745G>Amutation (RefSeqNM_006087.2)

identified in this study causes a nonsynonymous change to

an aspartic acid (p.Asp249Asn) (Figure 2A) that is highly

conserved in all b-tubulins spanning from yeast to pri-

mates (Figure 2B),19 and it is predicted to be ‘‘probably

damaging’’ (score 1.0) by PolyPhen-2 and ‘‘damaging’’

(score 0.001) by SIFT.21,22 Asp249 is located within the

TUBB4A T7 loop, which interacts with the guanosine

triphosphate (GTP) nucleotide bound to the N-site of the

a-tubulin and is important for the longitudinal interaction

between tubulins (Figure 2C).19 Additionally, Asp249

forms a salt bridge with the b-tubulin N-terminal residue

Arg2 (altered in DYT4), an interaction that is likely to be

important for positioning of T7-loop residues that interact

with the a-tubulin-bound GTP (Figure 2D).We predict that

disruption of the interaction between Asp249 and Arg2

might lead to inefficient dimerization, reduced microtu-

bule polymerization, or reduced microtubule stability.

Intriguingly, this alteration has been identified in other

b-tubulin isotypes or subfamily members in other animal

species. For example, a dominant p.Asp249Asn substitu-

tion has been described in a hematopoietic-specific

b-tubulin isotype in Cavalier King Charles spaniels, where

it is responsible for the inherited disease macrothrombocy-

topenia.23 In Caenorhabditis elegans, a c.745G>A

(p.Asp249Asn) mutation in the b-tubulin-encoding gene

mec-7 leads to a dominant loss-of-touch-sensitivity pheno-

type caused by disrupted migration of the specialized

touch receptor neuron cells.24 It is likely that the H-ABC-

associated TUBB4A mutation might similarly disrupt

neuronal growth or axonal function.

Given the severity of H-ABC and its seemingly sporadic

presentation, it had been previously proposed that this dis-

ease was likely to be caused by a de novo mutation.2 In our

family cohort study, however, one family (LD_0638)
013



Table 2. H-ABC-Associated TUBB4A Genotypes

Family Individual Affected Genotype
Wild-Type
Reads (G)

Alternative
Reads (A)

LD_0313 LD_0313.0A yes G/A 132 118

LD_0313.1 no G/G 138 9

LD_0313.2 no G/G 76 6

LD_0345 LD_0345.0A yes G/A 59 55

LD_0345.1 no G/G 55 5

LD_0345.2 no G/G 105 2

LD_0440 LD_0440.0A yes G/A 114 81

LD_0440.01 no G/G 132 2

LD_0440.1 no G/G 66 4

LD_0440.2 no G/G 246 2

LD_0605 LD_0605.0A yes G/A 127 121

LD_0605.1 no G/G 173 7

LD_0605.2 no G/G 144 4

LD_0638 LD_0638.0A yes G/A 124 124

LD_0638.0B yes G/A 140 110

LD_0638.1 no G/A 193 54

LD_0638.2 no G/G 241 2

HA04 HA04 yes G/A 43 40

HA07 HA07 yes G/A 41 40

HA23 HA23 yes G/A 46 35

HA27 HA27 yes G/A 42 42

HA28 no G/G 50 1

HA29 no G/G 50 0

HA107 HA107 yes G/A 51 65

HA108 no G/G 127 0

HA109 no G/G 118 0

5 kbA

p.Asp249

B
TBB4B_HUMAN  SGVTTCLRFPGQLNADLRKLAVNMVPFPRLH 264
Q6P5M9_DANRE SGVTTCLRFPGQLNADLRKLAVNMVPFPRLH 264
TBB4A_HUMAN  SGVTTCLRFPGQLNADLRKLAVNMVPFPRLH 264
TBB2B_HUMAN  SGVTTCLRFPGQLNADLRKLAVNMVPFPRLH 264
TBB1_HUMAN   SGITTSLRFPGQLNADLRKLAVNMVPFPRLH 264
TBB_YEAST    SGVTTSLRYPGQLNSDLRKLAVNLVPFPRLH 264
             ** ** ** ***** ******** *******

C D

p.Arg2

Figure 2. The Highly Conserved TUBB4A Residue Asp249 Sits at
the Intradimer Interface of a-Tubulin and b-Tubulin
(A) The genomic structure of TUBB4A shows the region encoding
Arg2 in exon 1 and the region encoding Asp249 in exon 4.
(B) Multiple-sequence alignment of a section of four human b-tu-
bulins, a zebrafish b-tubulin, and the Saccharomyces cerevisiae
b-tubulin. Residue Asp249 is marked in bold text, residues that
form the T7 loop are boxed, and asterisks indicate invariant resi-
dues. Sequences are labeled with their Uniprot ID.
(C) Structure of bovine tubulin heterodimer.19 Guanosine triphos-
phate (GTP; green) can be seen bound at the interface of a-tubulin
(magenta) and b-tubulin (blue). Residue Asp249 is shown as red
spheres, its interacting partner Arg2 is shown as blue spheres,
and the remainder of the T7 loop is shown in yellow.
(D) A magnified view of the intradimer interface demonstrates the
roll of Asp249 in coordinating the interaction between the T7 loop
and the a-tubulin-bound GTP.
includes siblings diagnosed with H-ABC. To resolve this

apparent incongruity, we performed a detailed investiga-

tion of the exome-sequencing data from this family quar-

tet. It revealed that, as expected, the father (LD_0638.2)

is homozygous for the reference base and that both

affected children (LD_0638.0A and LD_0638.0B) are het-

erozygous for the TUBB4A mutation. The initial SNP call

for the mother (LD_0638.1), however, was annotated as

‘‘heterozygous,’’ despite the fact that she is asymptomatic,

suggesting either that we were incorrect about the patho-

genicity of the TUBB4Amutation or that some other subtle

genetic process was confounding our results. Detailed in-

spection of the sequence data derived from the mother re-

vealed 193 reads that supported the wild-type allele,

whereas only 54 reads supported themutant allele. This ra-

tio of 3.6:1 is substantially higher than the ratios observed

in any of the 11 heterozygous H-ABC-affected individuals

in this study (1.0:1–1.4:1; Table 2). Given the high read
The Am
depth for all individuals at this locus (minimum of 50-

fold coverage), these results suggest that individual

LD_0638.1 could be mosaic for the c.745G>A variant.

To confirm mosaicism, we collected additional DNA

samples from saliva and buccal cells of individuals

LD_0638.1 and LD_0638.2. A 216 nt genomic fragment

centered on the c.745G>A mutation was amplified

with primers 50-CAACGAGGCACTCTACGACA-30 and

50-CTGGTCAGGGGTGCGAAG-30, and 1 ng of each PCR

product was prepared for sequencing with the Nextera

XT Library Preparation Kit. Sequencing of the pooled li-

braries was completed according to the manufacturer’s rec-

ommendations with the MiSEQ v.2 instrument and the

MiSeq Reagent Kit, which generated paired 150 bp reads.

Reads were aligned to the reference human genome
erican Journal of Human Genetics 92, 767–773, May 2, 2013 771



Table 3. Amplicon Sequencing of Family LD_0638 Shows that
LD_0638.1 Is Mosaic for the TUBB4A c.745G>A Variant

Individual Affected
DNA
Source

Wild-Type
Reads (G)

Alternative
Reads (A)

Percentage of
Alternative
Reads

LD_0638.1 no blood 1,339,079 446,652 25%

buccal 1,023,413 426,821 29%

saliva 1,003,089 354,859 26%

LD_0638.2 no blood 1,386,048 1580 0%

buccal 1,071,589 701 0%

saliva 991,880 1,011 0%

LD_0638.0A yes blood 838,773 785,684 48%

LD_0638.0B yes blood 680,222 637,585 48%
(UCSC Genome Browser hg19) with the BWA tool with

default parameters.8 We obtained more than 1,000,000-

fold coverage over the TUBB4A de novo mutation site in

each sample tested (Table 3). The results showed that in

the asymptomatic mother (LD_0638.1), the c.745G>A

allele was present in 25% of reads from blood, 29% of reads

from buccal cell DNA, and 26% of reads from salivary DNA,

suggesting a level of mosaicism between 50% and 58%

(Table 3). These results suggest that rare de novomutations

that are initially phenotypically neutral in a mosaic indi-

vidual can be disease causing in the subsequent generation

if they are inherited.

Individuals with H-ABC have cerebellar atrophy, basal

ganglia degeneration with a predilection for the putamen,

and a striking lack of cerebral myelin development (hypo-

myelination). Intriguingly, expression data of TUBB4A in

normal human brain samples suggest that it has its highest

expression in the cerebellum, putamen, and supratentorial

white matter.16 Although individuals with DYT4 share

many phenotypic characteristics (including dysphonia,

dystonia, and ataxia) with those with H-ABC, MRI features

such as hypomyelination and disappearance of the puta-

men over time are not reported. The p.Arg2Gly alteration

causing DYT4 is within the MREI (Met-Arg-Glu-Ile) autore-

gulatory motif of b-tubulin proteins; this motif is respon-

sible for regulating the abundance of b-tubulins and their

encodingmRNA in the cell, whichmight be a partial expla-

nation for the different presentations of H-ABC and DYT4.

All individuals who have the H-ABC phenotype and who

have been tested thus far demonstrate a single mutation,

but the finding of TUBB4A mutations in individuals with

DYT4 suggests that other mutations in this gene could

result in a phenotype of primary dystonia with or without

involvement of the cerebral white matter.

We hypothesize that the single de novo TUBB4A muta-

tion identified in individuals with H-ABC affects gene

function in a dominant-negative fashion and leads to the

loss of, or inefficient, dimerization of microtubules. This

prediction, however, requires further validation in models

of disease and in human material. Given TUBB4A expres-
772 The American Journal of Human Genetics 92, 767–773, May 2, 2
sion in neuronal cells and previous pathologic descrip-

tions,2 we also hypothesize that the H-ABC-related

TUBB4A mutation results in a primary disturbance of neu-

rons and the secondary involvement of glial cells. The

finding of TUBB4A mutations provides further insight

into the complex interplay among cellular cytoskeleton,

function, and glial-neuronal interactions.
Supplemental Data

Supplemental Data include one figure and one table and can be

found with this article online at http://www.cell.com/AJHG.
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Web Resources

The URLs for data presented herein are as follows:

NHLBI Exome Sequencing Project (ESP) Exome Variant Server,

http://evs.gs.washington.edu/EVS/

Online Mendelian Inheritance in Man (OMIM), http://www.
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