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Genome-wide Association Analysis
for Multiple Continuous Secondary Phenotypes

Elizabeth D. Schifano,1,* Lin Li,2,4 David C. Christiani,3 and Xihong Lin2,*

There is increasing interest in the joint analysis of multiple phenotypes in genome-wide association studies (GWASs), especially for the

analysis of multiple secondary phenotypes in case-control studies and in detecting pleiotropic effects. Multiple phenotypes often mea-

sure the same underlying trait. By taking advantage of similarity across phenotypes, one could potentially gain statistical power in as-

sociation analysis. Because continuous phenotypes are likely to be measured on different scales, we propose a scaled marginal model for

testing and estimating the common effect of single-nucleotide polymorphism (SNP) on multiple secondary phenotypes in case-control

studies. This approach improves power in comparison to individual phenotype analysis and traditional multivariate analysis when phe-

notypes are positively correlated and measure an underlying trait in the same direction (after transformation) by borrowing strength

across outcomes with a one degree of freedom (1-DF) test and jointly estimating outcome-specific scales along with the SNP and covar-

iate effects. To account for case-control ascertainment bias for the analysis of multiple secondary phenotypes, we propose weighted esti-

mating equations for fitting scaledmarginalmodels. This weighted estimating equation approach is robust to departures from normality

of continuous multiple phenotypes and the misspecification of within-individual correlation among multiple phenotypes. Statistical

power improves when the within-individual correlation is correctly specified. We perform simulation studies to show the proposed

1-DF common effect test outperforms several alternative methods. We apply the proposed method to investigate SNP associations

with smoking behaviormeasured withmultiple secondary smoking phenotypes in a lung cancer case-control GWAS and identify several

SNPs of biological interest.
Introduction

Genome-wide association studies (GWASs) have become a

popular approach for identifying common genetic variants

that are associated with disease phenotypes and quantita-

tive traits. Hundreds of GWASs have been conducted in

the last few years and have identified over 1,000 disease-

and trait-associated common single-nucleotide polymor-

phisms (SNPs).1 Many existing GWASs use a case-control

design, in which hundreds of thousands of SNPs are geno-

typed in a large number of disease-affected and disease-free

individuals in order to identify SNPs that are susceptible to

diseases.2,3,4 There is substantial interest in leveraging

these existing large case-control GWASs in order to identify

common variants associated with multiple secondary phe-

notypes that are often collected in these case-control

GWASs. For example, in the lung cancer (MIM 211980)

GWAS conducted at Massachusetts General Hospital

(MGH), four continuous traits measuring smoking

behavior were collected for both affected and control indi-

viduals, including the age of smoking initiation, smoking

duration, average number of cigarettes per day (CPD),

and number of years of smoking cessation. It is of interest

to conduct a GWAS analysis for the identification of SNPs

that are associated with smoking behavior by jointly

analyzing four smoking phenotypes while accounting for

case-control ascertainment bias.

Numerous GWAS analyses have been performed for

continuous traits, such as body mass index,5 age at
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menarche,6 and height.7 A standard approach for GWAS

analysis of continuous traits in cross-sectional and cohort

studies is to fit a linear regression model for each trait sepa-

rately. Because of the large number of SNPs analyzed,

GWAS analysis is plagued with a substantial multiple-

testing burden, making it challenging for SNPs to reach

genome-wide significance levels (e.g., p values < 10�7).

Furthermore, given that common variants often have

weak effects, as observed in many GWASs of complex

traits,1 many top SNPs identified in a GWAS are false posi-

tives.

Consequently, it is of substantial interest to develop

testing strategies to improve power in identifying SNPs

with weak effects in GWASs. Because multiple secondary

traits are likely to be correlated and to measure the same

underlying trait in different dimensions, joint analysis of

these traits by taking into account their correlation is likely

to improve power in comparison to individual trait anal-

ysis. In particular, joint analysis of multiple phenotypes

can borrow information across correlated multiple pheno-

types and increase effective sample sizes.8 Such joint

phenotype analysis also allows for the study of pleiotropic

effects.

However, when analyzing secondary phenotypes with

case-control designs, one needs to be mindful of ascertain-

ment bias. As described inMonsees et al.,9 in the context of

a single secondary phenotype, the bias is generally small

for analyses that ignore ascertainment or stratify on case-

control status, provided the marker is independent of
2Department of Biostatistics, Harvard School of Public Health, Boston, MA

ard School of Public Health, Boston, MA 02115, USA

y, MD 21771, USA

.edu (X.L.)

y of Human Genetics. All rights reserved.

013

mailto:elizabeth.schifano@uconn.edu
mailto:xlin@hsph.harvard.edu
http://dx.doi.org/10.1016/j.ajhg.2013.04.004
http://crossmark.dyndns.org/dialog/?doi=10.1016/j.ajhg.2013.04.004&domain=pdf


disease risk. Additional care must be taken when there is

evidence that both the secondary trait and the tested ge-

netic marker are associated with the primary disease. For

example, in the smoking GWAS analysis conducted in

this paper with lung cancer case-control samples, it is likely

that the same SNPsmight be associated with both smoking

and lung cancer.10,11 In this situation, naive analysis

ignoring case-control sampling is likely to result in bias

in the association analysis of smoking behavior. Monsees

et al.9 showed that inverse probability weighted (IPW)

regression for a single continuous outcome provides unbi-

ased estimates of marker-secondary trait association. Lin

and Zeng12 developed a retrospective likelihood method

for analyzing a single secondary phenotype in case-control

association studies. However, to date, the joint analysis of

multiple secondary phenotypes in case-control designs has

not been explored.

For cross-sectional and cohort studies, multivariate

regression methods, such as multivariate ANOVA13 and

generalized estimating equations,8 provide valuable tools

for analyzing multiple-phenotype data. These models

often use multiple degree of freedom (M-DF) tests to assess

the effects of an independent variable on multiple pheno-

types while accounting for the correlation between pheno-

types within the same individual. When multiple

phenotypes measure the same underlying trait in the

same direction (after transformation), power can be

improved by testing the shared or common effect of an in-

dependent variable on multiple phenotypes. Specifically,

in view of the fact that positively correlated continuous

phenotypes are often measured on different scales, Roy

et al.14 proposed a scaled marginal model for testing and

estimating the shared common effect of an independent

variable on multiple phenotypes in cross-sectional and

cohort studies, where a one degree of freedom (1-DF) test

was developed on the basis of estimating equations.

In this paper, we extend the work of Roy et al.14 and pro-

pose a scaled marginal model for genome-wide association

analysis of multiple continuous secondary phenotypes in

case-control studies. Specifically, when multiple pheno-

types are positively correlated and measure the same un-

derlying trait in the same direction (after transformation),

we propose the use of IPW-estimating equations in order to

estimate and test the shared common effect of SNPs on

multiple continuous secondary phenotypes in case-con-

trol studies. This approach accounts for case-control ascer-

tainment in analysis of secondary phenotypes with the use

of disease-prevalence-based inverse probability weights.

We term the proposed test the scaled multiple-phenotype

association test (SMAT). By jointly estimating outcome-

specific scale parameters with scaled marginal models,

the proposed SMAT method tests for the common effect

of SNP with a 1-DF test while allowing for phenotype-spe-

cific covariate effects. As an estimating-equation-based

approach, it accounts for arbitrary correlation among

multiple phenotypes and is robust to departure from

normality and misspecification of correlation among
The Am
multiple continuous phenotypes. Furthermore, the

assumption of common effect can be tested with an esti-

mating-equation-based score test by comparing scaled

marginal models with heterogeneous SNP effect models.

Our simulation studies show that, when multiple phe-

notypes (after transformation) are positively correlated

and measure the same underlying trait or disease process

in the same direction, and if the scaled effects of multiple

phenotypes are homogeneous or moderately heteroge-

neous, the proposed 1-DF test SMAT for the common effect

of SNPs on multiple correlated phenotypes is more power-

ful than either testing the outcomes separately or testing

the outcomes jointly with the traditional M-DF test. In

addition, type I error is preserved in the presence of not

only case-control sampling but also heterogeneous SNP

effects that depart from the scaled marginal model with

common effect. We apply the proposed method to joint

analysis of the four smoking phenotypes in the MGH

lung cancer GWAS, which leads to the identification of

several top SNPs of biological interest.
Material and Methods

The goal of the proposed method is to estimate and test for a com-

mon effect of SNP on the multiple secondary continuous pheno-

types in case-control designs when the multiple phenotypes

measure the same underlying trait in the same direction. First,

we describe the scaled marginal model14 below, and then we pro-

pose IPW-estimating equations for fitting the scaled marginal

model for multiple secondary continuous phenotypes to account

for case-control sampling.
Scaled Marginal Model
Suppose that M correlated continuous phenotypes

yi ¼ ðyi1;.; yiMÞT , a SNP genotypic value si, and a vector of cova-

riates, xi ðp31Þ, are observed for the ith of n individuals. Typically,

we assume an additive genetic model where si represents the num-

ber of copies (or dosages for imputed data) of the minor allele.

Given that correlation among phenotypes within the same indi-

vidual is often unknown, a standard approach is to specify the

marginal means of the phenotype as

E
�
yij jxi; si

� ¼ xT
i b

�
j þ sia

�
j ; j ¼ 1;.;M; (Equation 1)

where b�
j ðp31Þ are the covariate effects and a�

j is the SNP effect

corresponding to phenotype j. This model assumes the SNP si
has heterogeneous effects on the M phenotypes.

Estimation of regression coefficients can proceed with the use of

standard generalized estimating equations (GEE)15 and standard

software packages (e.g., the geeglm function in R Package gee-

pack16). To test for the hypothesis of no SNP effect on the M phe-

notypes, we can test the null hypothesis H0 : a�
1 ¼ . ¼ a�

M ¼ 0

with an M-DF test based on the Wald-type chi-square test statistic,

as described in Hjsgaard et al.16 and implemented in geepack. We

refer to this test as the traditional M-DF GEE test.

When multiple phenotypes are positively correlated and

measure the same underlying trait, more powerful tests can be

developed for testing the common effect of a SNP on multiple

phenotypes; e.g., the 1-DF test of the scaled marginal model.14
erican Journal of Human Genetics 92, 744–759, May 2, 2013 745



Specifically, different phenotypes are often measured on different

scales. Denote by varðyijjxi; siÞ ¼ s2j the phenotype-specific vari-

ance conditional on covariates x and a SNP s. The scaled mar-

ginal model14 assumes that the SNP has a shared common effect

on the means of the scaled phenotypes,

E
�
yij jxi; si

�
sj

¼ xT
i bj þ sia; j ¼ 1;.;M; (Equation 2)

where bj ðp31Þ are the covariate effects corresponding to pheno-

type j and a is the common shared effect of the SNP. There are

several notable features of Equation 2. First, the parameter a has

an attractive practical interpretation; that is, it is the common

effect size of SNP s on the M phenotypes. By using the scaling

parameter, this model alleviates the problem of differentially

scaled phenotypes that are often encountered in multiple-pheno-

type analysis. Second, the model allows for the common effect of

the SNP to be tested with a 1-DF test for H0 : a ¼ 0. Indeed, under

the common effect assumption, as shown in the simulation study,

this 1-DF test is more powerful than the M-DF GEE test.

One can examine the common effect assumption by consid-

ering the following scaled marginal model with heterogeneous

SNP effects:

E
�
yij jxi; si

�
sj

¼ xT
i bj þ siaj; j ¼ 1;.;M; (Equation 3)

where aj is the (scaled) phenotype-specific SNP effect correspond-

ing to phenotype j. One can easily see the scaled heterogeneous

SNP effect model (Equation 3) reduces to the scaled common

effect model (Equation 2) when H0 : a1 ¼ . ¼ aM ¼ a. Conve-

niently, Roy et al.14 provided a score-type test evaluating this hy-

pothesis for cross-sectional and cohort data.

Both Equation 2 and 3 specify only the meanmodels for pheno-

types and make no assumptions on the distribution of yij or the

correlation among the phenotypes. As shown in the following sec-

tions, our proposed estimation and testing procedures are, hence,

robust to misspecification of the correlation between phenotypes

within the same individual but are more powerful if the within-

individual correlation is correctly specified.
Testing for Multiple Secondary Continuous

Phenotypes
In this section, we consider testing for a common effect of SNP on

multiple secondary continuous phenotypes in case-control

studies. First, for notational simplicity, we rewrite Equation 2 in

a matrix form,

Eðy�
i jXiÞ ¼ Xig; (Equation 4)

where y�
i ¼ ðyi1=s1;.; yiM=sMÞT ;

Xi ¼

8>><>>:
xT

i 0T . 0T si
0T xT

i . 0T si
« 1 «
0T 0T . xT

i si

9>>=>>;
is an ðM3ðMpþ 1ÞÞ matrix, 0T is a p length row vector of zeros,

and g ¼ ðbT
1 ;.;bT

M ;aÞT .
Because affected individuals are oversampled in case-control

studies, analyzing multiple secondary continuous phenotypes

on the basis of the estimating equation methods of Roy et al.14

will yield biased results under the scaled common effect model
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(Equation 2). We correct for case-control biased sampling by using

weighted estimating equations,

Xn
i¼1

wiX
T
i R

�1ðy�
i �XigÞ ¼ 0 (Equation 5)

and

Xn
i¼1

wi

�
yij
sj

�
yij
sj

� xT
i bj � sia

�
� 1

�
¼ 0; j ¼ 1;.;M;

(Equation 6)

to jointly estimate the model parameters, where R ¼ RðqÞ is a

working correlation matrix dependent on parameter vector q, n

represents the sum of the total number of control individuals

ðn0Þ and total number of affected individuals ðn1Þ sampled (that

is, n ¼ n0 þ n1), and weight wi is proportional to the inverse prob-

ability that individual i was sampled in the study data set (see

Appendix A). The working correlation matrix, R, is used to

account for the correlation among multiple phenotypes and is

allowed to be misspecified.

When wi ¼ 1 for all i, the unweighted estimating equations

reduce to those in Roy et al.14, who showed that the estimation

of g and s2 (M 3 1) are unbiased for an arbitrary working correla-

tion matrix, R, for cross-sectional and cohort studies. To account

for case-control ascertainment, theweights are a functionofdisease

prevalence, which is assumed to be known or estimated with

external information. Specifically, theweightwi is specified toeffec-

tively upweight the control individuals and downweight the

affected individualswhen the disease in the population is rare, as in

wi ¼

8>>><>>>:
p

pn
if Di ¼ 1

1� p

1� pn
if Di ¼ 0

(Equation 7)

wherep is the disease prevalence in the population,Di is an indica-

tor of an affected or control (1/0) individual, and pn ¼ n1=n is the

proportion of affected individuals in the case-control sample.17

In Appendix A, we show that that the weighted estimating equa-

tions (Equations 5 and 6) are unbiased for an arbitrary working

correlation matrix R. A more efficient estimator of g, that is, the

estimator with a smaller variance, might be obtained when the

working correlation R is correctly specified as the true correlation

among the multiple secondary phenotypes yij. Note that, for

simplicity, the within-individual correlation is not accounted for

in the estimation of s2j in Equation 6, given that the s2j are nuisance

parameters and their estimation uses more complex quadratic esti-

mating equations. More importantly, the efficiency of the regres-

sion coefficient estimator of g only requires a consistent estimator

of the scale parameter s2j , which is provided by the simple working

independence estimators of the s2j given in Equation 6.

Estimation can proceed with the use of a modified Gauss-Seidel

algorithm that alternates between the estimation of g and s2 until

convergence. The standard errors of the estimates are provided

with the sandwich method. Details for parameter and standard

error estimation are provided in Appendix B.

The common effect of the SNP s on theM secondary continuous

phenotypes can be tested for the null hypothesis H0 : a ¼ 0 with

the use of a 1-DF test, Z ¼ ba=cSEðbaÞ, where cSEðbaÞ is the sandwich

estimate for the standard error given in Appendix B. We term

this 1-DF scaled common effect test as the SMAT. Implementation

is very fast and available in the R package SMAT.

It should be noted that the 1-DF SMAT developed under the

scaled common effect model (Equation 2) for the SNP effect on
013



the M secondary continuous phenotypes is still valid when the

scaled SNP effects are in fact heterogeneous. In other words, sup-

pose the data follow the scaled heterogeneous SNP effect model

(Equation 3); then, under the null hypothesis of no association be-

tween the SNP s and theM secondary continuous phenotypes, the

type I error rate of the 1-DF Z test is still preserved, although it

might lose power if the degree of heterogeneity of scaled SNP ef-

fects between different phenotypes is large. However, because

common variants often have weak effects in GWASs, the degree

of heterogeneity of scaled SNP effects between different pheno-

types is usually low. As shown in our simulation studies, in prac-

tice, when multiple phenotypes are positively correlated and

measure the same underlying trait in the same direction (after

transformation), the simple 1-DF SMAT has more power than

the traditional M-DF GEE test that allows a SNP to have different

effects on different phenotypes, even when the heterogeneous

SNP effect model (Equation 3) is used to generate the data.

Test for the Assumption of Scaled Common Effect
One can construct similarly weighted estimating equations under

the heterogeneous SNP effect model (Equation 3) by simply modi-

fying Xi and g in Equation 5 and replacing xT
i bþ sia with

xT
i bþ siaj for phenotype yij in Equation 6, and one can jointly

estimate the model parameters by solving these equations.

Consideration of this model allows one to test easily for the appro-

priateness of the scaled common effect assumption.

Specifically, under the heterogeneous scaled SNP effect model

(Equation 3), the null hypothesis for a scaled common effect for

SNP is H0 : a1 ¼ . ¼ aM . This null hypothesis can be equivalently

written as

E
�
yij jxi; si

�
sj

¼ xT
i bj þ sih1 þ siIðj > 1Þhj; (Equation 8)

where h1 ¼ a1 is set as the baseline and hj ¼ aj � a1; jR2. The

equivalent null hypothesis of homogeneity becomes

H0 : h2 ¼ . ¼ hM ¼ 0, which corresponds to the scaled common

effect model (Equation 2). One can test for this null hypothesis

with the use of the estimating-equation-based score test.14 Because

the score test is constructed under the null hypothesis, the test

only relies on the fit under the scaled common effect model (Equa-

tion 2). Conveniently, this scaled common effect model is the

same model used to compute the 1-DF SMAT described in Testing

for Multiple Secondary Continuous Phenotypes.

Note that the 1-DF SMAT is still valid in the sense of a protected

type I error rate, even under SNP effect heterogeneity. In practice,

we can run the 1-DF SMAT and the homogeneity test simulta-

neously for each SNP and then evaluate the appropriateness of

the homogeneity (common effect) assumption post hoc. Details

of the homogeneity test formultiple secondary continuous pheno-

types in case-control samples can be found in Appendix C. Under

the null hypothesis of homogeneity or common effect, the score

statistic asymptotically follows a c2 distributionwithM � 1 degrees

of freedom. In the R Package SMAT, the score statistic and its associ-

atedpvalueare alsomadeavailable to theuser. Thesimulationstudy

shows that the 1-DF SMAT is often more powerful than the M-DF

GEE test, evenwhen theheterogeneous effectmodel is true if the ef-

fects of a SNP on multiple phenotypes are in the same direction.

Simulation: Empirical Performance of SMAT
We performed simulation studies to compare the joint analysis of

the multiple outcomes using the 1-DF scaled common effect test
The Am
(SMAT) with two alternative types of joint outcome tests: (1) the

minimum adjusted p value analysis based on single-outcome tests

adjusting for multiple comparisons (to be described in more detail

in Control-Only Simulation) and (2) the standard M-DF multivar-

iate GEE analysis based on the unscaled model allowing outcome-

specific SNP effects (that is, the M-DF GEE test resulting from

Equation 1). First, we considered a set of simulations in which

all M outcomes are associated with SNP, where we generated

data to roughly mimic the actual smoking behavior GWAS data

for SNPs within CDH18 (MIM 603019) on chromosome 5. This

gene was selected because five of the top ten SNPs identified in

the actual data analyses are located within this gene (see GWAS

on Smoking Behavior and Table 4). More specifically, for each

simulated data set, we randomly selected a single SNP from the

88 typed CDH18 SNPs to be the ‘‘causal’’ SNP, and we considered

M ¼ 4 outcomes, with covariates age, gender (0 ¼ male,1 ¼
female), and education (college education or more; 0 ¼ no,1 ¼
yes). For comparison, we used the function geeglm from R package

geepack16 to perform (unscaled) single-outcome-based minimum

adjusted p value analysis and multivariate M-DF-based GEE anal-

ysis with the Wald-like sandwich standard error estimates. For

both multivariate methods, we considered three working correla-

tion structures among the outcomes: independent, exchangeable,

and unstructured. The second set of simulations examines the sit-

uation in which not all outcomes are associated with SNP.

We provide details of the first set of simulations below, where

the control-only and control þ affected simulations are described

in turn. In both scenarios, we examined empirical size and power

in two data-generation model types: a ‘‘scaled common effect

model,’’ where the data are generated under the scaled homoge-

neous effect assumption (that is, under Equation 2;

a ¼ aj; j ¼ 1;.;M), and a ‘‘scaled heterogeneous effect model,’’

where the scaled homogeneous (common) effect assumption

does not hold (that is, under Equation 3; asaj; j ¼ 1;.;M).

Power is estimated as a function of SNP effect size, which corre-

sponds to a in the scaled common effect model or the average

aA ¼ M�1
P

jaj in the scaled heterogeneous effect model. In all

settings for a given a ðaAÞ, each simulated data set was generated

by sampling n0 ¼ 700 covariate-SNP ðfxi; sigÞ pairs from the

MGH control group and then sampling n1 ¼ 700 covariate-SNP

ðfxi; sigÞ pairs from the MGH affected group (if necessary). Note

that n0 ¼ n1 ¼ 700 was selected in order to mimic the actual sam-

ple sizes used in analysis in GWAS on Smoking Behavior. Using

these values, we generated M ¼ 4 outcomes ðyij; j ¼ 1;.;4Þ ac-

cording to a multivariate normal model with parameters as spec-

ified in Table 1 (based on estimates from the MGH data) and the

given a ðaAÞ, so that yij=sj has a mean of xT
i bj þ sia in the scaled

common effect model and a mean of xT
i bj þ siaj in the scaled het-

erogeneous effect model; parameter specifications for a and aj;

j ¼ 1;.;4 are discussed in more detail in Control-Only Simula-

tion and Control þ Affected Simulation below. For each data-gen-

eration model type, we also considered two true correlation

structures, exchangeable and unstructured, with values specified

in Table 1 based on the actual MGH data. In the interest of space,

only results which use the unstructured correlation matrix are

reported.

Control-Only Simulation
To investigate empirical size, we generated B ¼ 107 data sets as

described above with a ¼ aj ¼ 0; j ¼ 1;.;4; that is, no SNP effect.

For each data set, we computed p values from the 1-DF SMAT,

4-DF GEE test, and the single-outcome-based minimum adjusted
erican Journal of Human Genetics 92, 744–759, May 2, 2013 747



Table 1. Simulation Parameters

Parameters:

b1 ¼ ð�2:0;�0:1;�0:1;0:5ÞT Rð0Þ ¼ Rð1Þ (U):

b2 ¼ ð8:0;0:1;0:5;0:5ÞT 0BBBBBB@
1:0 0:2 0:3 0:5

0:2 1:0 0:3 0:1

0:3 0:3 1:0 0:1

0:5 0:1 0:1 1:0

1CCCCCCA
b3 ¼ ð�3:5;0:0;0:5;0:3ÞT

b4 ¼ ð�1:0;0:1;�0:2;0:4ÞT

s2ð0Þ ¼ ð2:0;0:5;2:5;4:0ÞT

s2ð1Þ ¼ ð1:5;0:5;2:0;4:0ÞT Rð0Þ ¼ Rð1Þ (E): r ¼ 0:25

We set aR0; simulated yi were designed to correspond to actual data

yi ¼ ð� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
DURATION

p
;
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
INITIATION

p
;� ffiffiffiffiffiffiffiffiffiffi

CPD
p

;
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
CESSATION

p ÞT ; the covariate
effects bj correspond to intercept, age (continuous), gender (0 ¼ M, 1 ¼ F),

and college education (college graduate 0 ¼ no, 1 ¼ yes).
p value test. Note that weighting is not necessary here because we

are only considering the control samples which, under a rare dis-

ease assumption, will approximate a random sample from the

population. Thus, all tests were implemented with wi ¼ 1 for all

i ¼ 1;.;n0. Size for the SMAT and GEE tests were defined as the

proportion of p values less than or equal to a specified threshold

(e.g., 0.01, 0.001, etc.). For the joint outcome analysis with the sin-

gle-outcome-based minimum adjusted p value tests, we analyzed

each outcome separately and calculated the adjusted p values, ac-

counting for multiple and correlated tests across the M ¼ 4 out-

comes with the method of Conneely and Boehnke18. Then, we

defined the associated ‘‘joint’’ analysis p value as the minimum

of the individual adjusted p values across the M ¼ 4 outcomes

and similarly characterized size for this ‘‘min-adj p’’ testing proce-

dure as the proportion of minimum adjusted p values less than or

equal to a specified threshold.

Under the scaled common effect data-generation model, we

examined power as a function of SNP effect size, a, whereas, under

the scaled heterogeneous data-generation model, we examined

power as a function of the average, aA:On the basis of the analysis

of SNP rs4242066 from CDH18 in the MGH data (Table 4) with re-

sulting estimator baz0:3, we specified a in simulation to be 0:3 � c
for a range of c: Similarly, to generate heterogeneous effects, we

considered ð0:35;0:25;0:325;0:40ÞT � c; (e.g., aAz0:3 for c ¼ 1)

for the same range of c, where the parameter values were obtained

from the analysis of the MGH data. Note that the assumption of

scaled common effect for SNP in the sense of that given in Test

for the Assumption of Scaled Common Effect does not hold for

such a specification of aj; j ¼ 1;.;4: For each configuration, we

performed 1,000 runs. For each simulated data set, we calculated

the p values using the 1-DF SMAT, 4-DF GEE, and the min-adj p

test. Then, we calculated power by computing the proportion of

times across all simulated data sets that the p values were less

than or equal to 10�5. Note that the use of the threshold 10�5 is

merely for illustration, given that the resulting power curves dis-

cussed in the Results have similar patterns for other significance

levels as well (data not shown).
Control þ Affected Simulation
As before, to investigate empirical size, we generated B ¼ 107 data

sets under the null hypothesis of no SNP effect and computed for

each data set p values from the 1-DF SMAT and 4-DF GEE test, as

well as the minimum adjusted p values from the single-outcome

tests (that is, min-adj p test). In order to account for potential
748 The American Journal of Human Genetics 92, 744–759, May 2, 2
ascertainment bias, all testing procedures required weighting; in

particular, the weighted estimating equations (Equations 5 and

6) were used for the computation of SMAT.We considered two dis-

ease prevalences, low ðp ¼ 0:000745Þ and moderate ðp ¼ 0:0745Þ,
and used the corresponding prevalence to define the weight. Size

was defined in the same manner as in the control-only analysis.

Additionally, for power, we considered situations in which the

SNP effect for the affected individuals was the same or different

from that for the control individuals. The latter situation amounts

to fitting a misspecified model, because this scenario implies a dis-

ease-dependent SNP effect. In situations in which SNP effect was

generated as the same value in both affected and control individ-

uals (disease-independent), power was evaluated as described in

the control-only analysis; that is, as a function of a and aA for

the scaled common and scaled heterogeneous data-generating

models, respectively. However, when simulating under different

SNP effect parameters for the affected and control individuals (dis-

ease-dependent), a new metric of effect size is needed to evaluate

power. In particular, we assumed the following population models

for common effect for the diseased ðDi ¼ 1Þ and nondiseased

ðDi ¼ 0Þ individuals, respectively, for j ¼ 1;.;M ¼ 4 outcomes:

E
�
yij jxi; si;Di ¼ 1

�
sj

¼ xT
i b

ð1Þ
j þ sia

ð1Þ (Equation 9)

E
�
yij jxi; si;Di ¼ 0

�
sj

¼ xT
i b

ð0Þ
j þ sia

ð0Þ: (Equation 10)

With disease prevalence p; the population mean is

E
�
yij jxi; si

�
sj

¼ E

(
E
�
yij jxi; si;Di

�
sj

)
¼ xT

i bpj þ siap; (Equation 11)

where bpj ¼ pb
ð1Þ
j þ ð1� pÞbð0Þ

j is the population covariate effect,

and ap :¼ pað1Þ þ ð1� pÞað0Þ is the population SNP effect pooled

over disease-affected and control individuals. In this scenario,

we considered power as a function of ap, where að0Þ ¼ 0:3c for

the control individuals and að1Þ ¼ 0:01c for the affected individ-

uals over a range of c. This choice corresponds to a much stronger

effect in the control individuals and very little effect in the affected

individuals, as observed in some SNPs in the MGH data set.

For the scaled heterogeneous effect model, Equations 9 and 10

are modified such that að1Þ and að0Þ each have j subscripts; hetero-

geneous SNP effects for the control individuals were generated in

the same way as in the control-only analysis (e.g., a
ð0Þ
A z0:3 for

c ¼ 1), whereas heterogeneous SNP effects for the affected individ-

uals were varied according to ð0:002;0:001;0:003;0:200ÞT � c (e.g.,
a
ð1Þ
A z0:05 for c ¼ 1) for a range of c: Again, this choice corresponds

to a much stronger effect in the control individuals and very

little effect in the affected individuals but also incorporates

heterogeneity in the SNP effects in both affected and control

individuals. Here, power is considered as a function of

aAp :¼ pa
ð1Þ
A þ ð1� pÞað0Þ

A for comparison.
Subset of Phenotypes Associated with SNP
The second set of simulations examines the performance of SMAT

under the situation where not all outcomes are associated with

SNP. Let M0 denote the number of outcomes associated with

SNP or, equivalently, the number of ajs0; j ¼ 1;.;M: For this

set of simulations, we consider M0˛f2;3;4g for M ¼ 4 outcomes

and also M0˛f5;8;10g for M ¼ 10 outcomes in both the control-

only and control þ affected scenarios (disease-independent
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only), and, for simplicity, specify the correlation between the

M0 phenotypes associated with SNP to be 0.25 and the corre-

lation between the M �M0 phenotypes not associated with SNP

to also be 0.25. However, we specify the correlation between the

M0 ‘‘associated’’ phenotypes and M �M0 ‘‘nonassociated’’ pheno-

types to be 0.05. Similar to the first set of simulations, we consider

the same scaled heterogeneous SNP effect vector,

ð0:35;0:25;0:325;0:40ÞT � c, for M ¼ M0 ¼ 4 over a range of c.

Note that this simulation for M0 ¼ M ¼ 4 is exactly the same

as the simulation described above when using a true

exchangeable correlation matrix to generate the multiple

phenotypes. When M0 < M ¼ 4, we set the last M �M0 scaled

SNP effects aj to 0. All of the remaining simulation parameters

(e.g., covariate regression coefficients and phenotype-specific

scales) were specified according to Table 1. For M0 ¼ M ¼ 10; the

scaled heterogeneous SNP effect vector was set to

ð0:35;0:25;0:325;0:40;0:30;0:30;0:20;0:275;0:35;0:375ÞT � c for

a range of c; for M0 < M ¼ 10, we set the last M �M0 effect

sizes to 0. Parameters bj, j ¼ 5;.;10 were set to be roughly

the same magnitude as those for bj,j ¼ 1;.;4 in Table 1, and we

set s2ð0Þ ¼ ð2:0;0:5;2:5;4:0;0:75;1:25;2:0;1:75;2:25;1:0ÞT and

s2ð1Þ ¼ ð1:5;0:5;2:0;4:0;0:75;1:25;2:0;1:75;2:25;1:0ÞT : As before,
we evaluate power as a function of average scaled effect size,

aA ¼ M�1
PM

j¼1aj. Note that, when M0 is considerably smaller

than M (that is, there are a substantial number of null pheno-

types), the scaled common effect assumption that underlies

SMAT is considerably violated and can be detected by the scaled

homogeneity test examined in the next section; power loss of

SMAT is expected in this situation.
Simulation: Empirical Performance of Test for Scaled

Homogeneity
Finally, we investigated the empirical size and power for the test of

scaled homogeneity, used to evaluate the scaled common effect

assumption, under the control-only and control þ affected set-

tings. As in the simulations described above for the 1-DF scaled

common effect test (SMAT), we generated data that roughly

mimicked the actual smoking behavior GWAS data for SNPs

within CDH18 on chromosome 5, where, for each simulated

data set, we randomly selected a single SNP from the 88 typed

CDH18 SNPs to be the ‘‘causal’’ SNP, and we consideredM ¼ 4 out-

comes with covariates for age, gender (0 ¼ male,1 ¼ female), and

education (college education or more; 0 ¼ no,1 ¼ yes). Again, we

generated the data using a multivariate normal model with simu-

lation parameters specified in Table 1, and the specification of the

SNP effects are described below. For the controlþ affected settings,

we considered the low and moderate disease-prevalence levels

ðp˛f0:0745;0:000745gÞ as well as disease-independent and dis-

ease-dependent SNP effects on the four phenotypes.

In the control-only and control þ affected/disease-independent

settings, we examined empirical size by generating B ¼ 5000 data

sets under the null hypothesis, each with a ¼ aj ¼ 0:3 (homogene-

ity or common effect), j ¼ 1;.;4, and performing the estimating

equation-based score test for H0 : a1 ¼ . ¼ a4 as described in Test

for the Assumption of Scaled Common Effect (see also Appendix

C). Empirical size was estimated as the proportion of score test p

values less than or equal to 0.05. To complement the simulations

above for the 1-DF SMAT, we also considered the disease-depen-

dent setting, where að0Þ ¼ a
ð0Þ
j ¼ 0:3 and að1Þ ¼ a

ð1Þ
j ¼ 0:05; for

j ¼ 1;.;4: As above, this corresponds to a common population

SNP effect, ap, pooled over disease-affected individuals and control
The Am
individuals. Empirical size in this setting was also estimated as the

proportion of score test p values less than or equal to 0.05.

We examined power as a function of SNP heterogeneity for a

fixed (scaled) average SNP effect across outcomes; that is, fixed

aA ¼ 0:3 for the control-only and control þ affected (disease-inde-

pendent) settings and fixed aAp ¼ 0:05pþ 0:30ð1� pÞ for the

control þ affected (disease-dependent) setting. The degree of het-

erogeneity was controlled by varying the parameter k in the equa-

tions aj ¼ aA5k � d for j ¼ 1;2 and aj ¼ aA5k � d=2 for j ¼ 3;4;

where d is a fixed SD of the scaled SNP effects. For example, in

the control-only and control þ affected (disease-independent)

simulations, we set k˛f0;0:5;1;1:5;.;3;3:5g with d ¼ 0:0625,

where d was estimated from the observed MGH smoking data.

These selections correspond to SDs of aj for j ¼ 1;.;4 in the range

of 0 to 0.20. Heterogeneous SNP effects a
ð0Þ
j and a

ð1Þ
j for j ¼ 1;.;4

were defined analogously for the disease-dependent simulations

with the same range of k with a
ð0Þ
A ¼ 0:3; dð0Þ ¼ 0:0625 and

a
ð1Þ
A ¼ 0:05; dð1Þ ¼ 0:0125, where dð0Þ and dð1Þ were estimated

from the observed MGH smoking data. Defining apj ¼
pa

ð1Þ
j þ ð1� pÞað0Þ

j as the population SNP effect for outcome j;

pooled over disease-affected individuals and control individuals,

these parameter selections correspond to SDs of apj; for

j ¼ 1;.;4; between 0 and 0.20 for the low disease-prevalence level

and between 0 and 0.19 for the moderate disease-prevalence level.

These configurations allow us to vary the degrees of heterogeneity

of the population SNP effects across multiple phenotypes.
GWAS on Smoking Behavior
To demonstrate the applicability and power of our approach, we

applied the 1-DF SMAT, 4-DF GEE, and min-adj p tests to SNPs

fromourmotivating lungcancerGWAS.Weexamined four second-

ary traits related to smoking behavior: age of initiation, smoking

duration (in years), average CPD, and years of smoking cessation.
Study Population
From a large ongoing case-control study of the molecular epidemi-

ology of lung cancer at MGH, we derived a study population of

affected and control individuals. The controls, individuals with

no diagnosis of lung cancer, were recruited among friends or

spouses of the lung cancer affected individuals or friends or

spouses of other cancer or surgery patients in the same hospital.

Potential control individuals that experienced a previous diag-

nosis of any cancer (excluding nonmelanoma skin cancer) were

not eligible to participate. Proper informed consent was obtained

from all participants. To reduce confounding due to population

structure, the study was limited to individuals of self-reported Eu-

ropean descent. Demographic and smoking characteristics of the

ever-smoker (former and current smokers) study population of in-

terest are provided in Table 2. The study was reviewed and

approved by Institutional Review Boards of MGH and the Harvard

School of Public Health.
Genotyping
Peripheral blood samples were obtained from participants at the

time of enrollment. DNA was extracted from samples with the

Puregene DNA Isolation Kit (Gentra Systems), and genotyping

was performed with the Illumina Human610-Quad BeadChip.

We excluded SNPs that had call rates less than 95%, that failed

Hardy-Weinberg equilibrium tests at 10�6, or that had minor

allele frequency (MAF) less than 5%. Samples with genotyping

call rates less than 95% were also excluded. There were
erican Journal of Human Genetics 92, 744–759, May 2, 2013 749



Table 2. Demographic Characteristics

Control Affected

Former (N ¼ 555) Current (N ¼ 254) Former (N ¼ 501) Current (N ¼ 391)

Age 61.69 (10.60) 53.66 (11.59) 68.94 (9.21) 61.44 (10.12)

Gender (M) 289 (52%) 91 (36%) 279 (56%) 197 (50.4%)

College Grad (Y) 175 (32%) 47 (19%) 134 (27%) 69 (18%)

Age of Smoking Initiation 17.06 (3.95) 17.00 (4.95) 17.32 (4.40) 16.56 (3.90)a

Smoking Duration 26.38 (14.47) 35.38 (11.76) 39.48 (14.09) 44.25 (10.33)a

Average CPD 21.07 (14.72) 20.67 (11.33) 28.98 (14.88) 27.98 (13.31)a

Years of Smoking Cessation 20.54 (11.92) 0.04 (0.16) 17.22 (11.84) 0.13 (0.22)b

Demographic Characteristics of the study participants in the MGH lung cancer study. Entries are mean (SD) for continuous variables and count (percentage) for
binary variables.
aN ¼ 389.
bN ¼ 384.
513,271 SNPs remaining after frequency and quality control. To

detect and further control for population structure, we used

EIGENSTRAT (version 2.0) to perform a principal component

analysis.19 We used the first four principal components, on

the basis of significant ðp < 0:05Þ Tracy-Wisdom tests and

genomic control (GC) inflation factor, as covariates for all

analyses.

Covariate and Phenotypic Data Collection
Interviewer-administered questionnaires (a modified version of

the detailed American Thoracic Society health questionnaire)

collected demographic information and detailed smoking

histories from each individual. Some participants preferred to

complete the questionnaire at home and return it by mail in

a self-addressed stamped envelope. When data were incomplete

or missing, participants were contacted by telephone. The co-

variate age was defined as a continuous variable from date of

birth to the time of recruitment, and gender was coded as

male versus female. The covariate college education was defined

as having a college education or more (yes or no). Smoking sta-

tus was defined as never smoker (less than 100 cigarettes in

their lifetime), former smoker (quit smoking at least 1 year prior

to interview date), or current smoker (at time of interview).

Only ever-smokers were used in our analysis of smoking

behavior. Information on our four phenotypic measures of

smoking behavior (age of smoking initiation, smoking duration,

average CPD, and date of smoking cessation) was obtained

directly from the questionnaire. Note that n0 ¼ 730 control

and n1 ¼ 696 affected ever-smoker individuals have genotypic,

covariate, and phenotypic information. This subset was used

in all subsequent analyses.

Although normality is not required for our proposed estimating

equation approach, we used the square root transformation on all

of the continuous smoking phenotype variables to enable compar-

isons with single-outcome regression analyses relying on

normality. We performed the 1-DF SMAT on control-only as well

as the control þ affected individuals across the entire GWAS data

set to examine the common effect of each SNP on ‘‘less smoking,’’

as quantified by the four transformed outcomes (with the trans-

formed duration and CPD outcomes negated so the outcomes are

all positively correlated; that is, � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
DURATION

p
,

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
INITIATION

p
,

� ffiffiffiffiffiffiffiffiffiffi
CPD

p
, and

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
CESSATION

p
), adjusting for age, gender, college edu-
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cation, and the four principal components to correct for popula-

tion substructure.
Results

Simulation: SMAT

Control-Only Analysis

Size results for the control-only analysis are presented in

the first column of Table 3. On the basis of simulations

with n0 ¼ 700 individuals in each data set, all empirical

size estimates are approximately preserved. Interestingly

the 4-DF GEE test exhibits a slightly inflated type I error

rate, perhaps because of the instability of the sandwich

estimator. Note that increasing the sample size to

n0 ¼ 1400 results in more accurate size estimates, particu-

larly for the 4-DF GEE test (data not shown). Also note

that the size results for all three working correlation struc-

tures were considered (I, independent; E, exchangeable;

and U, unstructured) and were similar for the 4-DF GEE

test and the 1-DF SMAT.

We present the power results for both data-generation

models (both of which used the unstructured correlation

Rð0ÞðUÞ given in Table 1 to generate the data) in Figure 1.

Power is plotted as a function of a and aA, respectively,

for the scaled common and heterogeneous effect models.

Given that the 1-DF SMAT implicitly assumes a scaled com-

mon effect model, we see, as expected, more power gains

in the 1-DF SMAT over the 4-DF GEE test and the min-

adj p test in the correctly specified homogeneous genera-

tion model (Figure 1A) than in the scaled heterogeneous

generation model (Figure 1B). However, even with the

scaled heterogeneous data generation model, the 1-DF

SMAT still has higher power than both the 4-DF GEE test

and the single-outcome-based min-adj p test. In both situ-

ations, the 1-DF SMAT with an unstructured working cor-

relation matrix slightly outperforms the 1-DF SMAT with

the use of either the exchangeable or independent working

structures.
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Table 3. Empirical Size Results

Method Size Control-Only Control þ Affected (LOW)a Control þ Affected (MOD)a

min-adj p 10�2 1.32 3 10�2 1.32 3 10�2 1.31 3 10�2

10�3 1.70 3 10�3 1.71 3 10�3 1.68 3 10�3

10�4 2.58 3 10�4 2.61 3 10�4 2.47 3 10�4

10�5 4.15 3 10�5 4.14 3 10�5 3.77 3 10�5

(weighted) traditional GEE 10�2 1.62 3 10�2 1.63 3 10�2 1.60 3 10�2

(4-DF; I/E/U) 10�3 2.59 3 10�3 2.61 3 10�3 2.51 3 10�3

10�4 5.32 3 10�4 5.37 3 10�4 4.89 3 10�4

10�5 1.09 3 10�4 1.10 3 10�4 9.29 3 10�5

(weighted) SMAT 10�2 1.17 3 10�2 1.17 3 10�2 1.16 3 10�2

(1-DF; I/E) 10�3 1.41 3 10�3 1.41 3 10�3 1.42 3 10�3

10�4 1.89 3 10�4 1.90 3 10�4 1.94 3 10�4

10�5 2.89 3 10�5 2.89 3 10�5 2.71 3 10�5

(weighted) SMAT 10�2 1.19 3 10�2 1.19 3 10�2 1.16 3 10�2

(1-DF; U) 10�3 1.44 3 10�3 1.42 3 10�3 1.41 3 10�3

10�4 1.86 3 10�4 1.86 3 10�4 1.83 3 10�4

10�5 3.09 3 10�5 3.10 3 10�5 2.81 3 10�5

Empirical size results for B ¼ 107 simulated data sets and n0 ¼ n1 ¼ 700 assuming the true correlation among the phenotypes is unstructured, as given in Table 1.
For multiple phenotype analyses, independent (I), exchangeable (E), and unstructured (U) working correlation structures were considered. The results from the 4-
DF GEE test with I, E, and U working correlation structures are nearly identical. The results from the 1-DF SMAT with the I and E working correlation structures are
nearly identical.
aLOW and MOD refer to disease prevalence p ¼ 0:000745 and p ¼ 0:0745; respectively.
Control þ Affected Analysis

The empirical size results for the control þ affected ana-

lyses are presented in the second and third columns of

Table 3 and are quantitatively very similar to those from

the control-only analyses, regardless of disease prevalence.

The empirical sizes are close to the nominal values. Like-

wise, increasing the sample size to n0 ¼ n1 ¼ 1400 results

in more accurate size estimates (data not shown).

We present the power results for the scaled common ef-

fect data generation models assuming unstructured corre-

lation (that is, generated with Rð0Þ ¼ Rð1ÞðUÞ in Table 1)
The Am
in Figure 2 for both the low (left column) and moderate

(right column) disease prevalences and same (disease-inde-

pendent; top row) and different (disease-dependent;

bottom row) SNP effects for the affected and control indi-

viduals. For each plot, we see again that the 1-DF SMAT

dominates in terms of power. Power is not sensitive to

the presence of disease-dependent SNP effects as a conse-

quence of the appropriate weighting.

Figure 3 displays the analogous plots for the scaled het-

erogeneous effect data generationmodel assumingunstruc-

tured correlation (that is, generated with Rð0Þ ¼ Rð1ÞðUÞ
Figure 1. Power for Control-Only Anal-
ysis
Power results for control-only analysis
ðn0 ¼ 700Þ from the (A) scaled common
(homogeneous) effect data-generation
model and (B) scaled heterogeneous effect
data-generation model. Although the data
were generated with an unstructured cor-
relation matrix, three working correlation
matrix structures for the joint outcome an-
alyses were considered: I, independent; E,
exchangeable; and U, unstructured. Power
results were nearly identical with the use
of I, E, and U for the 4-DF GEE tests,
whereas power results were nearly iden-
tical with I and E, but not U, in the 1-DF
SMAT; thus, only the results for GEE (U)
and SMAT (E and U) are included.
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Figure 2. Power for Control þ Affected
Analysis under the Scaled Common Effect
Model
Power results for control þ affected anal-
ysis ðn0 ¼ n1 ¼ 700Þ from the scaled com-
mon (homogeneous) effect data-genera-
tion model for both the low (left, A and
C) and moderate (right, B and D) disease
prevalences and same (top, A and B) and
different (bottom, C and D) SNP effects
for the affected and control individuals;
that is, columns compare power with
low ðp ¼ 0:000745Þ versus moderate
ðp ¼ 0:0745Þ disease prevalences, and,
thus, the effects of the weights, wi, and
rows compare power for disease-indepen-
dent ðað0Þ ¼ að1ÞÞ versus disease-dependent
ðað0Þsað1ÞÞ SNP effects. Although the data
were generatedwith an unstructured corre-
lation matrix, three working correlation
matrix structures for the joint outcome an-
alyses were considered: I, independent; E,
exchangeable; and U, unstructured. Power
results were nearly identical with the use of
I, E, and U for the 4-DF GEE tests, whereas
power results were nearly identical with I
and E, but not U, in the 1-DF SMAT; thus,
only the results for GEE (U) and SMAT (E
and U) are included.
in Table 1). As in the control-only simulation results

(Figure 1B), the 1-DF SMAT still has higher power than

both the 4-DF GEE and min-adj p tests, even when the

scaled SNP effects are in fact heterogeneous. The gain in

power experienced here, as well as in the scenario with

true exchangeable correlation (that is, data generated

with Rð0Þ ¼ Rð1ÞðEÞ in Table 1) (data not shown), is due

largely to the reduced degrees of freedom and moderate

deviations from homogeneity under the scaled model.

Subset of Phenotypes Associated with SNP

We present the power results for the situation where a sub-

set of phenotypes is associated with SNP in Figure 4 for the

control-only analysis. The results for control þ affected

analysis are similar and are included in the Supplemental

Data (Figure S1). In these figures, the top (bottom) row dis-

plays the results for M ¼ 4 ðM ¼ 10Þ phenotypes for vary-
ing numbers of SNP-associated phenotypes,M0. For a fixed

sample size, we anticipated that the power of all tests

would depend on a combination of factors, including the

degree of correlation among phenotypes, the number of

nonzero aj (sparsity), and signal strength (magnitude) of

nonzero aj: For SMAT, the signal strength of nonzero aj

additionally influences heterogeneity among the scaled

SNP effects.

Our simulation results indicate that, when only 50% of

the phenotypes are associated with SNP, SMAT has less po-

wer, and the M-DF GEE test is recommended. Note that, in

this setting, the scaled common effect assumption under
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SMAT is strongly violated. For

example, when M0 ¼ 2 and M ¼ 4,

we conducted additional simulations
to test for scaled homogeneity. For the last three power

points, where the discrepancy between the methods is

the greatest (aA near 0.10, 0.12, and 0.15), the sample me-

dian p values for the test of scaled homogeneity across

1,000 simulations are respectively 0.039, 0.005, and

0.0002, suggesting that the scaled homogeneity assump-

tion is not satisfied in well over 50% of the simulated

data sets at the 0.05 level.

When about 75% of the phenotypes are associated with

SNP, SMAT has similar power to the M-DF GEE test when

M ¼ 4 and has a higher power when M ¼ 10. In fact,

when M0 ¼ 3 and M ¼ 4, our additional simulations for

examining scaled homogeneity suggest for the last three

power points (aA near 0.15, 0.20, and 0.25), again, where

the discrepancy between the methods is the greatest, that

the scaled common effect assumption is not satisfied in

nearly 50% or more of the simulated data sets at the 0.05

level (sample median p values for test of homogeneity

across 1,000 simulations are 0.059, 0.009, and 0.0008,

respectively). In practice, it is desirable to check the scaled

homogeneity assumption when using the SMAT test.

When this assumption is strongly violated, the M-DF

GEE test is recommended.

Interestingly, in these settings where some phenotypes

are not associated with SNP, the SMAT method with

the exchangeable and independent working correlation

structures tends to be more powerful than SMAT with

an unstructured working correlation structure. However,
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Figure 3. Power for Control þ Affected
Analysis under the Scaled Heterogeneous
Effect Model
Power results for control þ affected anal-
ysis ðn0 ¼ n1 ¼ 700Þ from the scaled het-
erogeneous effect data-generation model
for both the low (left; A, C) and moderate
(right; B, D) disease prevalences and same
(top; A, B) and different (bottom; C, D)
SNP effects for the affected and control in-
dividuals; that is, columns compare power
with low ðp ¼ 0:000745Þ versus moderate
ðp ¼ 0:0745Þ disease prevalences, and,
thus, the effects of the weights, wi, and
rows compare power for disease-indepen-

dent ðað0Þ
j ¼ a

ð1Þ
j ; j ¼ 1;.;4Þ versus dis-

ease-dependent ðað0Þ
j sa

ð1Þ
j ; j ¼ 1;.;4Þ.

Although the data were generated with
an unstructured correlation matrix, three
working correlation matrix structures for
the joint outcome analyses were consid-
ered: I, independent; E, exchangeable;
and U, unstructured. Power results were
nearly identical with the use of I, E, and
U for the 4-DF GEE tests, whereas power re-
sults were nearly identical with I and E, but
not U, in the 1-DF SMAT; thus, only the re-
sults for GEE (U) and SMAT (E and U) are
included.
this is not unexpected. As with traditional GEE analysis,

we would only expect an SMAT analysis with correctly

specified correlation to yield the most efficient estimates

when the mean model itself is correctly specified.

When some phenotypes are not associated with SNP, the

scaled common effect model misspecifies the true mean

model more as the nonzero signal increases, and using

the true correlation matrix (or unstructured working

correlation matrix in this simulation) will not necessarily

yield the most efficient estimates (that is, the smallest

p values).

The plots in the right panel of Figure 4 compare the po-

wer when M0 ¼ M; that is, all phenotypes are associated

with SNP. As expected, SMAT is more powerful than the

other methods.

Simulation: Test for Scaled Homogeneity

The tables and figures for the empirical size and power

results for this set of simulations are included in the

Supplemental Data. Note that only the results of the un-

structured correlation matrix (see Table 1) are included.

Table S1 indicates that the empirical size estimates for

the estimating equation-based score test for homogeneity

are preserved for both the control-only and control þ
affected analyses. Figures S2 and S3 display the power of

the test for homogeneity as a function of (scaled) SNP

effect heterogeneity across outcomes. As expected, as the

SNP effect sizes become more heterogeneous, the power

of the test to detect heterogeneity increases. An SD of
The Am
true SNP effect sizes across outcomes of 0.1 yields approx-

imately 80% power to detect heterogeneity at the 0.05

(type I error) level for the given sample size. However, it

is important to note that, even when the scaled effects

are moderately heterogeneous (that is, the null hypothesis

of homogeneous scaled SNP effects may be rejected)

but are in the same direction, the 1-DF scaled common

effect test SMAT remains a powerful test (for example,

see Figure 3).

GWAS on Smoking Behavior Results

Figure 5 displays the �log10 p values for SMAT across all

SNPs passing quality control. Manhattan plots for single-

outcome analysis (unadjusted) p values are included in

the Supplemental Data (Figures S4–S7). Quantile-quantile

plots for the SMAT p values as well as the single-outcome

analysis (unadjusted) p values are also included in the Sup-

plemental Data (Figures S8 and S9). There were 13 SNPs

from CDH18 that were nominally significant at p < 10�3

in at least one outcome. Two of these SNPs,

rs4242066(C) and rs4461636(T) ðR2 > 0:90Þ, had p values

< 10�5 in two outcomes; both had a negative relationship

with duration and a positive relationship with cessation.

Additionally, these same two SNPs had nominally signifi-

cant p values in the other two outcomes; both had a posi-

tive relationship with initiation ðp < 0:1Þ and a negative

relationship with CPD ðp < 0:001Þ. The direction of the

effects all correspond to less smoking. Similarly for

CACNB2 (chromosome 10, MIM 600003), three SNPs on
erican Journal of Human Genetics 92, 744–759, May 2, 2013 753



Figure 4. Power when a Subset of Phenotypes Are Associated with SNP
Power results for control-only analysis ðn0 ¼ 700Þ from the scaled heterogeneous effect model for M ¼ 4 phenotypes (A–C) and M ¼ 10
phenotypes (D–F) for various numbers of a subset of phenotypes associated with SNP ðM0Þ. Three working correlation matrix structures
for the joint outcome analyses were considered: I, independent; E, exchangeable; and U, unstructured. Power results were nearly iden-
tical with the use of I, E, and U for the 4-DF GEE tests, whereas power results were nearly identical with I and E, but not U, in the 1-DF
SMAT; thus, only the results for GEE (U) and SMAT (E and U) are included.
this gene were found nominally significant at p < 10�3 in

at least one outcome, but only one of these SNPs,

rs1277769(C), had p values< 10�3 in two outcomes (cessa-

tion and CPD). The directional relationships across the

four outcomes and three SNPs were again all consistent

with less smoking. These single-outcome results suggest

that a joint 1-DF SMAT analysis may be advantageous for

at least these SNPs, if not more.

There were 10 SNPs with p values < 10�5 with the

1-DF SMAT on the basis of the scaled common effect

model, the smallest of which had a p value ¼ 9.5 3

10�8; the same ten SNPs were identified in both the con-

trol-only and control þ affected analyses (see Table 4). The

p values for the 4-DF GEE test and the min-adj p test for

the same ten SNPs are also provided for comparison. On

the basis of the empirical correlation estimates (see, for

example, Table 1), we chose to report the p values that re-

sulted from using an unstructured working correlation
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matrix. However, p values obtained under the indepen-

dent and exchangeable working correlation structures

were of similar magnitudes.

We see several SNPs in Table 4 from CDH18 and one SNP

from CACNB2. Indeed, the five SNPs identified from

CDH18 are highly correlated with correlations in the range

of ½0:69;0:97�. Note that the two additional SNPs from

CACNB2 from single-outcome analysis discussed above

had p values < 10�4 from the 1-DF SMAT and are highly

correlated with the CACNB2 SNP identified in Table 4.

Additionally, SNPs from GEMIN6 (MIM 607006) and

LHPP were also identified. As in the simulations, we see

that the p values from the joint 1-DF SMAT analysis are

smaller than those from the single-outcome-based min-

adjusted p test and the 4-DF GEE test. For the ten SNPs

identified, the p values for the test of homogeneity were

all greater than 0.25, indicating that the common effect

assumption is reasonable.
013



Figure 5. Manhattan Plot of Analysis of
Multiple Smoking Behaviors
�log10p values from the 1-DF scaled com-
mon effect test SMAT for all SNPs passing
quality control. Analysis was performed
on both affected ðn1 ¼ 696Þ and control
ðn0 ¼ 730Þ ever-smokers with the use of
p ¼ 0:000745 to determine the weights
and an unstructured working correlation
matrix.
Moreover, SNPs from CDH18, CACNB2, and LHPP were

identified before in at least one of three previously reported

smoking cessation success clinical trials ðp < 0:01Þ20.
Among the ten SNPs listed in Table 4, there was weak

evidence for SNP 3 gender interaction (unadjusted, indi-

vidual p < 0:05 for CPD) for only the SNPs from CDH18;

stratified by gender, the estimates for SNP effect share

same sign for both genders, but differ in magnitude with

the association stronger for males.
Discussion

In this paper, we consider the analysis of multiple contin-

uous secondary phenotypes in case-control studies.

When multiple phenotypes measure the same underlying

trait in the same direction (after transformation), we pro-

pose a powerful test, SMAT, for the common effect of a

given SNP on multiple phenotypes using the scaled mar-

ginal model14 and use inverse probability-weighted esti-

mating equations to adequately account for potential

ascertainment bias induced by case-control sampling.

This approach is robust to whether or not the secondary

phenotypes are related to a primary disease outcome. In

both simulation and data analyses, we demonstrate

that, when the scaled effects of multiple phenotypes are

homogeneous or moderately heterogeneous, the pro-

posed 1-DF SMAT based on the scaled common effect

model is more powerful than both the more traditional

multivariate M-DF GEE test and the test with the single-

outcome-based minimum p value adjusted for multiple

comparisons.

Our approach allows one to account for arbitrary correla-

tion among phenotypes and is also robust to the misspeci-

fication of the correlation among multiple phenotypes

with the sandwich method. More power can be gained
The American Journal of Huma
by correctly specifying the correlation

among multiple phenotypes.

When multiple phenotypes mea-

sure the same underlying trait in the

same biological direction (after trans-

formations), one would expect that

they are positively correlated. In this

situation, the proposed that 1-DF

SMAT is powerful for analyzingmulti-

ple (secondary) phenotypes in a range
of scenarios when the scaled effects of multiple pheno-

types are homogeneous or moderately heterogeneous. Spe-

cifically, the 1-DF SMAT is derived under the scaled com-

mon effect model. As expected, it is most powerful when

the scaled common effect model holds. Furthermore, our

results show that, when the scaled SNP effects on multiple

outcomes are moderately heterogeneous, the 1-DF SMAT

based on the scaled common effect model remains to

have the correct size and a higher power than themultivar-

iate M-DF test, assuming moderate heterogeneous SNP

effects. In GWASs, given that the SNP effects are often

small or moderate, it is reasonable to assume homoge-

neous or moderately heterogeneous SNP effects for scaled

multiple continuous phenotypes, provided they measure

the same underlying trait in the same direction (after trans-

formation). This approach allows one to borrow informa-

tion across multiple correlated phenotypes to increase

test power, especially when SNP effects are weak, as in

GWASs. Also, we proposed a scaled homogeneity test to

assess the assumption of scaled homogeneous SNP

effects. When a good portion of multiple phenotypes are

not associated with SNP, the scaled homogeneity assump-

tion (which can be tested with the scaled homogeneity

test) is likely to be strongly violated, and the SMATmethod

might be less powerful; in these situations, the M-DF GEE

test or individual phenotype analysis is recommended.

The proposed method can be also applied to studying

pleiotropic effects. When modeling pleiotropic associa-

tions, in which loci are simultaneously associated with

multiple phenotypes, to apply SMAT, it is desirable to first

consider examining whether the multiple phenotypes bio-

logically measure the same underlying trait or disease pro-

cess in the same direction (after transformation); that is, if

they are positively correlated after transformation. If not,

or if they measure different underlying traits in different

directions, or if a good proportion of phenotypes might
n Genetics 92, 744–759, May 2, 2013 755



Table 4. Top Ten SNPs

Control-Only Control þ Affected

SNP MAF Chr. Gene SMAT (1-DF) min-adj p GEE (4-DF) SMAT (1-DF) min-adj p GEE (4-DF)

rs1056104 0.082 2 GEMIN6 5.75 3 10�6 1.6 3 10�3 4.04 3 10�4 5.74 3 10�6 1.69 3 10�3 4.08 3 10�4

rs6847801 0.073 4 N/A 9.72 3 10�7 1.65 3 10�3 4.18 3 10�6 9.81 3 10�7 1.66 3 10�3 4.23 3 10�6

rs6451476 0.095 5 CDH18 9.45 3 10�6 2.95 3 10�3 4.48 3 10�4 9.43 3 10�6 2.94 3 10�3 4.48 3 10�4

rs4242066 0.090 5 CDH18 9.50 310�8 8.61 3 10�7 2.76 3 10�7 9.53 3 10�8 8.53 3 10�7 2.77 3 10�7

rs1391429 0.098 5 CDH18 9.43 3 10�7 2.59 3 10�4 1.97 3 10�5 9.44 3 10�7 2.57 3 10�4 1.98 3 10�5

rs4461636 0.093 5 CDH18 1.41 310�7 2.47 3 10�5 1.78 3 10�6 1.41 3 10�7 2.46 3 10�5 1.79 3 10�6

rs4866159 0.101 5 CDH18 1.11 3 10�6 5.1 3 10�4 2.76 3 10�5 1.11 3 10�6 5.12 3 10�4 2.77 3 10�5

rs1277769 0.112 10 CACNB2 6.79 310�6 7.70 3 10�4 2.57 3 10�4 6.82 3 10�6 7.66 3 10�4 2.58 3 10�4

rs17152064 0.054 10 LHPP 7.53 3 10�6 3.16 3 10�3 6.41 3 10�5 7.36 3 10�6 3.14 3 10�3 6.32 3 10�5

rs10902443 0.127 12 N/A 9.27 3 10�6 9.76 3 10�3 6.36 3 10�4 9.29 3 10�6 9.73 3 10�3 6.44 3 10�4

Top SNPs from the GWAS scan with a 1-DF scaled common effect test SMAT for control-only (left) and control þ affected (right) on the four square-root-trans-
formed smoking behavior outcomes. Adjusted p values from single outcome and unadjusted p values from the 4-DF GEE tests are also listed for comparison; joint
outcome analysis p values reported using unstructured correlation matrix (n0 ¼ 730, n1 ¼ 696; p ¼ 0:000745).
not be associated with SNP, it is desirable to use the M-DF

GEE test assuming heterogeneous SNP effects or simply

analyze each phenotype separately for the improvement

of power. To check this, one can simply calculate the sam-

ple correlation of multiple phenotypes or use biological

knowledge. One can also perform the proposed scaled ho-

mogeneity test. In fact, for these scenarios, it might not be

desirable to analyze multiple phenotypes simultaneously,

because the results from the joint analysis might not be

easily interpretable. Furthermore, when a large number

of phenotypes are analyzed simultaneously, and if the ma-

jority of the phenotypes are not associated with a SNP, a

multivariate M-DF GEE test could lose power compared

to analyzing each phenotype separately.

In this paper, we focus on using the IPW method for

analyzing multiple secondary phenotypes to correct for

ascertainment bias in case-control studies where appro-

priate weights,wi, determined on the basis of disease preva-

lence, are used. This approach is easy to implement and

robust to the distributions of phenotypes. An alternative

approach is to extend the retrospective likelihood

methods12 for multiple secondary phenotypes. Although

this approach could potentially be more powerful than the

proposed IPW approach, it is more complex and computa-

tionally intensive and is likely to be less robust in compari-

son to theproposed IPWmethod, given that a full likelihood

and correct specification of the correlation among pheno-

types is required. However, additional research is needed.

Weappliedourproposedmethods to investigate SNPasso-

ciations with multiple secondary smoking phenotypes and

identified several SNPs of biological interest. Future research

is needed to validate these findings. Recent large-scale

GWASs (obtained by pooling data through meta analyses)

and candidate gene studies for smoking behavior and nico-

tine dependence have identified several plausible genetic

variants, an area onChr15q24-25.1 beingmost consistently
756 The American Journal of Human Genetics 92, 744–759, May 2, 2
identified.21–29 However, the effects identified in these pub-

lished analyses were quite small and not detectable in the

present analysis, most likely because of the limited sample

size in our study (approximately 700 affected individuals

and 700 control individuals).

The proposed method can be extended in a number of

ways. Although themodels considered in this work assume

a common set of covariates, xi, for each outcome, the

models can easily be modified to handle different sets of

covariates for each outcome. We can also consider extend-

ing the model to handle multiple SNPs in a region; e.g., a

gene, to potentially further improve power. Finally, it is

also of interest to develop a similar framework for mixed

outcome types (e.g., continuous and binary outcomes) if

they measure the same underlying trait.
Appendix A: Unbiased Estimating Equations

In order to see that the estimating Equations 5 and 6 are

indeed unbiased, let ISðiÞ be an indicator of individual i

being sampled in a case-control data set from a cohort of

size N. Clearly, ISðiÞ ¼ 1 for all n ¼ n0 þ n1 individuals in

the case-control sample and 0 otherwise. The expectation

of Equation 5 is given by

E

	Pn
i¼1

wiX
T
i R

�1ðy�
i �XigÞ



¼ E

	
E

�PN
i¼1

ISðiÞwiX
T
i R

�1

3 ðy�
i �XigÞ jDi;yi;Xi

�

¼PN

i¼1

E
�
E
�
ISðiÞwi jDi;yi;Xi



XT

i R
�1ðy�

i �XigÞ
�

¼ n

N

XN
i¼1

E
�
XT

i R
�1ðy�

i �XigÞ
� ¼ 0:
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The first equality follows from the definition of ISðiÞ and
the law of iterated expectation. The penultimate equality

results from the fact that EfISwijDi;yi;Xig ¼
EfISwijDig ¼ n=N. This is because EðISðiÞ ¼ 1jDiÞ ¼
PrðISðiÞ ¼ 1jDiÞ, where PrðISðiÞ ¼ 1jDiÞ is the conditional

probability of individual i within the cohort being

sampled, given disease status. Note that PrðISðiÞ ¼
1jDi ¼ 1Þ ¼ n1=ðNpÞ ¼ ðn=NÞð1=wiÞ and PrðISðiÞ ¼ 1jDi ¼
0Þ ¼ n0=ðNð1� pÞÞ ¼ ðn=NÞð1=wiÞ for weight, wi, defined

in Equation 7. In other words, the weight, wi, apart from

a constant factor, is the inverse probability of individual i

being sampled in the case-control sample. The final

equality brings us to the cohort-based unbiased estimating

equation of Roy et al.14

For Equation 6, denote ½Xig�j ¼ xT
i bj þ sia for each j.

Similarly, for each j ¼ 1;.;M,

E

�Pn
i¼1
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�
yij
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�
yij
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� ½Xig�j
�
� 1

�)
¼ E

(
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�
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�
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�
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¼ 0:

Following similar arguments above, the final equality

again brings us to the cohort-based unbiased estimating

equation of Roy et al.14
Appendix B: Parameter Estimates and Their

Standard Errors

After setting initial values for s2 and R; we estimate g as

gnew ¼
 Xn

i¼1

wiX
T
i R

�1Xi

!�1Xn
i¼1

wiX
T
i R

�1y�
i :

Given the current estimate of g; we update the estimate

of s2 using the Newton-Raphson (NR) method. Conve-

niently, terms required for the NR algorithm are also neces-

sary for computation of the sandwich formula (see below

for details) for the standard errors. Specifically, we have

s2
new ¼ s2

old þ
"Xn

i¼1

wi

�
J�1þ 1

2
diagðXigÞJ�1diagðXigÞ

�#�1

3

(Xn
i¼1

wi

�
J�1=2diag

�
yi

�ðy�
i �XigÞ � 1M


)
;

whereJ ¼ diagðs2
oldÞ. The above updates are repeated until

convergence.

For the estimation of the standard error of the parame-

ters, denote the estimating equation of interest by
The Am
UðdÞ ¼Pn
i¼1UiðdÞ ¼ 0, where d ¼ ðs2T ;gTÞ and Ui ¼

ðUT
1i;U

T
2iÞT . Here, U1i and U2i correspond to the

summands of Equations 6 and 5, respectively. Let bd be

the solution of UðdÞ ¼ 0: The variance of estimator bd
can be estimated as I�1, where I ¼ HðbdÞTfPn

i¼1UiðbdÞ
UiðbdÞTg�1HðbdÞ and

HðdÞ ¼ E

��vUðdÞ
vdT

�
¼
�
H11 H12

H21 H22

�
;

with

H11 ¼ 1

n

X
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Appendix C: Score Test for the Assumption

of Scaled Common Effect

Let g0 ¼ ðbT
1 ;.;bT

M ; h1ÞT ; d0 ¼ ðs2T ;g0TÞT ; and

h ¼ ðh1;.; hMÞT and partition the estimating functions

as UðdÞ ¼ ðU1T ;U2T ÞT , where

U1 ¼
0@Pi win

�1
�
J�1=2diag

�
yi

�ðy�
i �Xig

0 � siD1hÞ � 1M



P
i

wiX
T
i R

�1ðy�
i �Xig

0 � siD1hÞ

1A
(Equation C1)

U2 ¼
X
i

wisiLR�1
�
y�
i �Xig

0 � siD1h
�
; (Equation C2)

where Dj is the M3M identity matrix with the jth diagonal

element replaced by 0, and L is an ðM � 1Þ3M matrix

which is the identity matrix with the first row deleted.

Note that Equation C1 is the estimating function for d0,

and U2 is the estimating function for h2;.; hM :Using the

results of Breslow30, the score statistic

S ¼
n
U2
�bd0T

�oT

cov�1
n
U2
�bd0

�o
U2
�bd0T

�
can be obtained easily, given that the computation of

covfU2ðbd0Þg is a straightforward extension of the formulae

in Roy et al.14 by accommodating the weights. Under the

null hypothesis of common effect, the statistic, S, asymp-

totically follows a c2 distribution with M � 1 degrees of

freedom.
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Supplemental Data include nine figures and one table and can be

found with this article online at http://www.cell.com/AJHG.
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