Skip to main content
. Author manuscript; available in PMC: 2014 Mar 1.
Published in final edited form as: Alcohol Clin Exp Res. 2013 Jan 24;37(3):498–506. doi: 10.1111/j.1530-0277.2012.01939.x

Table 1.

Comparison of Fit of Latent Growth Curve Analysis

No. classes LL AIC Adj BIC LMR-LRT LRT p-value Entropy
2 −18,375.86 36,791.73 36,835.24 4,782.16 <0.0001 0.89
3 −17,636.34 35,320.34 35,372.56 1,430.74 0.0001 0.89
4 −17,009.69 34,075.39 34,225.26 1,211.75 0.0001 0.88
5 −16,557.68 33,179.36 33,248.99 874.30 0.0011 0.87
6 −16,314.60 32,701.20 32,779.52 470.18 0.0443 0.85
7 −16,095.16 32,270.32 32,357.35 424.45 0.1060 0.87

LL, log-likelihood; AIC, Aikaike Information Criterion; Adj BIC, sample size adjusted Bayesian Information Criterion; LMR-LRT, adjusted Lo–Mendell– Rubin likelihood ratio test; LRT p-value, significance (in p-value) of the adjusted LMR-LRT; Entropy (0 to 1), measures the degree to which latent classes are clearly distinguishable from 1 another. Details of the best-fitting model are indicated in bold.