Table 1.
Comparison of Fit of Latent Growth Curve Analysis
No. classes | LL | AIC | Adj BIC | LMR-LRT | LRT p-value | Entropy |
---|---|---|---|---|---|---|
2 | −18,375.86 | 36,791.73 | 36,835.24 | 4,782.16 | <0.0001 | 0.89 |
3 | −17,636.34 | 35,320.34 | 35,372.56 | 1,430.74 | 0.0001 | 0.89 |
4 | −17,009.69 | 34,075.39 | 34,225.26 | 1,211.75 | 0.0001 | 0.88 |
5 | −16,557.68 | 33,179.36 | 33,248.99 | 874.30 | 0.0011 | 0.87 |
6 | −16,314.60 | 32,701.20 | 32,779.52 | 470.18 | 0.0443 | 0.85 |
7 | −16,095.16 | 32,270.32 | 32,357.35 | 424.45 | 0.1060 | 0.87 |
LL, log-likelihood; AIC, Aikaike Information Criterion; Adj BIC, sample size adjusted Bayesian Information Criterion; LMR-LRT, adjusted Lo–Mendell– Rubin likelihood ratio test; LRT p-value, significance (in p-value) of the adjusted LMR-LRT; Entropy (0 to 1), measures the degree to which latent classes are clearly distinguishable from 1 another. Details of the best-fitting model are indicated in bold.