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Idiopathic pulmonary fibrosis (IPF) is a progressive fibrotic lung disease whose underlying molecular
mechanisms are largely unknown. Herein, we show that focal adhesion kinaseerelated nonkinase (FRNK)
plays a key role in limiting the development of lung fibrosis. Loss of FRNK function in vivo leads to
increased lung fibrosis in an experimental mouse model. The increase in lung fibrosis is confirmed at the
histological, biochemical, and physiological levels. Concordantly, loss of FRNK function results in
increased fibroblast migration and myofibroblast differentiation and activation of signaling proteins that
drive these phenotypes. FRNK-deficient murine lung fibroblasts also have an increased capacity to produce
and contract matrix proteins. Restoration of FRNK expression in vivo and in vitro reverses these profibrotic
phenotypes. These data demonstrate the multiple antifibrotic actions of FRNK. More important, FRNK
expression is down-regulated in human IPF, and down-regulation of FRNK in normal human lung fibro-
blasts recapitulates the profibrotic phenotype seen in FRNK-deficient cells. The effect of loss and gain of
FRNK in the experimental model, when taken together with its down-regulation in human IPF, suggests
that FRNK acts as an endogenous negative regulator of lung fibrosis by repressing multiple profibrotic
responses. (Am J Pathol 2013, 182: 1572e1584; http://dx.doi.org/10.1016/j.ajpath.2013.01.026)
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Normal tissue repair and remodeling are tightly controlled and
self-limited processes. However, exuberant tissue repair and
remodeling have been associated with progressive tissue
fibrosis inmultiple organs, such as the lung and the kidney.1e3

Idiopathic pulmonary fibrosis (IPF) is one such example,
a fatal and progressivefibrotic disease of the lungs.1,4Medical
therapy is ineffective in halting the progressive fibrotic
response in human lungs with IPF.5e7 A better understanding
of the molecular mechanism(s) contributing to the inexorable
fibroproliferative process in lungs with IPF will ultimately
lead to the identification of novel molecular targets.

During tissue repair, fibroblasts are activated, migrate into
the wounded area, proliferate, and transdifferentiate into
a myofibroblastic phenotype.2,8,9 Furthermore, their trans-
differerentiation into myofibroblasts engenders an enhanced
ability to produce several profibrotic mediators, including
cytokines and extracellular matrix (ECM) proteins (collagen
stigative Pathology.

.

and fibronectin).8,10,11 Fibroblastic foci of lung tissue with
IPF are enriched with fibroblasts and myofibroblasts, and the
extent of the foci is a major prognostic factor for patients with
IPF,4,12 supporting the importance of the fibroblast in IPF
pathogenesis.
Transforming growth factor (TGF)-b1 is the most potent

profibrotic cytokine identified and is accepted as a central
mediator of the fibrotic responses in lung, liver, and
kidney.2,13e15 Bidirectional cross talk between integrins and
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FRNK Deficiency Promotes Lung Fibrosis
ECM proteins is critical for myofibroblast differentiation and,
in turn, for activation of latent TGF-b1.14,16e18 Integrin
engagementwithECMproteins activates focal adhesionkinase
(FAK) through phosphorylation of Tyr397 (Y397).19e21

Activated FAK promotes cell migration and invasion and
mediates myofibroblast differentiation and resistance to
apoptosis,19,22e24 suggesting a potential role for FAK in the
profibrotic actions of fibroblasts in lung fibrosis.

FAK-related nonkinase (FRNK) is an independently
expressed cytoplasmic protein that is identical in sequence to
the C-terminal region of FAK.25,26 FRNK overexpression
in vitro has been used as a tool to characterize FAK-mediated
signaling events, because its overexpression inhibits integrin-
mediated FAK activation and cell migration.26e28 However,
the function of endogenous FRNK itself, especially the effect
of loss of FRNK function in disease pathobiological char-
acteristics, has been largely neglected. We have shown that
FRNK expression is down-regulated in human lung fibro-
blasts derived from patients with IPF, in a manner that tightly
correlates with their migration rate.29

SmallRhoGTPases (eg,Rac andRho) regulate cellmigration
through modulating lamellipodia formation.30,31 Published
work supports the importance of small GTPases to fibrotic
responses. For example, Rac and Rho activation is increased in
IPF patientederived lungfibroblasts, Rac1-deficientmice show
resistance tobleomycin-induced skinfibrosis, andRho regulates
myofibroblast differentiation.29,32e34 Another cell migration
regulatory protein, S100A4 (aliases metastasin, fibroblast-
specific protein 1, mts1, and calvasculin), is a member of
a calcium-binding family of proteins.35e37 S100A4 can induce
cell-protrusive activity and metalloproteinase expression, both
key events that lead to migration.35e37 It is increased in fibrotic
lungs38 and plays a role in epithelial-to-mesenchymal transition,
and in lung fibrosis.39 We undertook this study to determine
the functional role of FRNK in profibrotic molecular signaling,
and in the development of in vivo lung fibrosis. The results
demonstrate that FRNK is a multifunctional negative regulator
of lung fibrosis, through altering profibrotic signaling, cell
migration, ECM protein expression, and myofibroblast differ-
entiation and contraction.

Materials and Methods

Reagents

TGF-b1 was obtained from R&D Systems (Minneapolis,
MN). The following antibodies were purchased: phospho-
FAK (pY397; Biosource, Camarillo, CA), procollagen a 1
type 1 (1A1) and fibronectin (Santa Cruz Biotechnology,
Santa Cruz, CA), FAK (N-terminal domain) (Santa Cruz
Biotechnology), FRNK (recognizes both FRNK and FAK
C-terminal; Upstate Biotechnology, Lake Placid, NY), F4/80
(eBioscience, SanDiego, CA), a-smoothmuscle actin (SMA;
American Research Products, Belmont,MA), S100A4, Ki-67
(Dako, Carpentaria, CA), von Willebrand factor (Abcam,
Cambridge, MA), phospho-Smad3 and Smad3 (Cell Signaling
The American Journal of Pathology - ajp.amjpathol.org
Technology, Boston, MA), and glyceraldehyde-3-phosphate
dehydrogenase (GAPDH; Research Diagnostics, Flanders,
NJ).Quantikine enzyme-linked immunosorbent assay (ELISA)
kits were obtained from R&D Systems. Chemicals were
purchased from Sigma-Aldrich (St. Louis, MO) and Fisher
Scientific (Waltham, MA).

Animal Model of Lung Fibrosis

All animal interventions were approved by the Institutional
Animal Care and Use Committee at the University of Alabama
at Birmingham. FRNK knockout mice were generously
provided by Dr. J. Thomas Parsons (University of Virginia,
Charlottesville, VA) and were generated as previously
described.40 FRNK deficiency in these animals was confirmed
by both Northern and Western blot analyses.40 The FRNK
knockout mice were congenic with C57BL/6 wild-type (WT)
mice because they were backcrossed with C57BL/6 mice for at
least 12 generations.22 There is no overt phenotype in the
FRNKknockoutmice under unchallenged conditions.22,40 The
animal lung fibrosis model of bleomycin, the administration of
bleomycin, and the administration of adenoviral vectors were
all previously described.22,41 Briefly, 8- to 11-week-old female
animals were challenged with 1 U/kg body weight bleomycin
or saline using an intratracheal catheter. Saline, with or without
recombinant adenoviral vectors (50 mL, 108 plaque forming
units), was instilled intratracheally at day 7 after bleomycin
(or saline) challenge, as previously described.42

Lung Collagen Determination

The whole lung collagen level was determined by the whole
lung hydroxyproline level. The harvested lungs were
hydrolyzed in 6 mol/L HCl at 110�C for 24 hours, and the
amount of hydroxyproline in the lung acidehydrolysates
was determined by colorimetric assay, as previously
described.43 Collagen deposition in 5- to 10-mm lung tissue
sections (paraffin-embedded tissues) was localized by
Masson’s trichrome staining using a commercially available
staining kit, according to the manufacturer’s instructions
(Poly Scientific, Bay Shore, NY).

Lesional Density and Cell Density Assays

The lungs were inflated to a fixed pressure of 25 cm H2O
with 10% buffered formalin, fixed in 10% buffered formalin
for 24 to 48 hours at room temperature, and embedded in
paraffin. Fibrotic lesional density was measured on H&E-
stained sections by morphometric methods. Lesional density
was calculated as percentage of lesional volume/total lung
volume. Cell density is represented by the ratio of the
number of cells in lesion/lesional area measured on the
digitized images of the H&E-stained lung tissue sections.
The density of a specific cell type was determined as
previously described on the tissue sections stained with cell
typeespecific antibodies.
1573
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Lung Physiological Function

Lung compliance measurements and mechanical ventilation
were performed using the FlexiVent machine (SCIREQ,
Montreal, QC, Canada), according to the manufacturer’s
instructions, with minor modifications. Mice were anes-
thetized, their tracheas were cannulated under direct vision,
and they were attached to a computer-controlled ventilator
(FlexiVent) for forced oscillation measurements. After 5 to
10 minutes of adjustment to the ventilator, physiological
measures of airway and lung tissue compliance and resis-
tance were performed according to the manufacturer’s
instructions, using accompanying software (SCIREQ
version 5.1). In addition to these measures, we performed
static inflation-deflation pressure volume loops, in which the
slope of the deflation limb was used to measure compliance.
The respiratory system was open during the lung compli-
ance measurement.

Human Lung Tissue

The studies and protocols have obtained approvals from the
local Institutional Review Board. De-identified explanted
lung tissues from patients with IPF and normal human
controls were provided by the airway tissue procurement
program of the University of Alabama at Birmingham. The
explanted lung tissues were used for histological and
biochemical studies and for isolation of lung fibroblasts.

Cells and Cell Culture

Isolation and propagation of primary lung fibroblasts were
previously described.29 Adult normal human lung fibro-
blasts were also purchased from ATCC (Manassas, VA).
Fibroblasts were maintained and propagated in Dulbecco’s
modified Eagle’s medium (DMEM) supplemented with
10% fetal bovine serum and antibiotics, as previously
described. Experiments were performed on early passages
(passages 2 to 9) of primary lung fibroblasts.

Generation and Use of Adenoviral Vectors

The adenoviral vectors containing the FRNK cDNA (Ad-
FRNK) and green fluorescent protein (GFP) cDNA (Ad-
GFP) were generated and used as previously described.22,29

Cells in serum-free media [DMEM with 1% bovine serum
albumin (BSA)] were infected with Ad-FRNK or control
vectors (Ad-GFP) before TGF-b1 treatment.

Whole Lung and Cell Protein Extracts

Whole lung or cell homogenates were prepared in 1% NP-40
lysis buffer with the following inhibitors: 100 mmol/L phe-
nylmethanesulfonyl fluoride, 10 mg/mL aprotinin, 10 mg/mL
leupeptin, 100mmol/L sodiumvanadate, and 20mg/mLTLCK
using a polytron (Brinkmann Instruments, Westbury, NY).
1574
The resultant supernatants after centrifugation (14,000� g for
20 minutes at 4�C) were analyzed by immunoblotting imme-
diately or stored at �80�C until used.44

Analysis of BAL Fluid

To collect bronchoalveolar lavage (BAL) fluid, the trachea
was cannulated and the lungs were lavaged three times
using 0.8 mL of sterile PBS. The recovery of the total BAL
fluid exceeded 90%. Fractions (600 g) were centrifuged for
10 minutes, and the supernatant from the first fraction was
collected and kept at �80�C for ELISA assay of total TGF-
b1 level, according to manufacturer’s instructions (ELISA
kit from R&D Systems). The cell pellets from all fractions
were pooled and counted using a hemocytometer. BAL cell
numbers were enumerated, and cytospin preparations were
prepared (cells spun onto glass slides, 150 � g for 6
minutes) (Shandon, Fisher Scientific). Cytospin preparations
were then stained with Diff-Quick solution (Fisher Scien-
tific). A total of 250 to 350 cells were counted randomly
under a microscope, and cell type identification was per-
formed based on standard criteria.

Western Blot Analysis and Rac and Rho Activation
Assays

Immunoblotting was performed on 1% NP-40 whole lung
tissue lysates or whole cell lysates, as previously described.29

Equivalent amounts (mg) of lysates were electrophoresed
using disulfide-reduced 8% to 12% SDS-PAGE, transferred
to an Immobilon-P membrane (Millipore Corp, Bedford,
MA) for probing, and developed with the enhanced chem-
iluminescence system (Fisher Scientific). Rac and Rho acti-
vation levels were determined by the level of GTP-bound
forms of Rac and Rho per the instructions (kits from Milli-
pore, Billerica, MA), as previously described.29

Cell Migration Assay

The wound closure monolayer/scratch motility assay was
performed as previously described.29 Briefly, fibroblasts
were plated in serum-free DMEM with 1% BSA for
24 hours. Mitomycin c was added to inhibit cell prolifera-
tion. The monolayer was scratched, and the wound area
covered by cell migration over the indicated time on digital
photomicrographic images was calculated.

FRNK Down-Regulation

FRNK expression was down-regulated by using FRNK-
specific siRNAs. The siRNA-related experimental proce-
dureswere performed as previously described.45 Targeting and
control siRNA duplexes were synthesized by and purchased
from Dharmacon (Fisher Scientific). The FRNK siRNA
(sequence, 50-AAAGCGAGACTTTGCTAGTTT-30) specifi-
cally targeted the unique leader sequence of FRNK mRNA.
ajp.amjpathol.org - The American Journal of Pathology
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IHC Data

Immunohistochemistry (IHC) was performed as previously
described.44 Briefly, frozen tissue sections were per-
meabilized using 0.6% Triton X-100, blocked, incubated
overnight in primary antibody at 4�C, then reacted with
a horseradish peroxidaseelinked secondary antibody (Jack-
son ImmunoResearch, West Grove, PA) for 1 hour at room
temperature, and developed using a 3,30-diaminobenzidine
substrate kit. Normal, nonimmune IgG primary antibody was
used as a negative control.

Collagen Gel Contraction Assay

As previously described, collagen gels were cast in 6-well
plates from type I collagen/DMEM solution composed of
collagen type I (Sigma-Aldrich), DMEM containing HEPES
and gentamicin, 0.142 mol/L NaOH, and PBS.46 A total of
100,000 lung fibroblasts per well were seeded into the
collagen gel and incubated at 37�C in 5% CO2. A fibroblast-
gel complex contraction was monitored by standardized
photography over time. The ratio of collagen gel area before
and after contractionwas calculated. The data from individual
experiments were pooled and presented as the percentage of
contraction relative to the vehicle-treated group.

LCM Data

Laser-capture microdissection (LCM) was performed to
capture lesional tissues from frozen lung tissue sections in
an RNase-free environment. Fibrotic lesional tissues were
LCM captured by using a Pix cell II LCM (Arcturus, Grand
Island, NY) at the LCM core facility of the University of
Alabama at Birmingham, as previously described,47 fol-
lowed by total RNA extraction and assay by quantitative
real-time RT-PCR.

Quantitative Real-Time RT-PCR Analysis

Quantitative real-time RT-PCR was performed as previously
described.48,49 Briefly, total RNA was extracted from lung
fibroblasts or lung tissues using the RNeasy Mini Kit (Qiagen,
Valencia, CA) or from LCM-captured lung tissues using
RNAqueous-Micro (Ambion, Austin, TX), according to the
manufacturer’s instructions. The following primers were used:
S100A4, 50-TTGTGTCCACCTTCCACAAAA-30 (sense) and
50-GCTGTCCAAGTTGCTCATCA-30 (antisense); FRNK, 50-
GTGGCCTGTCTTCTGGACTC-30 (sense) and 50-AGGACG-
AGGGTTTCAAACTG-30 (antisense); mouse glyceraldehyde-
3-phosphate dehydrogenase (GAPDH), 50-AACTTTGGC-
ATTGTGGAAGG-30 (sense) and 50-ACACATTGGGGGT-
AGGAACA-30 (antisense); and human GAPDH, 50-GAG-
TCAACGGATTTGGTCGT-30 (sense) and 50-TTGATTT-
TGGAGGGATCTCG-30 (antisense). Total RNA (1 to 3 mg)
was reverse transcribed to cDNA with Maloney Murine
Leukemia Virus Reverse Transcriptase (Promega, Madison,
The American Journal of Pathology - ajp.amjpathol.org
WI). Quantitative RT-PCR analysis was performed with the
SYBR Green PCR Master Mix (Applied Biosystems, Foster
City, CA) using the Roche Light Cycler 480 (Madison, WI).
Samples were assayed in triplicate, and the values were
normalized to the relative amounts of GAPDH.

Statistical Analysis

Data were analyzed using the Student’s t-test analysis
(Sigma Plot; SPSS Inc., San Jose, CA) for differences
between two groups, and expressed as means � SE. For
comparisons between multiple groups, a three-way analysis
of variance test was performed, followed by t-tests with
Bonferroni correction using SAS version 9.3 (SAS Institute
Inc., Cary, NC). All experiments were repeated at least three
times. P < 0.05 was considered statistically significant.

Results

Loss of FRNK Function in Vivo Leads to Increased Lung
Fibrosis

To determine the functional role of FRNK in the development
of lung fibrosis, we determined the effect of genetic deletion
of FRNK on fibrosis after bleomycin challenge in mice. By
using severalmeasures, thefibrotic response to bleomycin (21
days) was greatly increased in FRNK knockout mice, when
compared with that in WT littermates (Figure 1). Morpho-
metric analysis of lung tissue sections revealed an approxi-
mately threefold increase (22.3% � 6.6% versus 7.7% �
2.7%; P < 0.01, H&E-stained sections) in fibrotic lesional
density (total lesional areas/total parenchymal area) (Figure 1,
A and B) and a fourfold increase (4.4 � 1.3-fold; P < 0.01)
(Figure 1, C and D) in collagen area in the bleomycin-
challenged FRNK knockout mice, when compared with that
inWTmice. Therewas no difference in the low-level collagen
staining observed in the lung parenchyma between FRNK
knockout mice and WT littermate controls in the unchal-
lenged state (data not shown).

By using the quantifiable measure of hydroxyproline (a
surrogate for collagen) from whole lung lysates, bleomycin-
challenged FRNK knockout mice showed a 1.8-fold (337 mg
versus 183 mg per lung; P < 0.01) greater collagen content,
when compared with that in WT mice (Figure 1E). Whole
lung fibronectin and procollagen-1 levels after bleomycin
challenge were similarly greater (by 2.8- and 3.4-fold,
respectively) in lysates from FRNK knockout mice, when
compared with that in WT controls (Figure 1, FeH). No
differences were noted between FRNK knockout mice and
WT controls in unchallenged/basal (or saline-challenged)
conditions, in any of the fibrosis measures (Figure 1, AeH).

The effect of loss of FRNK on lung fibrosis was also
measured physiologically by measuring static compliance
(stepwise pressure volume loop) (Figure 1I), using the Flexi-
Vent apparatus. Lung compliance was significantly decreased
(more impaired) in bleomycin-challenged FRNK knockout
1575
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Figure 1 FRNK deficiency promotes lung
fibrosis in response to bleomycin in mice. A: FRNK
knockout (FRNK�/�) and WT littermate mice were
intratracheally instilled with saline (Sal) or 1 U/kg
bleomycin (Bleo). Lungs were harvested at day 21
and stained with H&E. Original magnification,
�200. B: The severity of fibrosis was examined
morphometrically and represented by lesional
density (% of lesional area over total parenchymal
area, excluding airway and vessel). C: Masson’s
trichrome staining for collagen deposition. Original
magnification, �400. D: The trichrome-positive
area was quantified morphometrically. E: Hydroxy-
proline level was measured from non-challenged
(None) or Sal- or Bleo-instilled mice, and repre-
sented as %hydroxyproline normalized to that in
non-challenged WT mice. F: Lungs were harvested
at day 14 after bleomycin instillation. Whole lung
lysates underwent Western blot analysis for pro-
collagen 1a1 (Pro-Col) or fibronectin (FN). GAPDH
was used as a loading control. G and H: Densito-
metric analysis of Pro-Col and FN expression. I:
Stepwise pressure-volume (PV) loops captured the
mechanical properties [quasi-static compliance
(CST)] of the lung at day 21 after challenge. Lung
compliance (CST-PV) was represented as mL/cm
H2O. Data were represented as means � SE (n Z 8
animals per group). *P < 0.01.

Ding et al
mice, when compared with that in bleomycin-challenged WT
mice (Figure 1I) (0.055 versus 0.08mL/cmH2O;P< 0.01). In
contrast, there were no differences in lung physiological
characteristics, between FRNK knockout mice and WT mice
under both unchallenged and saline-challenged conditions
(Figure 1I). There were no significant differences in the basal
inflammatory response to bleomycin between genotypes, as
measured by lung lavage total protein, total and differential
cell counts, or total TGF-b1 levels (Supplemental Figure S1).
Taken together, these data demonstrate that FRNK knockout
mice exhibit a profibrotic phenotype at the histological,
biochemical, and physiological levels.

Exogenous FRNK Expression Reduces Lung Fibrosis
in Vivo

To examine the effect of gain of FRNK function on lung
fibrosis, FRNK expression was restored in vivo in FRNK
knockout mice using FRNK-expressing adenoviral vector
(Ad-FRNK), administered during the early inflammation
phase (at 7 days) to improve targeting to cells actively
involved in the fibrotic response. Successful expression of
FRNK in murine lungs was validated by measuring adeno-
virally expressed hemagglutinin-tagged FRNK in lung lysates
(Figure 2C) and by a demonstration that lesional cells were
targeted and were capable of expression of adenovirally
1576
encoded GFP protein after intratracheal administration (data
not shown). The basal (without challenge) lung collagen level
(by hydroxyproline) and lung compliance were not different
among FRNK knockout and WT mice (Figure 2, A and B).
Bleomycin challenge increased lung collagen and reduced
lung compliance in both groups, but to a greater extent in the
FRNK knockout mice compared with that in the WT mice
(P < 0.001) (Figure 2, A and B). Restoration of FRNK
expression in bleomycin-challenged FRNK knockout mice
abrogated the increased lung fibrosis. This was demonstrated
by the reduction in physiologically, histologically, and bio-
chemically detectable fibrosis (hydroxyproline level, lung
compliance, matrix protein expression, and H&E/trichrome
staining) on FRNK restoration (Figure 2). Forced FRNK
expression in WT mice similarly ameliorated the fibrosis on
bleomycin challenge (Figure 2). As a control, administration
of a GFP-expressing adenovirus had no effect on fibrosis
(Figure 2). At the level of key signaling proteins, FRNK
overexpression (in WT mice) or FRNK restoration (in FRNK
knockout mice) reduced the bleomycin-induced increment in
FAK activation (pY397-FAK) (Figure 2D), a-SMA expres-
sion (Figure 2D), and Rac and Rho activation (data not shown)
after bleomycin challenge. Thus, both gain- and loss-of-
function approaches in vivo demonstrate that FRNK func-
tions to limit the development of lung fibrosis, potentially via
altering the profibrotic signaling and cellular response.
ajp.amjpathol.org - The American Journal of Pathology
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Figure 2 Exogenous FRNK expression reduces
lung fibrosis. A: FRNK�/� and WT mice were chal-
lenged with bleomycin (Bleo) or control saline
(Sal), as in Figure 1. Recombinant adenoviral
vectors (50 mL, 108 plaque forming units) con-
taining Ad-FRNK or control Ad-GFP were instilled
intratracheally at day 7 after bleomycin or saline
challenge. Lungs were harvested at day 21 after
challenge. The whole lung hydroxyproline level was
measured and presented as % of hydroxyproline
level in Sal-challenged WT mice. B and E: Lung
compliance [quasi-static complianceepressure-
volume (PV)] was measured by stepwise PV curves
at day 21 after challenge (B). Lung tissue sections
were H&E stained, and representative images are
shown (E). Original magnification, �200 (E). C, D,
and F: Lungs were harvested at day 14 after
bleomycin installation (D and F) or day 3 after
adenoviral vector installation (C). Equivalent
amounts of whole lung lysate underwent Western
blot analysis (one lane per individual animal). Data
were represented as means � SE (n Z 10 animals
per group). HA, hemagglutinin. *P < 0.01.

FRNK Deficiency Promotes Lung Fibrosis
Loss of FRNK Function in Vivo Leads to Enhanced
Activation and Expression of Proteins That Mediate Cell
Migration and Myofibroblast Differentiation

Published studies demonstrate that FRNK inhibits cell
migration when initiated by integrins and growth factors.26

The expression and/or activation of the well-characterized
signaling molecules involved in migration (eg, FAK, Rac,
and Rho) were measured in lung lysates to identify
a potential mechanism(s) for the increased fibrosis seen in
FRNK knockout mice. Although there was an increase in
the activation of FAK and the small GTPases (Rac and Rho)
in both genotypes in response to bleomycin, the increase in
the activation of FAK (6.4- versus 2.7-fold; P < 0.01)
(Figure 3A) and the activation of Rac and Rho in fibrotic
lungs from FRNK knockout mice were approximately twice
that of WT controls (Figure 3A). Furthermore, the propor-
tion of cells in fibrotic lesions with active FAK was greater
(3.8-fold, P < 0.01) (Figure 3, B and C) in bleomycin-
challenged FRNK knockout mice, compared with WT
controls. Cells with active FAK were only rarely detected in
lung tissue from unchallenged or saline-challenged mice
(data not shown). We also noted more total cells per unit
area of lesion in the bleomycin-challenged FRNK knockout
The American Journal of Pathology - ajp.amjpathol.org
mice (Figure 3D), suggesting that the active FAK, Rac, and
Rho may mediate enhanced cell migration in vivo into the
lesions during lung repair.

In further support for FRNK’s role in modulating
migration in vivo during fibrosis, fibrotic lungs from FRNK
knockout mice exhibited more S100A4-expressing lesional
cells, a higher S100A4 mRNA content in fibrotic lesions
(by LCM and quantitative real-time PCR) (Figure 3, EeG),
and a greater whole lung S100A4 protein content
(Figure 3H), than that from fibrotic WT controls. S100A4
expression in saline-challenged or unchallenged mice from
either genotype was not different (data not shown). Several
cell types, such as fibroblasts, those derived from epithelial-
mesenchymal transition, or a subpopulation of macro-
phages, have been reported to express S100A4 during
fibrotic remodeling.50e52 We found no significant differ-
ences in percentages of fibrotic lesional cells that expressed
a macrophage marker (F4/80) or an endothelial cell marker
(von Willebrand factor) or in the proportion of proliferating
cells (Ki-67) between genotypes (Supplemental Figure S1).
Taken together, these data suggest that at least one mecha-
nism of FRNK’s capacity to regulate in vivo fibrosis oper-
ates through altering cell migration, thereby increasing the
cellular content of lesions.
1577
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Loss of FRNK Enhances Lung Fibroblast Responses to
the Profibrotic Effects of TGF-b1

Because FRNK can regulate both cell migration and myofi-
broblast differentiation in fibroblasts,22,29 and TGF-b is
a central profibrotic cytokine that mediates key profibrotic
processes, we studied the functional consequences of
impaired FRNK function on TGF-b1edriven, in vitro
surrogates of fibrosis. Although basal cell motility did not
differ between lung fibroblasts derived from FRNK-deficient
and WT mice, loss of FRNK leads to an induction of the
migratory response to TGF-b1 in FRNK-deficient fibroblasts
when compared with WT fibroblasts (Figure 4A and
Supplemental Figure S2). The enhanced migration seen on
TGF-b1 exposure was abrogated on restoration (or forced
expression) of FRNK with FRNK-expressing adenovirus
(Ad-FRNK) (Figure 4A). The basal migration is also reduced
on exogenous FRNK expression in both cell types
(Figure 4A). FRNK-deficient fibroblasts also demonstrated
enhanced responses to TGF-b1 in their activation of FAK
(Figure 4B), Rac, and Rho (data not shown), and expression
of a-SMA (as a measure of myofibroblast differentiation),
and collagen and fibronectin protein, when compared with
WT fibroblasts (Figure 4, B and C). There was no difference
in basal (no TGF-b conditions) gel contraction between
FRNK-deficient and WT fibroblasts (Figure 4D). FRNK-
deficient fibroblasts were able to contract collagen gels to
a greater extent, in response to TGF-b1, than WT fibroblasts
(Figure 4D). Concordantly, forced FRNK expression (by Ad-
FRNK) abrogated TGF-b1einduced gel contraction in both
FRNK-deficient and WT fibroblasts (Figure 4D and
Supplemental Figure S3). All these TGF-b1 responses were
similarly abrogated with restoration/forced expression of
FRNK, whereas adenovirally mediated expression of GFP
had no effect (Figure 4, BeD, and Supplemental Figure S3).
We have confirmed and extended our prior observations of
FRNK’s role in limiting myofibroblast formation,22 by
showing in this study that a-SMA protein content in whole
Figure 3 FRNK deficiency potentiates integrin/migration signaling and
myofibroblast differentiation in fibrotic lungs. A: FRNK�/� and WT lungs
were harvested at day 14 after bleomycin or saline instillation and lysed,
and equivalent amounts of whole lung lysate were examined for indicated
signaling and a-SMA expression. D: Relative band density by densitometry.
B: Lesional cells containing active FAK (pY397-FAK) were detected by IHC
on frozen lung tissue sections from WT and FRNK�/� mice. Arrows indicate
pY397-FAKepositive cells. Original magnification, �400. C: Lesional
pY397-FAKepositive cells were quantified as the fold of pY397-
FAKepositive cells in FRNK�/� mice relative to that in WT mice. D: The
overall cell density in lesions was determined. E: S100A4-positive cells in
fibrotic lesions were detected by IHC (brown). F: Lesional S100A4-positive
cells were quantified as the fold of S100A4-positive cells in FRNK�/� mice
relative to that in WT mice. G: Fibrotic/lesional tissues were captured by
LCM from frozen lung sections. Total RNA was extracted, and the level of
S100A4 mRNA was determined by quantitative real-time PCR (normalized to
GAPDH) and represented as relative fold to that in WT mice. H: The S100A4
protein level in fibrotic lungs of WT and FRNK�/� mice was determined by
using Western blot analysis. Data were represented as means � SE (n Z 8
animals per group). *P < 0.01.

ajp.amjpathol.org - The American Journal of Pathology

http://ajp.amjpathol.org


Figure 4 FRNK deficiency potentiates, and FRNK restoration abrogates,
TGF-b1einduced fibrotic responses in murine lung fibroblasts. A: Murine
lung fibroblasts were derived from FRNK�/� and WT mice, and infected with
adenoviral vector expressing either FRNK (Ad-FRNK) or control GFP (Ad-
GFP). Cell migration in response to 10 ng/mL TGF-b1 in serum-free medium
with 1% BSA (SFM) was examined by wound closure assay. Data are pooled
and shown as % of wound area covered by cells over 24 hours, relative to
that of uninfected WT fibroblasts in SFM medium. Data are given as
means � SE. B and C: FRNK�/� and WT lung fibroblasts were infected with
Ad-FRNK or control Ad-GFP, followed by 10 ng/mL TGF-b1 treatment (for 36
hours) or vehicle. Equivalent amounts of whole cell lysates underwent
Western blot analysis with indicated antibodies. FN, fibronectin; Pro-Col,
procollagen 1. GAPDH was used as the loading control. D: FRNK�/� and
WT lung fibroblasts were infected with Ad-FRNK or control Ad-GFP, followed
by 10 ng/mL TGF-b1 treatment or vehicle and subjected to the collagen gel
contraction assays for 50 hours. The ratio of collagen gel area after
contraction against the original collagen gel area (before contraction) was
calculated. Data are presented as the percentage of gel area relative to
control (vehicle only, set as 100%). *P < 0.01.

FRNK Deficiency Promotes Lung Fibrosis
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lung lysates is approximately twofold greater in bleomycin-
challenged FRNK knockout mice, when compared with
that in bleomycin-challenged WT controls (Figure 3A).
Smad3 has been shown to play an essential role in in vivo
lung fibrosis induced by TGF-b1.53 In our study, FRNK
deficiency increased, whereas adenovirally mediated FRNK
expression reduced, the Smad3 phosphorylation noted in
response to bleomycin challenge in mice, or in response to
TGF-b1 in lung fibroblasts (Supplemental Figure S4). Taken
together, these data demonstrate that FRNK deficiency
enhances, and the restoration of FRNK reduces, multiple
profibrotic TGF-b1edriven responses in fibroblasts. They
suggest that FRNK acts as a brake on in vivo fibrosis signals
initiated by TGF-b1.

FRNK Is a Negative Regulator of Profibrotic Effects of
TGF-b1 in Normal Human Lung Fibroblasts, and Its
Function Is Down-Regulated in Human IPF

To extend the findings to humans and give this work direct
disease relevance, the effect of loss or gain of FRNK
function on TGF-b1 responses was first examined in normal
Figure 5 Down-regulation of FRNK expression potentiates TGF-b1e
driven fibrotic responses in normal human lung fibroblasts. A: Serum-
starved primary normal human lung fibroblasts were infected with siRNA
toward FRNK or nontargeting control siRNA. FRNK down-regulation by FRNK
siRNAs was confirmed by using Western blot analysis (data not shown).
Fibroblasts were treated with or without 10 ng/mL TGF-b1 and subjected to
a wound closure cell migration assay in serum-free medium with 1% BSA
(SFM) for 24 hours. Exogenous FRNK expression was mediated by Ad-FRNK,
and Ad-GFP was used as a control. Data are plotted as the percentage of
wound area covered over 24 hours relative to that in untreated cells in SFM.
Data are given as means � SE. *P < 0.01. B: Primary normal human lung
fibroblasts were treated as described in A, and equivalent amounts of whole
cell lysate were examined for activation of FAK and Rac, and for myofi-
broblast differentiation (by a-SMA).
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Figure 6 FRNK expression is impaired and FAK activation is increased in
human IPF lung tissues. A: Lesional tissues were captured by LCM from frozen
IPF lung sections (as in Figure 3G). Total RNAwas extracted from captured IPF
lung tissues and normal human lung tissue controls (Normal). FRNK mRNA
levels were examined by quantitative real-time PCR. Data are normalized to
GAPDH and represented as % of FRNK mRNA level relative to that in Normals.
Data are given as means � SE (n Z 13 individual subjects with IPF and 6
individual normal human subjects). *P< 0.01.B: IPF and normal human lung
tissues were lysed and underwent Western blot analysis with the indicated
antibodies. C: Active FAK (pY397 of FAK) was examined in frozen normal (left
panel) and IPF (middle panel) lung tissue sections IHC. Original magnifi-
cation, �400. Arrows indicate cells with FAK activation (middle panel).
Right panel: Results from control IgG (cIgG) on IPF lung sections.
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human lung fibroblasts. As with the mouse, several profi-
brotic TGF-b1 responses were enhanced in normal human
lung fibroblasts on FRNK down-regulation (by >80% using
siRNA, data not shown). These include TGF-b1einduced
cell migration (Figure 5A), activation of FAK and Rac, and
myofibroblast differentiation (expression of a-SMA)
(Figure 5B). Conversely, gain of FRNK expression (by Ad-
FRNK) in normal human lung fibroblasts abrogated the
TGF-b1einduced signal for cell migration (Figure 5A) and
the TGF-b1einduced activation of FAK, Rac, and myofi-
broblast differentiation (expression of a-SMA) (Figure 5B).
As a control, adenoviral expression of control GFP (by Ad-
GFP) had no noticeable effect in normal human lung
fibroblasts treated with or without TGF-b1 (Figure 5). In
summary, normal, non-transformed, human lung fibroblasts
respond similarly to their murine lung cell counterparts on
manipulation of FRNK.

To extend our findings directly to diseased human lung
tissue, devoid of the potential for in vitro artifact, we
revealed that FRNK is down-regulated in IPF lung tissue
compared with that from normal controls. This was docu-
mented at the mRNA level from fibrotic lesions (decreased
by 67% � 8.4%; P < 0.01) and at the protein level in lung
lysates (Figure 6, A and B). The reduction in FRNK protein
was physiologically significant in that it was associated with
an increase in FAK activation (approximately threefold
increase) (Figure 6B), which localized to cells within
fibrotic lesions of IPF lung tissues (Figure 6C). When taken
together with the gain/loss functional data in the mouse
model of lung fibrosis, the observations in human IPF
(fibroblasts and tissues) support the concept that FRNK acts
as a brake to limit fibrosis through blockade of multiple
TGF-bemediated, disease-relevant signals, and that physi-
ological FRNK deficiency promotes fibrosis.

Discussion

The key findings herein are that FRNK deficiency potenti-
ates, and FRNK expression abrogates, the development of
lung fibrosis, through modulating TGF-bedriven, fibroblast
profibrotic responses. These findings were substantiated
in vivo through the increase in lung fibrosis measured at the
histological, biochemical, and physiological levels in
bleomycin-challenged FRNK knockout mice. Conversely,
lung fibrosis was reduced on gain of exogenous FRNK
expression in both FRNK knockout mice and WT mice. The
data indicate that FRNK exerts its antifibrotic actions, in
part, through blocking myofibroblast differentiation, matrix
protein synthesis, and fibroblast migration, all TGF-be
driven responses. To our knowledge, this is the first time
that FRNK has been directly implicated in the regulation of
fibrosis in vivo, and provides evidence for the mechanism(s)
of antifibrotic actions of FRNK.

TGF-b is a pleiotropic cytokine central tofibrogenesis in the
lung. Reports clearly show that inhibition of TGF-b by anti-
bodies, or inhibition of its activation, deletion of its receptor, or
1580
blockade of Smad signaling, attenuates experimental pulmo-
nary fibrosis.53e56 The potent and consistent profibrotic
actions of TGF-b on fibroblasts include induction of myofi-
broblast differentiation, matrix synthesis, and up-regulation of
matrix protease inhibitors, whereas its effects on fibroblast
migration and proliferation are context dependent.2,57 This
study, combined with our prior in vitrowork,22,29,49,58 reveals
that impaired FRNK function amplifies the TGF-b signals,
thereby allowing unbridled cell migration, matrix synthesis,
and myofibroblast differentiation.
Ample evidence in cultured cells documents that FRNK

inhibits cell migration when initiated by integrin activation
and/or induced by growth factors, through its focal adhesion
targeting domain.19 However, little is known regarding
FRNK’s function in vivo. FRNK knockout mice develop
ajp.amjpathol.org - The American Journal of Pathology
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Figure 7 Model of mechanism of the antifibrotic function of FRNK.
Injury or profibrotic stimuli, such as TGF-b1, activate fibroblasts, induce
integrin-mediated and growth factoreinitiated signaling, such as through
FAK, Rac, Rho, and S100A4, promote cell migration and recruitment of cells
to sites of injury, and promote cell contraction and fibrotic responses. These
profibrotic signals also promote myofibroblast differentiation and ECM
production, partly through FAK and mitogen-activated protein kinases
(MAPKs; eg, ERK and p38). FRNK functions to limit these responses,
including cell migration, myofibroblast differentiation, and ECM production.
Under conditions of impaired FRNK function, as in down-regulated FRNK in
IPF, these profibrotic responses are amplified, resulting in the development
of an exuberant fibrotic process and expansion of fibrotic lesions.

FRNK Deficiency Promotes Lung Fibrosis
normally, and have no detectable histological or physio-
logical pulmonary abnormalities when unchallenged,40

suggesting that FRNK is not essential for normal lung
development or homeostasis. Limited prior work has shed
some light on the role of FRNK in tissue repair in vivo.
These studies reveal that FRNK is up-regulated after
balloon-induced vascular injury and mediates the vascular
smooth muscle cell contractile phenotype in vivo, and that
forced expression of FRNK blocks in vitro smooth muscle
cell migration and proliferation.26,59 However, no prior
work demonstrates any role for FRNK in the actual fibrotic
response to tissue injury.

Recent work has highlighted the significance of cell migra-
tion/invasion in the setting of lung injury/fibrosis that occurs in
response to mediators, including lysophosphatidic acid or
hyaluronan.58,60e63 The intracellular signaling pathways that
govern cell migration are complex, and exhibit dynamic and
reciprocal cross talk and positive/negative feedback loops and
are context dependent.64e66 In most tested systems, FAK and
the small GTPases (Rac and Rho) promote cell migration
through modulating both focal adhesion turnover and the
cytoskeleton reorganization necessary to generate the forces
required for migration.19,66e68 Thus, their activation can be
conceived as both a marker and an effector of cell migration.
For example, inhibitionofRacblocks severalfibrotic responses
in scleroderma fibroblasts, and Rac1-deficient mice show
resistance to bleomycin-induced skin fibrosis and inflamma-
tion.32,69 Rac1 may modulate asbestos-induced lung fibrosis
through mitochondrial electron transfer.70 We demonstrate
increased activation of FAK in fibrotic lesional cells in murine
lung fibrosis, human IPF, and IPF fibroblasts.29 We also show
enhanced activation of the small GTPases (Rac and Rho) in
The American Journal of Pathology - ajp.amjpathol.org
fibrotic lungs (Figure 3). There was no detectable effect of
FRNK deficiency on inflammation and TGF-b1 expression
in vivo after bleomycin instillation (Supplemental Figure S1).
These data suggest that the pathophysiological effects of
FRNK occur predominantly during the repair/fibrotic phase in
a manner that is independent of inflammation or of TGF-b1
expression. Taken alongwith the in vitro data, it builds a strong
case that one putativemechanism bywhich FRNK functions to
limit exuberant fibrotic repair in vivo is through limiting FAK
(and/or GTPase)-dependent cell migration.

Myofibroblasts have been implicated in the development
of pathological fibrosis in multiple organs.2,8,10,11 We
demonstrate that FRNK deficiency promotes myofibroblast
differentiation in vivo and in vitro. These data confirm and
extend our previous observation that a-SMAeexpressing
cells are increased in fibrotic lungs of FRNK knockout mice
and that FRNK overexpression inhibits TGF-b1einduced
a-SMAecontaining cytoplasmic fiber formation in lung
fibroblasts.22 Myofibroblast differentiation requires a signal
from active TGF-b1, along with an integrin, to transduce
matrix-derived stiffness and is marked by reorganization of
focal adhesions and cytoskeletal structures.8 Although
several distinct FRNK-dependent events can be discerned,
we have shown that FRNK blocks FAK-extracellular signal-
regulated kinase and p38 pathways in lung fibroblasts, and
thereby inhibits myofibroblast differentiation.22

FRNK deficiency also increases the effect of TGF-b1 on
matrix protein synthesis, in both murine and human lung
fibroblasts. Thus, we speculate that the increased matrix
protein production conspires with other enhanced TGF-b
responses to increase the lung fibrosis seen in FRNK-deficient
mice. The dysregulated FRNK expression noted in fibrotic
lesional cells may similarly contribute to IPF pathogenesis,
and contributes to the increased FAK activation in IPF.29,71

Recent studies support that FAK is a key signaling protein
promoting TGF-beinduced myofibroblast differentia-
tion,22,72,73 and is required for endothelin-1emediated and
JNK-mediated profibrotic signaling.71,74 FAK activation is
increased in IPF and scleroderma,29,71,75 and, more important,
it has been demonstrated that FAK inhibitors block
bleomycin-induced lung fibrosis in mice.71We introduced the
concept that FRNK regulates lung fibrosis by acting as
a brake, at least on FAK-mediated signaling, to ongoing
fibrosis (Figure 7). We further suggest that FRNK deficiency
promotes lung fibrosis, at least in part, because of the loss of
its ability to halt the inexorable profibrotic effects of TGF-b1.

Several important questions remain to be addressed by
future experiments. For example, whether impaired FRNK
modulates other profibrotic pathways (ie, epithelial cell
injury/survival, expression and activation of matrix metal-
loproteinases and tissue inhibitors of metalloproteinases,
TGF-b activation, and fibrocyte recruitment) should be
determined.76e79 Although FRNK deficiency induces an
increase in S100A4-expressing cells in fibrotic murine lungs
(but not macrophages or endothelial cells), perhaps marking
a motile cell phenotype, conclusive identification of the
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S100A4-expresing cell lineage(s) remains to be performed.
Furthermore, S100A4 arguably may mark cells that
undergo other profibrotic processes (ie, epithelial-to-
mesenchymal transition, angiogenesis, and endoplasmic
reticulum stress).39,55,76,80e84 Cell migration is generally
necessary for the tissue repair process. Because FRNK
expression inhibits basal cell migration (Figure 4), further
studies are needed to understand the role of cell migration
during different stages of lung injury and repair.

It is only through a complete understanding of the molec-
ular mechanisms leading to persistent fibrotic response that
wewill be able to design strategies tomitigate persistent organ
fibrosis. Our studies, for the first time to our knowledge,
demonstrate that FRNK deficiency amplifies the fibrotic
response, and that FRNK acts as a physiological brake to limit
the extent of tissue remodeling through inhibiting multiple
TGF-bedriven processes. Thus, FRNK and the FRNK-FAK
pathway represent new therapeutic targets that may limit the
extent of pathological fibrosis in human IPF. Small-molecule
FAK inhibitors are being used in human clinical trials for
cancer (http://www.clinicaltrials.gov); therefore, their use in
fibrotic diseases might be feasible.
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