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Abstract
Accurate ranking during in silico lead optimization is critical to drive the generation of new
ligands with higher affinity, yet it is especially difficult because of the subtle changes between
analogs. In order to assess the role of the structure of the receptor in delivering accurate lead
ranking results, we docked a set of forty related inhibitors to structures of one species of
dihydrofolate reductase (DHFR) derived from crystallographic, NMR solution data, and homology
models. In this study, the crystal structures yielded the superior results: the compounds were
placed in the active site in the conserved orientation and the docking scores for 80% percent of the
compounds clustered into the same bins as the measured affinity. Single receptor structures
derived from NMR data or homology models did not serve as accurate docking receptors. To our
knowledge, these are the first experiments that assess ranking of homologous lead compounds
using a variety of receptor structures. We then extended the study to investigate whether
ensembles, either computationally or experimentally derived, of all of the single starting structures
aid, hinder or have no effect on the performance of the starting template. Impressively, when
ensembles of receptor structures derived from NMR data or homology models were employed,
docking accuracy improved to a level equal to that of the high resolution crystal structures. The
same experiments using a second species of DHFR and set of ligands confirm the results. A
comparison of the structures of the individual ensemble members to the starting structures shows
that the effect of the ensembles can be ascribed to protein flexibility in addition to absorption of
computational error.
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INTRODUCTION
Virtual screening has been proven to be a valuable technique to accelerate the pace of drug
discovery. In virtual screening, often several thousands of compounds from an in silico
database are docked into a model of a receptor binding site and ranked according to their fit.
Accurate ligand ranking during lead optimization, when the compounds are focused around
a conserved hit scaffold, is critical to successfully drive the generation of new compounds
with high affinity. Yet, computationally reproducing the correlations between subtle changes
in structure and potentially large changes in activity can be extremely difficult. Despite
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advances in scoring algorithms, incorporation of protein and ligand flexibility and the
treatment of solvent, all of which increase docking accuracy,1,2 achieving proper ranking
remains a significant and difficult problem that is largely unsolved.3,4 A crucial component
of a successful virtual screen with accurate ligand ranking is the experimental or modeling
source of the receptor structure used for docking. High resolution crystal structures are
typically chosen if available. Otherwise, structures solved from medium resolution
crystallographic data, solution structures derived from NMR data and homology models are
often substituted. Previous studies have compared the ability of different receptor structures
derived from crystal structures, NMR ensembles and homology models to actively identify
ligands in a high affinity cluster from a large database of compounds, also known as
enrichment,5-9 but have not fully explored the role of the receptor in accurately ranking
ligands.

Although the receptor for docking can be a single structure, we have previously investigated
ligand ranking in lead optimization10 and found that considering ensembles of protein:ligand
conformations yielded a reasonable (72.9%) correlation between docking scores and
biological activity. Ensembles of receptor structures have been used previously in other
studies as a simulation of multiple conformational states to represent protein flexibility11-13

and have been shown to increase docking accuracy.10,14,15 The contribution of the ensemble
to the improvement in docking accuracy and ligand ranking may be related to the use of a
flexible receptor that is capable of adopting many of the necessary alternate side chain
orientations for binding as well as to overcoming the fundamental energy landscape and
thermodynamic issues that plague accurate ligand-protein modeling.7,16 Additionally,
ensembles of receptor structures may overcome potential bias in the screen toward analogs
of the ligand with which it was co-crystallized.17-20

Molecular ensembles can be experimentally observed, such as solution structure NMR
ensembles, or computationally determined via a molecular dynamics (MD) simulation.
Solution structure NMR ensembles generally explore larger conformational space than
traditional MD simulations.21 A comparison of accurate ligand ranking using MD-generated
ensembles from crystal structures and homology models and ensembles from NMR data
would be useful in choosing a receptor for a virtual screen.

Dihydrofolate reductase (DHFR) is an excellent system for the comparison of ligand
docking and ranking. Several structures derived from crystallographic and solution data are
available for Lactobacillus casei and human DHFR (LcDHFR and hDHFR). Homology
models are easily created based on a wealth of sequence information and readily available
online modeling engines. Additionally, there are many known ligands with associated
inhibition values in the literature. DHFR is an essential enzyme in folate metabolism and has
been a validated target for antibiotic, anticancer, and antiparasitic drug therapy.
Crystallographic studies of several species of DHFR bound to analogs containing 2,4-
diaminopyrimidine rings have shown that there is an exclusive orientation for the pyrimidine
component within the active site. The protonated N1 atom and N2-amino group of the 2,4-
diaminopyrimidine ring always form two hydrogen bonds with a conserved acidic residue in
the active site.22-26 Knowledge of this conservation creates an additional opportunity to
assess the instances that the ligand is correctly oriented within the active site in addition to
ranking its comparative potency. The results of these studies in which orientation is known
may allow better selection of a receptor structure in the more typical situation when the
correct orientation is not known, such as for screening large databases. Additionally, DHFR
is representative of many enzymes that bind small molecules in a pocket, in that the active
site is accessed through an opening to solution, and undergoes some ligand-induced
conformational changes.

Bolstad and Anderson Page 2

Proteins. Author manuscript; available in PMC 2013 May 06.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



In this manuscript, we present an in-depth comparison of ligand docking and ranking using
crystal structures, single members of NMR ensembles, and homology models created from
two scaffolds with different sequence identities. Unlike the traditional metric for assessing
docking accuracy that focuses on identifying highly active molecules from a database of
decoys, we have adopted a strategy for assessing individual ligand ranking using a “grouped
ranking score.” The grouped ranking score is designed to be useful to a medicinal chemist,
who is more likely to synthesize a group of top-scoring compounds rather than a single top
compound. We then extend these docking results to investigate whether ensembles of
starting structures aid, hinder or have no effect on the performance of the starting template.
We have found that within the context of a single docking protocol and scoring algorithm,
the receptor structure provides the key to successful ligand ranking. While crystal structures
showed the best performance, ensembles of receptor structures derived from NMR data or
homology models regained docking accuracy relative to the single receptor structures and
performed equally as well as high resolution crystal structures. The ensembles appear to
represent protein flexibility as well as to absorb some of the inherent error of a coordinate-
specific computational scoring algorithm.

METHODS
Ligand preparation

All ligands were drawn in Sybyl27 in an analogous fashion so that the starting conformations
were as similar as possible and then minimized using a Tripos force field. Substituted
bicyclic rings containing a 2,4-diaminoquinazoline ring core in the ligand set were submitted
to Gaussian28 runs utilizing Hartree-Fock theory and a 6–3111G(d,p) theory set to determine
conformation. Results from this simulation showed that the substituted bicyclic component
remained planar; therefore ligands with a bicyclic core were minimized with the planar
component held rigid. Amines attached to aromatic systems were assigned with planar
geometry to account for the interaction of the lone pair to the p orbitals of the aromatic
system and to represent an average structure between two possible trigonal pyramidal
structures. The resulting structures were checked for proper geometries and selectively
protonated at N1 of the 2,4-diaminopyrimidine ring.

Protein preparation
Experimentally determined protein structures were downloaded from the PDB29 and
prepared by adding hydrogens and calculating charges. Homology models were created
using the various programs discussed in the text, with the L. casei DHFR (LcDHFR)
sequence obtained from the PDB structure 3DFR.25 All default model creation options were
taken. Returned structures were checked for sidechain bumps and Ramachandran violations.
Models were aligned with 3DFR; the cofactor, NADPH, and the pteridine ring of
methotrexate were merged into the homology models. The resulting ternary structure was
minimized using the Amber force field either in entirety or using a restricted 3.5 Å radius
around the ligand. Results from both experiments are reported. In some cases, the homology
modeling program rotated Trp 5 into the pocket occupied by NADPH. In these cases it was
rotated back into the protein using a Lovell dictionary30 of sidechain angles prior to
minimization.

Ensemble preparation
A MD simulation was carried out on a starting template (as defined in the text) at 300 K
over 10,000 fs with conformational snapshots taken every 500 fs. The active sites were
defined using a 3.5 Å radius from the ligand in which all residues with at least one atom
falling into the sphere were included. All other residues including the docked ligand and
cofactor NADPH were held rigid. In order to prevent an unfairly large active site selection
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with large ligands such as methotrexate in 3DFR, only the substituted pteridine ring was
included in the active site definition. Resulting MD sets were minimized with an Amber
force field for 1000 iterations and a terminal energy change of 0 kcal/mol. Geometries and
Ramachadran plots were checked and formal charges were added. The starting conformation
is also included in the calculations, labeled as RS.

Docking
All ligands were docked using Surflex-Dock as implemented by Sybyl 7.2,27 run at the
command line using an in-house script designed for docking against a library of receptors.
The active sites were flooded with small lipophilic, hydrogen bond donor, and hydrogen
bond acceptor probes to define a protomol.31 Surflex-Dock automatically determines and
then places a base fragment into the protomol to maximize contacts and then sequentially
builds up the ligand, exploring conformational space on the fly. An independent experiment
(data not shown) with three different ligands showed that the starting conformation could
alter the final docking score by up to 8.5%. To try to circumvent this problem, all ligands
were drawn with an analogous conformation. For each ligand, 200 poses were generated and
ranked based on docking score. These poses were visually assessed to find the top-scoring
pose with the conserved geometry of the 2,4-diaminopyrimidine ring as defined by Figure 1.

Results were visualized within Sybyl and exported to Excel spreadsheets. The reported
docking score is the score of the first pose with the conserved orientation, considered in this
study to be the “correct” orientation.

The docking score is a weighted sum of nonlinear functions using van der Waals distances
between the relevant protein/ligand atoms including hydrophobic, polar, electrostatic
repulsive, entropic, and solvation terms.31,32 All scores are expressed in −log10(Kd) units,
with higher scores indicating a stronger affinity. Each ensemble member is considered to
contribute equally to the overall docking and therefore each score is averaged, providing a
single docking score for each ligand per ensemble. Previous work showed that averaging the
values across an ensemble was superior to using a Boltzmann distribution.33

The accuracy with which a docking experiment predicted the tightest binding ligands was
assessed using a grouped ranking score. The grouped ranking score was calculated using a
neighbor accounting technique. Ligands were sorted according to binding affinity and
divided into bins of approximately equal size. After docking, the ligands are sorted
according to docking score and the ranking based on docking score was compared with the
ranking based on affinity. If the two rankings placed the ligand in the same bin, or into an
adjacent bin, a score of 1 was assigned to the ligand, otherwise a score of 0 was assigned.
The use of neighbor binning provided a soft edge and alleviated the problem of assigning
numerical ranking to ligands with the same docking score. The ratio of the grouped ranking
score sum to the maximum possible score (expressed as a %) is an important measure of the
ligand-ranking accuracy of a docking run. For a grouped ranking score to be meaningful it
must be statistically greater than random. The random cutoff value is determined by
averaging the chances of each ligand being placed in the correct bin.

The ability of the receptor to correctly orient the ligand is also an important consideration to
its accuracy as a predictive model. To represent this, the improper orientation rate is also
presented. If the docking protocol returns a ligand with an incorrect orientation for the 2,4-
diaminopyrimidine, that ligand is considered improperly oriented. In such cases, the top
scoring correctly oriented ligand is found from the set of 200 poses and reported, but that
ligand is flagged as having been improperly oriented. A low improper orientation rate
indicates that only a few ligands were poorly oriented, while a high improper orientation rate
indicates that the receptor failed to orient a large percentage of ligands correctly. The metric
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‘place’ is used in the calculation of the improper orientation rate and is the number in the list
of 200 poses of the top-scoring correct orientation. A place score of 0 represents the first
place, and that ligand is considered to be properly oriented automatically.

The most important scoring metrics discussed herein are the grouped ranking score and the
improper orientation rate (%IO). The docking score range is also worth considering as it
represents the overall affinity of the ligand for the receptor site, including polar contacts,
conformational energy penalties, and steric clash penalties.

RESULTS
Lead optimization by virtual screening requires both proper orientation of the ligand within
the active site and accurate ranking to drive analog synthesis. We compared the performance
of several structures of Lactobacillus casei (LcDHFR) derived from X-ray, NMR, or
homology modeling data as docking receptors to accurately orient and rank a group of
ligands with known affinity. With the docking results from several static structures of
DHFR, we then investigated whether the use of ensembles created from those structures
improves ligand orientation and ranking. The resulting trends were further investigated by
submitting human DHFR (hDHFR) structures and a second set of ligands to the same
docking experiments.

Receptors
Three experimental receptor structures were prepared: a crystal structure of L. casei DHFR
(LcDHFR), the representative member of the ensemble of the NMR solution structure of
LcDHFR and an averaged structure from the NMR ensemble. The crystal structure of
LcDHFR bound to NADPH and methotrexate, PDB ID: 3DFR,25 was determined with data
to 1.7 Å resolution. Of the several LcDHFR NMR ensembles available in the PDB, 1LUD34

(Supplemental Fig. 1) was selected as it is the only ensemble with both the cofactor NADPH
and a ligand (trimethoprim, TMP). The average structure was calculated using the
average3d.py35 script within Pymol.36 The NMR representative member is the first member
of the set (eg. 1LUD_1), and is defined by having the lowest root mean squared deviation
(RMSD) to all other members in the ensemble.

Homology model creation
Several homology models of LcDHFR were created in order to compare results with the
experimentally derived structures. To explore the impact of sequence identity, models were
created using sequences with the highest or lowest identity to LcDHFR. In addition, a model
was created using multiple templates in order to assess the function of ‘averaging’ several
scaffolding structures.

The LcDHFR sequence from 3DFR was submitted to a BlastP37 search of the PDB,
returning at least 250 results. The highest scoring non-L. casei DHFR structure was 1ZDR38

(Bacillus stearothermophilus), with 36% identity, and the lowest scoring DHFR structure
was 1CZ339 (Thermatoga maritima), with 31% identity. Several structures were chosen for
the multiple-template model: 1ZDR, 1DYH40 (E. coli X-ray crystal structure with 5-
deazafolic acid), 1RF741 (E. coli X-ray crystal structure with dihydrofolic acid), and 2INQ42

(E. coli neutron diffraction structure bound to methotrexate). The 3DFR sequence was
submitted to three different automated homology modeling servers using both 1CZ3 and
1ZDR as scaffolds: Esypred3D,43 Geno3D,44 and Swiss-Model45 using a sequence
alignment generated by ClustalW.46 Geno3D was used for creating the multiple-template
model. As accurate docking requires the presence of NADPH, and both the MD protocol
and protomol generation protocols require a ligand in the active site, the two molecules were
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merged into the resulting homology models based on the orientation within 3DFR. The
models were minimized using two methods: either a 3.5 Å radius around the merged ligand
and NADPH in which all residues with at least one atom falling within the sphere were
included and a minimization in which the entire molecule was permitted to move, allowing
the relaxation of residues farther from the active site. The minimization around the ligands
allowed the sidechains to find energetically feasible, and therefore realistic, conformations
that accommodate the presence of a ligand. This resulted in 14 homology model structures:
1CZ3 and 1ZDR scaffolds submitted to three different engines with two different
minimization techniques and the multiple-template model with two minimization
techniques.

The resulting homology models show substantial differences based upon the scaffold. The
structures derived from the 1ZDR scaffold structures have lower RMSD and relative
difference (the calculated similarity based on the comparative measures between the
hydrogen bonding atoms of the active site) to 3DFR than the structures derived from the
1CZ3 scaffold. An overlay of the structures with 3DFR (see Fig. 2) shows the substantial
difference in variation from 3DFR between the two scaffolds.

Ligands
Forty monocyclic 2,4-diaminopyrimidine analogs from two experiments47,48 were used for
LcDHFR, shown in Table I. These ligands were chosen based on structural variation and a
range of inhibition constants (0.05–1949.8 nM). The 40 ligands were sorted into six bins
based on logical breaks in Ki values, with consideration for an even distribution of bin size
(Table II). The small bin size allows for better evaluation of ranking accuracy. Grouped
ranking was scored using the previously discussed neighbor-accounting technique. The
random cutoff value for this set of ligands is 31%.

The properties of these ligands fall in the range of typical examples of drug-like molecules
used for screening. The molecular weights range from 201.2 to 382.5, there are three to six
rotatable bonds per ligand (and three single outliers with seven, nine, and twelve rotatable
bonds), the logP values range from 0.12 to 4.55 and starting conformational energies range
from 2.54 to 23.17 kcal/mol.

Docking
Evaluation of a receptor’s ligand ranking and docking is multi-faceted. The primary metric
is the grouped ranking score, which represents the number of compounds that are placed in
the correct affinity bin. The grouped ranking score is totaled and represented as a percentage
of the maximum possible grouped ranking score. The improper orientation rate relays
information regarding the ability of the receptor to properly orient the ligand. Receptors with
high improper orientation rates reflect a general inability to properly orient the ligands. The
docking score range represents the number of nonbonded contacts countered by energy and
steric penalties. In general, ranges with higher values at both ends of the scale reflect better
docking contacts, though these metrics must be considered in conjunction with the grouped
ranking score and improper orientation rates, as a high docking score does not necessarily
mean accurate ranking. An example of scoring using 3DFR is reported in Table II and full
comparative results for all experimentally derived receptors are reported in Table III.

The ternary complex crystal structure (3DFR) performed very well, orienting all of the
ligands correctly and ranking them with a high grouped ranking score, well above random.
A clear trend can be seen in Table II showing decreasing docking scores as the colors move
from warm (yellow) to cool (purple and grey) down the table in conjunction with an
increasing Ki. This is reflected in a grouped ranking score of 80%, in which 80% of the
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ligands were correctly placed in their corresponding affinity bin. Additionally, each ligand
has a place score of 0, indicating that the top scoring pose was also the correct orientation.
The total place score is 0, shown by the improper orientation rate of 0% and indicating all
ligands were correctly oriented. The maximum and minimum docking scores are reported. A
low score of 4.07 indicates that even the ligand with the least computed affinity still
presented a number of good binding contacts. This is to be expected as the ligand database is
composed of ligands with affinity for the receptor, as opposed to a database with decoys.

The individual NMR ensemble members performed much worse than the crystal structure
(Table III). The representative NMR member (1LUD_1) correctly oriented all of ligands,
but the average structure (1LUD_av) yielded an improper orientation rate of 20%. Both of
the NMR structures have grouped ranking scores at or below random, demonstrating that the
structures did not differentiate ligand affinity. The low grouped ranking scores for the NMR
structures also demonstrate that proper orientation and high docking scores do not
necessarily indicate accurate ranking.

The homology models are assessed individually with two minimization methods and as two
scaffold groups, 1ZDR versus 1CZ3 (Table IV). While the average grouped ranking scores
of the 1ZDR and 1CZ3 template models are almost equivalent (59 and 62%, respectively),
there is significant variability within the two groups, ranging from a grouped ranking score
as high as that of the crystal structures (80%) down to nearly random (40%). When all
metrics are considered, the 1CZ3 group performs worse than the 1ZDR group as receptors
for accurately docking ligands. The 1CZ3 group has an improper orientation rate that is
twice that of the 1ZDR group. The docking scores are also lower for 1CZ3, indicating fewer
docking contacts and/or greater energy and steric penalties. It is also interesting to note that
the average RMSD from 3DFR for the 1ZDR group is substantially lower than that of the
1CZ3 group (2.02 as opposed to 3.83). The overall comparison of the 1CZ3 and 1ZDR
receptors reported in Table IV shows that higher sequence identity of the model scaffold
leads to a more accurate representation of the receptor both structurally and in docking
performance.

The multiple-template model orients the ligands within the active site better than the other
homology models, as indicated by the low improper orientation rate. However, they have
grouped ranking scores lower than most of the other homology models (and lower than the
averages for either group). As discussed in the case of 1LUD_1, proper orientation does not
necessarily mean accurately ranked ligands. The multiple-template model effectively acts as
a structural average between the 1ZDR and 1CZ3 groups, and the RMSD to 3DFR of the
multiple-template structures falls between the RMSD ranges of the two template groups. It
presents no advantage over a single template structure. However, only one engine could be
located to create a multiple-template model. As such, the single sampling is not enough to
indicate if the ‘average’ homology model performs consistently as compared with the
variable performances of the single template from the assorted creation mechanisms.

On the basis of the docking results of the individual templates, the crystal structure shows
substantially better docking and ligand ranking than the other templates. It orients all ligands
correctly and has the best scoring metrics. The NMR structures 1LUD_1 and 1LUD_av,
performed substantially worse than the crystal structures when all metrics are considered.
The larger number of ligands that were not properly oriented using the structures determined
by NMR would suggest that caution is necessary with this type of receptor in a system
without a conserved ligand orientation. The homology models vary widely in their docking
and ranking scores, but generally perform worse than the crystal structures, a trend found in
other studies.6 The homology models based on the scaffold of higher sequence identity
perform better than those based on the scaffold of lower sequence identity, but vary too
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much to be of consistent use when one does not have a way to gauge the predictive worth a
priori.

ENSEMBLES
Using ensembles of structures during docking has been shown to improve the accuracy of
compound ranking, since ensembles potentially represent receptor flexibility and other
docking conformations.7,10 In order to determine if the conformational space explored in the
ensemble would aid or hinder the ligand ranking of the starting receptor, ensembles of the
single template structures were created and the NMR ensemble was used directly in docking
experiments. All ensembles were created in a similar fashion: snapshots were taken at
regular intervals across a MD simulation and minimized. The post MD minimization
corrected any geometry problems and the resulting Ramachandran plots were all acceptable.
All MD simulations were performed with a rigid ligand and the NADPH cofactor.
Performing such MD simulations with no ligand would allow the residues to move through a
space that would otherwise be occupied by the ligand, preventing accurate docking. It has
also been found that ligand bound trajectories in MD simulations are more energetically
stable because of induced fit.49 Docking and analysis were then performed for each
ensemble member as above, with values averaged across the ensemble to provide a single
metric per ensemble.

A 3.5 Å 300 K molecular dynamic simulation was carried out on the crystal structure 3DFR,
the NMR representative member 1LUD_1, and the average NMR structure 1LUD_av. All
structures were then minimized with the same mobile side chain definitions. Solution
structures from NMR data are provided as an ensemble of structures. The full NMR
ensemble (1LUD NMR), containing 24 structures, was used in docking experiments similar
to the MD ensembles. While the NMR average is not an experimentally observed structure,
it is considered here to gauge its worth as a starting template for an MD ensemble, as it
represents the average of all potential structures. The starting template is included as part of
the calculation and indicated with RS. Results are reported in Table V.

The individual crystal structure performed better than the MD ensemble based on that
structure. Whereas the crystal structure orients all ligands correctly, the ensemble has a 3.6%
improper orientation rate, with a corresponding decrease in docking score. The 1LUD NMR
ensemble has a high grouped ranking score of 70%, and a relatively low improper
orientation rate of 4.6%. The average 70% grouped ranking score across the ensemble
represents a wide range of individual grouped ranking scores from members of the ensemble
(30–80%). There is also substantial variation in the docking score ranges across the
ensemble members. The high score varies from 13.5 to 9.0, and the low score varies from
6.87 down to 0 (when a ligand cannot be placed correctly in any of the 200 explored poses).
Use of the ensemble in this case compensates for the members with worse ligand docking
and ranking.

Use of an MD ensemble based on an individual member of the NMR ensemble offers
dramatic improvement over the single structures. Both 1LUD_1 and 1LUD_av have random
grouped ranking scores as single structures and have grouped ranking scores of 80% as MD
ensembles. The 80% grouped ranking scores are equivalent to that of the crystal structure.
The 1LUD_av ensemble also shows a decrease in the improper orientation rate over the
individual structure. Despite the increase in grouped ranking score for 1LUD_1, the
ensemble also increases the improper orientation rate, primarily resulting from only two
ensemble members that possess the majority of improperly placed ligands.
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Homology models
Three of the 12 1ZDR/1CZ3 scaffold models were chosen for ensemble analysis, based on
various starting metrics. Additionally, one ensemble was created from the 3.5 Å
minimization of the multiple-template model. The docking results are reported in Table IV.
In all cases, the use of the ensemble improved or maintained ligand ranking relative to single
structure homology models. Also, in all cases except the multiple-template model, an
ensemble of the single scaffold homology models improves the improper orientation rates.

The 1CZ3 ensembles have substantially higher improper orientation rates than the 1ZDR
ensemble. The low end of the docking score range for the 1CZ3 ensembles approaches zero,
indicating few or no favorable docking interactions for the correct pose of those particular
ligands. The SwissModel 1CZ3 3.5 Å min ensemble has a 67.3% improper orientation rate,
making it effectively invalid. However, using the same program and a different template, the
ensemble based on the SwissModel 1ZDR wholemin model approaches the crystallographic
starting structure using all metrics and has the best grouped ranking score in this study.
While the ensembles improve the metrics, the homology models still vary significantly in
their efficacy.

As observed in the NMR study, docking and ranking was improved using MD ensembles
from homology modeled structures relative to the single homology model structures. The
ensemble is especially important when the starting structure cannot dock some of the
ligands, as was the case with each starting structure of the homology models, as shown by
the low score of 0 in the docking score range in each RS structure. While the two 1CZ3
ensembles still find near 0 values for the low end, the ligand is correctly oriented in some of
the cases, and the 1ZDR ensemble demonstrates significant docking interactions on the low
end of the docking score range with the value of 4.55. Furthermore, there was a substantial
difference in scaffold model sequence identity, indicating the importance of high sequence
identity during the homology model creation phase.

HUMAN DHFR
At least two significant results emerged from the L. casei study: one, docking and ranking is
generally improved over the single structure when ensembles are used for homology models
and NMR data and two, the crystal structure outperforms both homology models and NMR
data sets with such high metrics that ensembles offer no improvement. In order to further
explore these trends, human DHFR crystal structures, an NMR solution structure and
homology models were subjected to the similar experiments. The plethora of available
hDHFR structures offers the opportunity to not only investigate ligand docking and ranking
but also offers the opportunity to explore the impact of resolution of crystallographic data
and whether the crystal structure was determined in the apo or holo state.

Receptors
Several hDHFR structures were prepared. Structures derived from high and medium
resolution diffraction data (1KMV,50 1.05 Å; 1OHJ,51 2.5 Å) were chosen for the
comparative docking experiment. There are very minor differences between the two
structures and the RMSD along the backbone is only 0.8 Å (shown in Fig. 3). Within the
active site, there are negligible variations among the sidechains, with the exceptions of Phe
31 and Leu 22 that adopt different rotamers.

It has been suggested that the apo protein structure may better serve as a docking template as
it has not been specifically tuned to a single ligand.7 As a comparison, the apo hDHFR
structure 1PDB52 (2.2 Å resolution) was also examined. The apo structure has very few
differences from the structures with co-crystallized ligands. The backbone lies along or
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between 1OHJ and 1KMV, and has an RMSD of 1.03 and 0.77 Å, respectively. There are
very few sidechain alterations at the active site in the apo structure.

The hDHFR sequence from 1KMV was submitted to a BlastP37 search of the PDB,
returning 238 results. The highest scoring non-human DHFR structure was 4CD253
(Pneumocystis carinii), with 37% identity. The 1KMV sequence was submitted to two
different automated homology modeling servers using 4CD2 as a scaffold: Geno3D and
Swiss-Model using a sequence alignment generated by ClustalW. Resulting models were
aligned with 1KMV to minimize RMSD, and the co-crystallized ligands NADPH and
SRI-9662 ((Z)-6-(2-[2,5-dimethoxyphenyl]ethen-1-yl)-2,4-diamino-5-methylpyrido[2,3-
d]pyrimidine) were merged into the homology models. The homology models were
minimized with a 3.5 Å radius sphere around the ligands.

The NMR ensemble of hDHFR (1YHO54) presents a ligand docking problem. The side
chain of the conserved acidic residue (Glu 30 in hDHFR) in 1YHO_1 (the representative
structure) is rotated away from an orientation that would allow the essential hydrogen
bonding at the ligand N1. To explore the importance of this side chain orientation, we also
selected the NMR ensemble member of 1YHO with the most appropriate Glu 30 orientation,
1YHO_12. The variability of the side chain orientations within the active site are illustrated
in the Supplementary data. The average NMR structure (1YHO_av) was also investigated as
a docking receptor.

Ligands
A series of compounds containing 2,4-diaminopyrimidine rings from the Rosowsky
laboratory55 was chosen for analysis. The data set had to be reduced to 19 compounds
(Table VII) to avoid ligand geometry problems (such as the geometry of tertiary amines,
tricyclic ligands with multiple conformations, or ligands with stereochemistry). The ligands
were sorted into four bins based upon their IC50 clustering and contain approximately the
same number of ligands per bin. The clusters are reported in the Supplementary data.

It should be noted that these structures vary significantly as compared with the ligands used
in the L. casei study, but still have typical drug-like properties. The molecular weights range
from 233.6 to 465.5 with two to eight rotatable bonds per ligand. The logP values range
from 0.074 to 3.39, with starting conformational energies of 9.03–27.38 kcal/mol and a
single outlier of 43.8 kcal/mol.

Docking
Because of the reduced number of ligands, four scoring bins were selected. With neighbor
ranking included, there is a 61% random cutoff point, as compared to 31% in the LcDHFR
experiment. The ligand ranking of the hDHFR experiment should be considered more in
terms of good/fair/random than in direct numeric comparison. This is especially critical
when one remembers that the starting conformation of a ligand can affect the docking score
by up to 8%. For this reason, scores of 84 and 90% are considered equivalent.

The docking results for hDHFR are reported in Table VIII. Despite the high random cutoff,
the bin method still effectively ranks the ligands into the proper clusters. The two crystal
structures that were co-crystallized with a ligand (1KMV and 1OHJ) perform equivalently;
both have high grouped ranking scores and correctly orient all ligands. It is interesting to
note that 1KMV structure docks the ligands with higher docking scores, implying that more
binding contacts and/or lower energy and steric penalties are calculated using the higher
resolution structure. The apo structure (1PDB) ranks slightly below the holo structures for
grouped ranking scores, docking and orientation. The slightly worse performance of the apo
structure has been previously noted in other studies.5
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The SwissModel_4CD2 homology model performs worse than the crystallographic
structures, with a random grouped ranking score and a 5% improper orientation rating from
a single misplaced ligand. Given the behavior of the grouped ranking for this low number of
ligands, the 63% grouped ranking score is a notch down from the apo crystal structure
(79%), which is also a notch under the two holo structures. The Geno3D_4CD2 homology
model has a grouped ranking score equivalent with that of the apo structure, but an 11%
improper orientation rating. This behavioral trend and variability in performance across
homology models is consistent with the single structures seen in the L. casei study.

Although the 1YHO representative member (1YHO_1) has grouped ranking scores similar
to the apo crystal structure, the 37% improper orientation rate demonstrates that many
ligands were not properly oriented within the active site. This very high improper orientation
rate is expected as the conserved acidic residue that makes critical hydrogen bonds with the
2,4-diaminopyrimidine ring, Glu 30, is rotated away from the proper binding conformation.
1YHO_12 was chosen from the ensemble as it has a Glu 30 orientation closest to that seen
in crystal structures, while still not in the ideal location. This selected member shows
improved docking scores, with a 16% improvement in improper orientation, however it still
has a grouped ranking score that is barely above random. The average 1YHO structure
performs equivalently with 1YHO_1, but better than 1YHO_12 in terms of grouped ranking
scores. However, 1YHO_av has an improper orientation rate over 50%, making it the least
usable of the three 1YHO structures explored. Although there is improvement with the
correct side chain orientation, none of the 1YHO structures dock the ligands with an
acceptable improper orientation rate. It should also be noted that the docking score range for
the 1YHO NMR members is substantially lower than those observed with the crystal
structures of hDHFR, indicating fewer positive interactions.

Ensembles
Docking experiments were performed using MD ensembles generated from the hDHFR
crystal structures as discussed previously for LcDHFR. The docking results are reported in
Table IX. Ensembles were explored for select members of the 1YHO ensemble set.
However, the misorientation of Glu 30 was never corrected by the relatively short MD runs
explored here. As a result, small motions of Glu 30 further exacerbated the orientation issue
faced by these members, and docking results were incomparable (data not shown). These
experiments demonstrate the critical importance of the conserved acidic residue to DHFR
for proper ligand orientation and the resulting docking and grouped ranking scores. This
effectively negates 1YHO as a docking template for this experiment, while 1LUD (which
maintains the conserved orientation) was usable.

The results from the ensembles generated from the high resolution crystal structure, 1KMV,
are similar to those reported for 3DFR. All metrics decrease, though only slightly. The
ligand ranking decreases from good to random and the improper orientation rate increases
from 0 to 4.3%. However, the ensemble generated from the medium resolution crystal
structure, 1OHJ, performs substantially worse. The docking values and orientation of
ligands in 1OHJ quickly degenerate as it moves through an MD simulation, with a 35.6%
improper orientation rate. The docking scores also decrease significantly, indicating loss of
binding points across the ensemble.

Docking metrics are roughly equivalent when an ensemble based on the homology models
was created and employed (Table IX). Grouped ranking scores improved for the
SwissModel_4CD2 homology model ensemble, although this is accompanied by an increase
in the improper orientation rate. The Geno3D ensemble, for which three members were
removed because the conserved acidic residue is rotated 90° away from the correct
orientation, offers improvement in improper orientation rate, but a loss of grouped ranking
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metrics. However, the small number of bins and ligands make such comparisons more
difficult than in the L. casei case.

In summary, the ternary complex crystal structures serve as very accurate receptors for
docking and the apo crystal structure performs only marginally worse than the ternary
crystal structures, but still substantially better than the other hDHFR receptors explored.
Once again, there is variability in the homology models in terms of grouped ranking scores
and ligand placement, but an ensemble still presents a more predictable route than using a
static structure alone. These trends are consistent with those seen in LcDHFR. The critical
importance of the conserved acidic residue in ligand docking and orientation is also
reiterated in several circumstances.

DISCUSSION
While we have applied this methodology only to DHFR in this work, there are no features of
the protein or ligand set that make the results case-limiting. DHFR is representative of many
enzymes in its active site size and conformation as well as the degree of ligand-induced
conformational change. Furthermore, since the properties of the ligands that were docked
are considered drug-like, they are similar to many ligands that would be of interest for
docking to other receptors. It is also clear that the improvement effected by the ensembles
did not depend on the nature of the ligand in the starting structure: the crystal structure was
determined with a pteridine ligand and the homology models were originally minimized
around a pteridine core, yet the docked ligands were based on pyrimidine structures.

As receptors for docking, crystal structures perform better than solution structure NMR or
homology model structures, both in ligand orientation and ranking. Structures based on high
and medium resolution diffraction data both place and rank the ligands equally effectively.
The apo structure performs almost equivalently to the ternary structures. Single members of
NMR ensembles and homology models vary widely in their ligand docking and ranking, but
even those that exhibit the best metrics do not perform as well as crystal structures.

The template structures used in creating homology models have a large impact on the
metrics for ligand docking and ranking to the model. The differences in sequence identity of
the scaffold show a marked change in the docking metrics of the resulting homology model.
Conversely, a multiple template approach to creating a homology model does not appear to
have any substantial improvement over the use of a single template. A related conclusion
from this work emphasizes that critical structural features, such as the orientation of a
conserved residue, must be properly oriented for accurate docking results.

The effect of ensembles to improve docking and ranking is summarized in Table X. The
high resolution crystal structures showed a slight decrease in metrics when used as the
starting templates for ensembles, as their starting conformation is most likely superior to all
others explored. However, the generation of an ensemble from poor starting structures, such
as the 1LUD NMR structures and most homology models, generally improves ligand
ranking and docking.

We investigated several possible reasons for the improved results: the ensembles may
represent lower energy conformations than the solution structures or homology models and
thereby correct “problems” in the original structures, the ensembles may provide a “softer”
protocol for scoring, or the ensembles may truly represent protein flexibility. Each of these
will be considered in the following paragraphs.

We examined whether the rigorous minimization of the ensemble members brought the
structures to lower energy conformations than the coordinates obtained from the database
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for the solution structure or calculated for the homology models. To test this, the example
1LUD_1 was subjected to a similar minimization as the ensemble members and the docking
experiment was repeated. The grouped ranking score increased somewhat but there was a
dramatic increase in the improper orientation rate, leading us to the conclusion that the
additional minimization did not account for the positive effect of the ensemble.
Additionally, an examination of the docked, ligand-bound conformations of the solution
structures and homology models showed that they did not contain residues that were grossly
out of position or in steric conflict with the ligand, implying that the positive effect of the
ensembles was not simply to correct improperly placed side chains.

The ensembles, most likely, absorb some of the error of the highly coordinate-specific
nature of computational docking. In solution, contacts and interactions between protein and
ligand are flexible, with constantly moving sidechains and variable hydrogen bonding
lengths all contributing to an overall preserved ligand binding value. In silico, a minute
change in atom location or hydrogen bond distance can dramatically affect the docking
score, as shown by the variable ensemble results across the MD when atoms move only
fractions of an Angstrom. Comparatively large changes in computational score are softened
by averaging across these small motions.

Lastly and most importantly, the ensembles do appear to represent a degree of protein
flexibility. Overall, the positions of the residues in the crystal structure, solution structure,
homology models, and individual ensemble members differ, yet are realistic ligand-binding
conformations. The positions of the residues in the crystal structure were determined to high
resolution; in the NMR solution structure were determined with a high ratio of experimental
data to model parameters; the homology models fall within the boundaries of acceptable
regions of the Ramachandran plot; and the active site side chains of individual ensemble
members are brought to a local energy minima. Since all of these positions are considered
chemically possible, side chain flexibility is experimentally and computationally observed.
In this study, the crystal structure represents one of the most optimal ligand binding
conformations for ligand ranking and correct ligand placement. Interestingly, the majority of
the active site side chains of the individual ensemble members have a lower RMSD to the
crystal structure than to their starting structure, suggesting that the ensemble represents
motion toward a superior ligand-binding orientation. Overall, it appears that the ensemble
may explore conformational space through an MD and sample a geometry landscape of
improved docking conformations.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
The conserved “correct” orientation of the 2,4-diaminopyrimidine ring within the active site,
with hydrogen bonding defined by crystallographic data.

Bolstad and Anderson Page 17

Proteins. Author manuscript; available in PMC 2013 May 06.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 2.
Overlay of 3DFR (green) with the pre-minimized homology models EsyPred3D (yellow),
SwissModel (red), and Geno3D (purple) based on the 1ZDR template (left) and 1CZ3
template (right).
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Figure 3.
Overlay of 1KMV (blue) and 1OHJ (yellow) shown with the 1KMV co-crystallized ligand
(pink) and NADPH (green). Phe 31 and Leu 22 are labeled. [Color figure can be viewed in
the online issue, which is available at www.interscience.wiley.com.]
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Table II

Data Analysis for 3DFR
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Table VII

hDHFR Ligands and their Associated IC50 (μM) Values

Structure Ligand Substituent IC50 (μM)

II.1 X = N, Y = CH=CH 7.2

II.3 X = N, Y = O 0.23

II.6 X = CH, Y = CH=CH 1.4

III.1 R = NHC6H3(2,5-OMe)2 0.83

III.2 R = NHC6H2(3,4,5-OMe)2 0.49

III.4 R = N(Me)C6H4(4-Cl) 0.31

III.5 R = N(Me)C6H4(3-Cl) 0.027

III.6 R = N(Me)C6H3(3,4-Cl2) 0.00037

VI.1 R1 = Me, R2 = C6H3(2,5-OMe)2 0.98

VI.2 R1 = Me, R2 = CH2C6H3(2,5-OMe)2 0.64

VI.4 R1 = Me, R2 = CH2C6H2(3,4,5-OMe)3 3

VI.5 R1 = Me, R2 = CH2C6H(2-Br)(3,4,5-OMe)3 1.6

VI.12 R1 = H, R2 = CH2CH2C6H(2-Br)(3,4,5-OMe)3 7.3

VIII.1 R1 = H, R2 = R3 = OMe 7.3

VIII.2 R1 = Cl, R2 = R3 = H 9.9

IX.1 R = NHCH(CH3)CH2CH2CH3 0.6

IX.4 R = morpholino 1.9

IX.6 R = 4-carbethoxypiperazino 0.81

TMP 890
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Table X

Summary of the Impact of an MD Ensemble upon the Metrics of the Starting Structure, Ranging from
Strongly Negative (−−) to Neutral (=) to Strongly Positive (++)

Starting structure Structure type
Improvement

with an ensemble?

3DFR X-ray −

1KMV X-ray −

1OHJ X-ray − −

1LUD_1 NMR +

1LUD_av NMR av. ++

Swiss 1ZDR Wholemin Homology ++

Esypred 1ZDR 3.5 Å min Homology −

Esypred 1CZ3 Wholemin Homology +

Swiss 1CZ3 3.5 Å min Homology +

Multitemp 3.5 Å Min Homology −

SwissModel 4CD2 Homology =

Geno3D 4CD2 Homology =

Emphasis is given to ligand ranking.
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