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Falling poses a major threat to the steadily growing population of the elderly

in modern-day society. A major challenge in the prevention of falls is the

identification of individuals who are at risk of falling owing to an unstable

gait. At present, several methods are available for estimating gait stability,

each with its own advantages and disadvantages. In this paper, we review

the currently available measures: the maximum Lyapunov exponent (lS and

lL), the maximum Floquet multiplier, variability measures, long-range corre-

lations, extrapolated centre of mass, stabilizing and destabilizing forces,

foot placement estimator, gait sensitivity norm and maximum allowable -

perturbation. We explain what these measures represent and how they are

calculated, and we assess their validity, divided up into construct validity, pre-

dictive validity in simple models, convergent validity in experimental studies,

and predictive validity in observational studies. We conclude that (i) the val-

idity of variability measures and lS is best supported across all levels, (ii) the

maximum Floquet multiplier and lL have good construct validity, but negative

predictive validity in models, negative convergent validity and (for lL) nega-

tive predictive validity in observational studies, (iii) long-range correlations

lack construct validity and predictive validity in models and have negative con-

vergent validity, and (iv) measures derived from perturbation experiments

have good construct validity, but data are lacking on convergent validity

in experimental studies and predictive validity in observational studies. In

closing, directions for future research on dynamic gait stability are discussed.
1. Introduction
1.1. Rationale
It is generally accepted that ageing is accompanied by an increased risk of fall-

ing [1–6], and the same holds for several chronic disorders [7–11]. Owing to

demographic developments, the incidence of falls and related costs constitute

a growing problem in the industrialized world [12]. A host of interventions

to prevent falling and falling-induced injuries have been proposed [13],

e.g. strength training [14], Tai Chi [15], the use of hip protectors [16–18] or

even air bags [19,20]. However, the effectiveness of such interventions is not

as high as desired. Although multidisciplinary approaches, which address sev-

eral potential risk factors simultaneously, appear more effective than singular

approaches [13], their overall effectiveness remains unclear. To prescribe tar-

geted interventions, one first needs to identify those at risk of falling within

the general population [21], before one is able to establish the main determi-

nants of fall risk in the individuals in question. In this review, we purport to

assess methods that may allow discrimination of individuals at risk of falling.

We focus on falls during gait because a significant proportion of falls occur

during gait [6], one of the most common human motor activities.

During gait, perturbations arise from internal sources (e.g. neuromuscular)

and external sources (e.g. wind, surface friction and/or uneven surfaces). Thus,
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the probability of falling is dependent not only on the individ-

ual’s neuro-musculoskeletal capacity, but also on external

factors such as the type and magnitude of perturbations

encountered in daily life. Obviously, the latter cannot be

assessed in a clinical or laboratory setting. It may, however,

be possible to assess the ‘stability’ of an individual’s gait pat-

tern as a reflection of his or her capacity to walk without

falling under given external conditions. But what is gait stab-

ility, how can it be measured and are pertinent measures

indeed predictive of the probability of falling?

1.2. Stability or the ability to recover from
perturbations

For the purpose of this review, we will define pragmatically

‘stable’ gait as gait that does not lead to falls in spite of per-

turbations.1 It is useful to first illustrate and develop this

notion by applying it to a simple model, the so-called passive

dynamic walker (i.e. an in silico simulation or real physical

model of a walking human that exploits its passive mechani-

cal properties, rather than uses motors for its control). Passive

dynamic walkers can recover from small perturbations, and

keep walking after such perturbations without any imposed

control [22]. Their stability arises from the intrinsic properties

of the model (i.e. masses, inertias, etc.) and the specific move-

ment pattern. Thus, a legged system, even without any form

of control, may exhibit some level of stability, simply because

of its mechanical properties and movement pattern. Passive

dynamic walkers can handle only very small perturbations

(for a step down, they can handle perturbations of the

order of a few per cent of their leg length at maximum

[23]). This ability may seem trivial at first, since such small

perturbations affect the gait pattern very little at the time of

their occurrence. However, when these small perturbations

are not attenuated, their effects may accumulate in sub-

sequent steps to a much larger deviation from the planned

state (a state is a set of variables that fully describe a

system, and usually consist of both positions (or angles)

and derivatives). Many studies have focused on ways to

enable dynamic walkers to handle larger perturbations.

One solution is to add a controller [24,25]. This controller

would be inactive most of the time (since the gait is within

its passively stable region), but would be active when a

larger perturbation occurs, or when effects of smaller pertur-

bations have accumulated over time [24]. The contribution of

such a controller to gait stability depends on several factors.

Firstly, the state of the system needs to be correctly monitored

(requiring good sensor quality) in order for the controller to

perform correctly. Secondly, the controller needs to initiate

the correct action given the detected deviation. Finally, the

actuators need to be strong, fast and precise enough to

successfully perform the chosen corrective action.

Three requirements for achieving stable gait become

apparent from the passive dynamic walker example: (i) the

system has to be able to recover from or limit the small per-

turbations that occur during every stride (e.g. owing to

small differences in floor height and noise), (ii) the system

has to be able to recover from large perturbations, which

require a change in behaviour, and (iii) the largest recoverable

perturbation specified by the limits of the system needs to be

larger than the perturbations encountered. Although these

requirements may seem an oversimplification that cannot

be applied to human walking, we feel that they may serve
to gain a better understanding of human gait stability. We

will therefore follow these three requirements of gait stability

to structure the problem addressed in this review.

The three requirements for stable walking may be (par-

tially) independent, in which case a perfect measure of

either one of them may not predict the probability of falling

with certainty. For instance, there may be individuals who

invest much effort in attenuating the effects of small pertur-

bations (which could, if not attenuated, add up to cause

larger state deviations), because they are unable to handle

these (e.g. owing to a lack of muscle strength). These subjects

may appear very stable when considering stability measures

derived only from unperturbed gait. By contrast, there may

also be individuals who do not attenuate the effects of

small perturbations, because they can handle larger state

deviations rather well (see [26]). Finally, there may be indi-

viduals who can handle both small and large perturbations

well, but can handle larger perturbations only up to a certain

magnitude, for instance, because they have a limited range of

joint motion, restricting responses to larger perturbations.

Thus, it could be that all three criteria need to be assessed

in order to fully evaluate an individual’s gait stability. Even

then, as stated previously, the ability to recover from pertur-

bations is only part of the equation that governs the

probability of falling, the other one being the perturbations

a person encounters. Still, this is as close as we may get in

the laboratory or the clinical setting at assessing the probability

that someone will fall.
1.3. Levels of validity
‘Despite the extensive effort in the area, there is no accepted

quantitative way to judge or score the dynamic stability of

human locomotion’ [27, p. 31]. While this statement dates

back to 1994, it still holds true today [28]. Since 1994, several

new measures have been proposed, rendering it difficult to

keep track of this rapidly developing field. In order to clarify

this situation, the current review aims at providing an over-

view of measures of gait stability. In doing so, we will

explain how these measures are calculated, and summarize

what evidence there is that they predict the probability of fall-

ing. In relation to the latter objective, we will distinguish four

levels of validity.

(1) Construct validity. Is the relation between the measure and

the probability of falling plausible given its definition?

(2) Predictive validity in the simplest case possible. Is the

measure predictive of the probability of falling of a

simple model of human gait? Showing that a certain

measure works for a very simple model makes it more

likely that it will also work for the complex case of

actual human gait. Moreover, these studies have the

advantage that the probability of falling can be quanti-

fied directly.2

(3) Convergent validity in experimental studies. Does the

measure adequately reflect an experimentally induced

change in stability? Showing that a certain measure ade-

quately reflects an experimental impairment of stability

makes it more likely that the measure actually captures

stability in the complex case of human gait.3

(4) Predictive validity in observational studies. Is the measure

related to the probability of falling or incidence of falling

in prospective or retrospective observational studies?



Table 1. Acronyms and symbols used in this study.

symbol representation

@y
@c

����
����

2

gait sensitivity norm

b spatial stability margin vector

b min minimum value of b

bt temporal stability margin vector

co size of the perturbation used in calculation of the gait

sensitivity norm

u total body angular velocity

lL long-term Lyapunov exponent

lS short-term Lyapunov exponent

vo inverted pendulum eigenfrequency

* indicates steady-state behaviour

1 infinity

BoS base of support

CoMz vertical component of CoM

CoM the centre of mass position vector

CoP centre of pressure vector

d dimensionality of a system

D CoP vector between CoP and BoS, in the direction of the

velocity of the CoP

DFA detrended fluctuation analysis

dist distance between a set of points in state space

f a function

Fd destabilizing force vector

FPE foot placement estimator method

FPE vector of the foot placement estimator

Fst stabilizing force vector

Fz vertical component of the ground reaction force

g gravitational constant

H tot total body angular momentum vector

i gait indicator index

ICoM total body inertia tensor

J the Jacobian matrix

j nearest neighbour pair number

k stride index

l equivalent pendulum length of the subject

m mass of the subject

M d destabilizing moment vector

n window size (as used in DFA calculations)
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A correlation of a certain measure to actual fall incidence,

preferably determined in a prospective study, can be con-

sidered the definitive test of the validity of using the

measure as a clinical tool. In principle, such a positive

result in observational studies can be the result of spur-

ious correlations. Nevertheless, this is far less likely if

the measure has also been shown to be valid according

to the criteria listed earlier.4

1.4. Outline
This review is organized in the following three parts, each of

which is concerned with a different class of measures:

(1) Measures that reflect (or are associated with) the ability

to recover from small perturbations (the maximum Lya-

punov exponent, the maximum Floquet multiplier,

variability measures, long-range correlations, extrapo-

lated centre of mass concept, concept of stabilizing and

destabilizing forces and foot placement estimator (FPE)).

(2) Measures that reflect the ability to recover from larger

perturbations (gait sensitivity norm (GSN), extrapolated

centre of mass concept and FPE).

(3) Measures that reflect the maximum perturbation that can

be handled. For each type of measure, we start with a

general introduction of that particular class of measures.

Then, for each measure, a general description of the

measure in question is given, after which its formal calcu-

lation is explained, including possible concerns that may

be (and have been) raised with regard to these calcu-

lations. Finally, an overview of the literature concerning

the validity of the measure is presented.

While some of the measures discussed in this review have

been used frequently in the study of human gait, others

have only rarely been used and some not at all. We never-

theless included these measures, as we believe that they

may capture some important properties of gait stability. We

chose not to include entropy-based measures, because

we are unaware of any studies that address the validity of

these measures as predictors of the probability of falls at

any of the levels defined above. Moreover, to the best of

our knowledge, no clear theoretical link between gait stability

and entropy-based measures has been established, and

another recent systematic review on gait stability measures

[28] did not yield any papers on entropy-based measures.

In §5, we will draw conclusions concerning the best

possible choice of dynamic gait stability measures for the

moment, and highlight directions for future research. It

should be noted that the present review is not a systematic

review in a strict sense, but a narrative overview of, as well

as a tutorial on, a wide range of stability measures (for sys-

tematic reviews on gait stability, see [28,29]). The overview

does, however, provide a state of the art of the research on

human gait stability (table 1).
N time-series length

q state variable

S state-space description of the system

t time

u number of gait indicators ( y) used in the calculation of

the gait sensitivity norm

(Continued.)
2. Measures that reflect the ability to recover
from small perturbations

As outlined in the general introduction, we assume that there

is some kind of steady-state gait pattern that requires mini-

mal control. The measures described in this section index

the impact of continuously present, small perturbations on



Table 1. (Continued.)

symbol representation

VCoM velocity vector of the centre of mass

VCoMx
horizontal component of VCoM

VCoMz
vertical component of VCoM

W vector of work needed to bring the subject to

standstill

XCoM the extrapolated centre of mass position vector

XCoM the extrapolated centre of mass concept

y gait indicator used in calculation of the gait sensitivity

norm

a scaling exponent, indicating long range correlations

f leg angle
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this steady-state gait pattern. The measures stem from two

strands of research, namely dynamical systems theory and

biomechanics.
2.1. Measures derived from dynamical systems theory
2.1.1. Background
Formally speaking, in mathematical physics, a dynamical

system is any fixed ‘rule’ that describes the time dependence

of a point’s position in its ambient space. Examples include

mathematical models of an inverted pendulum and simple

models of human gait. Often, the system will be nonlinear

and complex, and several tools have been developed to test

whether, and under which conditions, such systems show

stable behaviour. Since around 1995, some of these methods

have also been used to estimate gait stability [27,30]. How-

ever, the equations of human locomotion are not known,

and thus numerical rather than analytical methods have to

be used, which may introduce problems (e.g. §2.1.3). In this

section, four measures derived from dynamical systems

theory are described, namely the maximum Lyapunov expo-

nent (§2.1.2), the maximum Floquet multiplier (§2.1.3),

variability measures (§2.1.4) and long-range correlations

(§2.1.5). These measures reflect the ability to overcome

smaller perturbations (for which a change in behaviour

(e.g. trip and slip) is not needed) and are calculated from

a steady-state walking pattern without any external

perturbations other than those present in the test environment

or in the system itself.
2.1.2. The maximum Lyapunov exponent

2.1.2.1. General description
Dingwell et al. [31] were the first to use the maximum Lyapu-

nov exponent to estimate gait stability. Since then, the

maximum Lyapunov exponent has gained in popularity

[2,31–80]. The maximum Lyapunov exponent (l) quantifies

the average logarithmic rate of divergence of a system after

a small perturbation [64,81]. The general idea when using

the numerical calculation is that, if a system is (or was) at

nearly the same state as the current state (i.e. same position,
velocity, acceleration, jerk, etc.), either state may be regarded

as a perturbation of the other.

The great advantage of this measure is that it may be cal-

culated from any source of kinematic data, regardless of the

reference frame in which the data are recorded [59,69]. This

allows for using small and cheap (wireless) inertial sensors

[34,39,76].
2.1.2.2. Calculation
The calculation of the maximum Lyapunov exponent of

human gait data is rather straightforward. The first step is

the construction of a proper state space (see appendix A)

from kinematic data obtained during a steady-state walking

trial. Since stationarity of the time series is a requirement

for valid calculation of the maximum Lyapunov exponent,

most studies use either acceleration data or differentiated

position data.

In principle, any kinematic time series may be chosen as

input for state space reconstruction [59,69,82]. Recent literature,

however, suggests that trunk kinematic data (as opposed to

foot, shank, thigh and pelvis kinematic data) may be most sen-

sitive to differences between, for example, elderly and young

subjects [83]. Theoretically, this is understandable, since main-

taining stability of the upper body is a critical aspect of human

locomotion [84,85]. However, it has never been studied

whether joint angles would be even better input variables

than trunk kinematics. Indeed, some studies investigating

stability in patients with knee osteoarthritis and anterior cruci-

ate ligament ruptures have used knee angle time series

[37,40,42,49,50,59,72,86–89]. The idea behind the studies in

these patients was either that the main mode of instability

arises from buckling or giving way of the knee joint [87] or

that joint movements reflect coordination of the segments

between which the joint is situated [37,40,42,49,50,59,72,

86,88,89].

It is of paramount importance to make sure that the

selected state space contains the same number of strides for

every condition and subject [60,68], as the estimated maxi-

mum Lyapunov exponent of gait data has been shown to

increase with increasing time-series length [68]. Bruijn et al.
[68] suggested that this may be either due to non-stationari-

ties in the data (i.e. wandering around on the treadmill) or

due to nearest neighbours in state space becoming closer

together as the state space becomes more densely populated

with data. The fact that Bruijn et al. [71] also found similar

effects of time-series length in data obtained from a passive

dynamic walker with noise suggests that the latter (i.e. ini-

tial nearest neighbours moving closer in state space) is a

more likely reason, as a passive dynamic walker does not

‘wander around’.

Moreover, in most recent studies, the number of data

points per stride was adjusted by time normalizing the

state space of n strides length to n � 100 data points, thus

ensuring that state spaces contain the same number of both

strides and data points for each subject and condition

[59,60,68]. An alternative to this procedure is to rescale time

on the x-axis of the divergence curve (see below). This over-

comes the difficulties associated with interpolation of the

time series.

It should be mentioned that relatively large datasets are

needed for a statistically precise estimate. Bruijn et al. [68]

showed that limited increases in statistical precision were
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Figure 1. Calculation of the maximum Lyapunov exponent. (a) A three-dimensional attractor (state space reconstruction of q). (b) Close-up view of part of the
attractor; for each point on the attractor, the nearest neighbour was calculated, and divergence of these points was calculated as distj (t) (expanded view of part of
(a)). (c) Average logarithmic rate of divergence, from which maximum Lyapunov exponents, lS and lL, can be calculated as the slope of the curve at 0 – 0.5 strides
and at 4 – 10 strides, respectively (black line: divergence curve; grey line, lS: 2.2156; dotted line, lL: 0.0712).
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achieved only when the length of the time series was increased

beyond 150 strides. Recent research, however, suggests that

multiple episodes of shorter data can also be used. Sloot et al.
[39], for example, successfully demonstrated the destabilizing

effects of galvanic vestibular stimulation at the group level

using multiple time series of only seven strides.

The actual calculation of the maximum Lyapunov exponent

is performed by either (i) identifying the nearest neighbour in

state space for each data point [81] or (ii) identifying the nearest

neighbour for data points along a single reference trajectory

[90]. It is important to note that, for a continuous series such

as a marker position or joint angle time series, the entire data

series serves as the reference trajectory. In both of these calcu-

lations, the log of the expansion/contraction of the Euclidean

distance between these points is calculated.

In the Rosenstein et al. [81] algorithm, the expansion/

contraction of points is followed until the end of the time

series. A time versus the log of the Euclidean distance

curve is calculated for all neighbouring points as they move

through their respective trajectories. A mean divergence

curve is then calculated for all of these curves (figure 1).

The divergence exponents appearing in gait data are calcu-

lated as the slope of this mean divergence curve. In most

gait studies, this slope is estimated over two regions, from

0 to 1 strides (sometimes also 0–0.5 strides), usually labelled

as lS, and over 4–10 strides, usually labelled lL.

In the Wolf et al. [90] algorithm, the neighbouring points

are followed for a specified period that is a fraction of the

time for one complete orbit of the attractor. The average of

the log of the expansion/contraction of distances between

points divided by the specified period the points were fol-

lowed is the maximum Lyapunov exponent. It is important

to note that, in the original paper in which the Rosenstein

et al. [81] algorithm was first presented, only the slope of
the initial region of rapid expansion was defined as the

maximum Lyapunov exponent.

Thus, it becomes evident that the Rosenstein et al. [81]

algorithm and the Wolf et al. [90] algorithm are calculating

a maximum Lyapunov exponent (labelled lS or simply maxi-

mum Lyapunov exponent, respectively) in a similar manner:

the initial rapid exponential separation of two neighbouring

points in state space. This is consistent with the definition

of a maximum Lyapunov exponent from dynamical systems

theory and chaos theory.

In the original methods by Wolf et al. [90] and Rosenstein

et al. [81], this exponential rate of divergence is calculated as

the rate of divergence per second. However, it has been

suggested that, for gait data, the exponential rate of diver-

gence should be expressed per gait cycle [64,68] rather than

per second [60]. The assumption underlying this suggestion

is that every foot placement in walking represents a possi-

bility to recover from a perturbation, which implies that the

rate of divergence per stride (or step) is the factor of impor-

tance, and not the rate of divergence per time unit. Besides

this logic, there are data from the modelling study of Bruijn

et al. [71] to substantiate this idea. In this study, the maximum

Lyapunov exponent was calculated as divergence per stride,

rather than per second. The results showed that lS correlated

fairly well with the maximum perturbation the model can

handle. When looking at the stride times the model had for

the different model configurations (see fig. 3b in [91]), it may

be clear that this would not have been the case if the maximum

Lyapunov exponent had been calculated as divergence per

second, thus emphasizing the notion that the maximum

Lyapunov exponent should be calculated as divergence per

stride instead of divergence per second. Still, since evidence

for this idea of calculating divergence per stride instead of diver-

gence per second is scarce, it is advisable that, in future studies,
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both divergence per stride and divergence per second are

mentioned.

2.1.2.3. Validity of the maximum Lyapunov exponent
Construct validity. There is little doubt that the maximum Lya-

punov exponent has a valid theoretical basis [62,64,81]. While

any attractor existing in an n-dimensional state space will

have n Lyapunov exponents, by definition there can be only

one maximum Lyapunov exponent. The maximum Lyapunov

exponent describes the greatest rate of expansion of any

dimension. Calculation of any Lyapunov exponent beyond

the maximum Lyapunov exponent cannot be performed by

means of the Rosenstein et al. [81] algorithm and can only be

done through careful Gram–Schmidt orthonormalization pro-

cedures as with the Wolf et al. [90] algorithm. For this reason,

the gait literature reporting lS and lL now refers to these as

divergence exponents, thus recognizing that only lS is the

exponent first described by Rosenstein et al. [81] as the esti-

mated maximum Lyapunov exponent. The reasoning behind

calculating lL beyond a visual identification of a region of

different slope in a mean divergence curve is somewhat unclear.

The region through which lL is calculated represents a time

when the neighbouring points have almost reached their maxi-

mum separation, and the distance between them cannot grow

any further because of the bounds of the attractor. This could

be calculated in a similar manner with the Wolf et al. [90] algor-

ithm by increasing the specified time period through which

the expansion/contraction is calculated (e.g. several orbits

of the attractor), but it is unclear what this represents.

Predictive validity in models. Su & Dingwell [92] tested whether

the maximum Lyapunov exponent quantifies the ability to

recover from small perturbations in a simple model of walk-

ing. They used a simple passive dynamic walking model

with added noise and found that increasing noise levels led

to increases in lS, but not in lL. Since the model had the

same basin of attraction in all noise conditions, increasing

noise immediately implied an increased probability of falling

for the model. The authors concluded that lL quantifies the

‘inherent stability of the model’ [92, p. 806], while lS quan-

tifies the ‘risk of falling exhibited by the model’ [92, p. 802],

a finding which was replicated by Kurz et al. [93]. Roos &

Dingwell [74] extended these findings to a three-dimensional

model in a subsequent study, showing that in such a model

lS was an early indicator of the probability of falling

(measured as the percentage of trials in which the model

fell over). However, in neither of these studies was the

inherent stability of the model actually changed by changing,

for instance, the slope angle or some other property of the

model (see [94]). In one of our own recent studies, we there-

fore focused on whether lS and/or lL were related to the

probability of falling (this time quantified as the maximum

perturbation the model could handle), when this was altered

by changing the properties of the model [71]. Like previous

authors, we found that lS was correlated with the probability

of falling and lL was not. Thus, studies investigating simple

models consistently suggest that lS, but not lL, may be a

valid predictor of the probability of falling.

Convergent validity in experimental studies. Recent experimental

studies in humans seem to confirm the findings obtained in

the studies of simple walking models. In an early study, sub-

jects’ feet were desensitized by means of ice water, which led
to a less stable gait pattern and higher values of lS and lL

[86]. In a more recent study, Chang et al. [95] reported that

walking over an unstable support surface increases values

of lS, but not of lL. Similarly, Sloot et al. [39] and Van Schoo-

ten et al. [34] reported that destabilizing subjects by means of

galvanic vestibular stimulation led to increased values of lS,

but not of lL. Finally, McAndrew et al. [75] reported that gait

destabilization by means of support surface perturbations or

visual scene perturbations was reflected in lS, but probably

not in lL. This finding has recently been confirmed by Hak

et al. [77], who even showed a dose–response relationship

between the amplitude of the perturbations applied and the

increase in lS. All in all, the findings obtained in experimental

studies suggest that, in actual human gait, lS, but not lL, may

be a valid measure to estimate the probability of falling.

Predictive validity in observational studies. Although there are a host

of studies that employ the maximum Lyapunov exponent to

quantify gait stability in patient and elderly populations, there

are only very few studies that directly link them, be it retrospec-

tively or prospectively, to the probability of falling. Lockhart &

Liu [2] reported a greater maximum Lyapunov exponent (lS)

in fall-prone elderly subjects than in normal elderly subjects.

Being prone to falling was defined as being unable to avoid

slip-induced falls, as assessed in a previous study [96]. It is inter-

esting to mention that fall-prone and non-fall-prone subjects did

not walk at the same walking speed, which may in and of itself

also influence lS. This could be seen as a confounder. However,

slip outcomes as measures of fall risk were also assessed at pre-

ferred walking speed; and, similarly, it can be assumed that fall

risk in daily life is also determined by the quality of gait at the

actual chosen speed, for which preferred speed is likely to be

representative. In one of our own studies on a cohort of 14

patients with knee osteoarthritis, we did not find a relationship

between the number of falls experienced in the year before the

measurements and the maximum Lyapunov exponent of knee

angle time series [87]. However, in a more recent retrospective

study which involved 134 elderly participants, we found that a

high lS of trunk movement (in combination with higher variabil-

ity measures) differentiated individuals who had fallen in the

previous year from non-fallers [76]. In conclusion, there is grow-

ing evidence that lS, but not lL, may be used to estimate the

probability of falling.
2.1.3. The maximum Floquet multiplier

2.1.3.1. General description
The maximum Floquet multiplier quantifies the rate of conver-

gence/divergence of continuous gait variables (e.g. segmental

motions and joint angles) towards a limit cycle (e.g. the nom-

inal gait cycle), following a transient perturbation, from one

gait cycle to the next. Thus, they rest on the assumption that

gait is a periodic motion (i.e. a motion that repeats itself

after a certain period of time), and that the gait variable ana-

lysed also reflects such limit cycle behaviour (e.g. segment or

joint motion, but not stride times or stride lengths).

The maximum Floquet multiplier was first applied in

robotic gait to assess the stability of passive dynamic walkers

[97]. Typically, in this type of analysis, a periodic solution

(i.e. a solution that repeats itself after a certain period of time)

is found for the walker, representing a fixed point in a Poincaré

section (i.e. the lower dimensional subspace orthogonal to the

flow direction of the system that corresponds to a given point in
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Figure 2. Calculation of the maximum Floquet multiplier. (a) A three-dimensional attractor, with a schematic of the Poincaré section, which is perpendicular to the
direction of flow (state space reconstruction of q). (b) Close-up of the Poincaré section (expanded view of part of (a)). The larger point in the middle (S*) represents
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the stride cycle; figure 2). Subsequently, state variables are per-

turbed repeatedly at this fixed point, so that the maximum

Floquet multiplier can be calculated to examine whether the

fixed point is stable or unstable (for a more extensive descrip-

tion of this procedure for robotic gait, see [98]). Obviously,

this kind of analysis is only possible when the equations of

motion are known.

When using this measure to estimate gait stability in

human walking, as was done by Hurmulzu & Bazdogan

[27], one of the challenges is to find a substitute for the

fixed point, which cannot be calculated from the equations

of motion since these are unknown. Another problem is

how to perturb the state variables piece by piece. The first

problem is usually solved by taking the mean of the trajectory

crossings at a Poincaré section of a steady-state walking trial

as an approximation of the fixed point [27,30,34,42,43,56,62,

68,69,72,74,75,83,92,99,100], which is a reasonable assump-

tion given that steady-state human walking has some

degree of stability (i.e. humans can walk without falling

every other step). The piecewise perturbation of state vari-

ables is then bypassed by regarding the natural variability

of human walking to be the result of perturbations (which

in this case are no longer piecewise per state variable). Fol-

lowing this procedure, the maximum Floquet multiplier can

be calculated without applying actual perturbations.

2.1.3.2. Calculation
Like the maximum Lyapunov exponent, calculating the

maximum Floquet multiplier from human gait data requires

the construction of a state space from kinematic data (see

appendix A). The number of strides covered by this state

space should be equal for all subjects and conditions [68],

and a considerable number of strides is required to achieve

sufficient statistical precision [68].

Floquet theory assumes that a system is strictly periodic,

and that the state of a system after one cycle (Skþ1) is a func-

tion ( f ) of its current state (Sk) (as outlined in the general

description, this dictates the necessity of using continuous

variables displaying limit cycle behaviour to calculate the

maximum Floquet multiplier)

Skþ1 ¼ fðSkÞ: ð2:1Þ

It follows from equation (2.1) that limit cycle trajectories

correspond to fixed points (S*) in the Poincaré section
(figure 2), i.e.

S� ¼ fðS�Þ: ð2:2Þ

To evaluate the effects of small perturbations on S*, a

linearization of equation (2.1) is used

½Skþ1 � S�� ¼ JðS�Þ½Sk � S��: ð2:3Þ

From equation (2.3), it can be seen that the rate at which small

perturbations grow or decay is equal to the magnitudes of the

eigenvalues of J(S*), which are the Floquet multipliers. Thus,

for a limit cycle to be stable, all Floquet multipliers should

have a magnitude less than 1. The magnitude of the Floquet

multipliers indicates the rate of divergence/convergence over

cycles, and the maximum Floquet multiplier is the maximum

absolute Floquet multiplier.

In some studies, Poincaré sections are sampled at heel-

strike, or some other distinctive point in the gait cycle

[27,30,72,101], based on the untested assumption that such

points (e.g. heelstrike) represent biologically meaningful

events within the gait cycle. In other studies, 101 Poincaré sec-

tions were made by time normalizing the state spaces into

stride cycles of 101 samples (from 0% to 100%) [62,68,99].

Note that in theory the choice of Poincaré sections is arbitrary

as Floquet multipliers should be constant throughout the gait

cycle [27], and indeed show low within-stride variability [99].

After the Poincaré sections have been selected, the fixed

points (S*) in these Poincaré sections are defined as the average

state over all strides in the Poincaré section in question. J(S*)

can then be calculated by solving equation (2.4) using a least-

squares algorithm, and Floquet multipliers can be obtained

by calculating the eigenvalues of J(S*). It must be noted that

in some cases not the largest but the mean Floquet multiplier

is calculated [27,101]. In these cases, this is believed to give a

more ‘overall stability measure’ [27, p. 33] as it quantifies the

average divergence/convergence from/to the limit cycle.

2.1.3.3. Validity of the maximum Floquet multiplier
Construct validity. The construct validity of the maximum

Floquet multiplier for periodic dynamical systems is outside

the scope of this review [27,30]. However, when applied to

human walking, some problems arise. To start with, Floquet

theory can only be applied to strictly periodic systems, and it

is questionable whether human gait is such a system; stride

cycles vary in length, and this variability has a non-random
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structure (see §2.1.5). Moreover, the methods used for numeri-

cal calculation of Floquet multipliers from measured data are

far from perfect; using the average of all states as a fixed

point leads to underestimation of the maximum Floquet multi-

plier [102]. In conclusion, whereas the construct validity of the

maximum Floquet multiplier is good for theoretical systems, it

remains questionable for biological systems.

Predictive validity in models. Several studies, using either two- or

three-dimensional limit cycle walking models as a basis,

reported that the maximum Floquet multiplier did not corre-

late with the model’s probability of falling [23,74, 91,92,103].

According to Hobbelen & Wisse [23], this is because the maxi-

mum Floquet multiplier assumes equal perturbations of all

states, and observes the eigenmode (i.e. the direction of conver-

gence to the limit cycle) with the slowest convergence, which is

not necessarily the eigenmode that will bring the walker near-

est to a fall. There may be other eigenmodes that show a faster

return, but are more important for the actual behaviour. Fol-

lowing this logic, some authors have used the mean instead

of the maximum Floquet multiplier to estimate gait stability.

However, doing so did not lead to better results for a two-

dimensional model [91] and was, as far as we know, never

done for a three-dimensional model. Thus, studies on simple

models appear to suggest that the maximum Floquet

multiplier correlates poorly with the probability of falling.

Convergent validity in experimental studies. Results from studies

employing experimental manipulations of stability are to some

extent in agreement with the disappointing findings reported

using simple models. While gait destabilization by means of

visual perturbations or perturbations of the support surface

[75] showed the expected effect on the maximum Floquet

multiplier, destabilization by means of galvanic vestibular

stimulation [34] was shown to have converse effects on the maxi-

mum Floquet multiplier from those expected. In summary,

experimental studies of human gait show mixed support for

the use of the maximum Floquet multiplier as a measure of

the probability of falling.

Predictive validity in observational studies. Granata & Lockhart

[101] reported that the maximum, not the mean, Floquet mul-

tiplier was larger in a group of four fall-prone elderly

(i.e. elderly who had a self-reported history of falling) than

in four elderly controls. However, apart from the critically

small sample size, it should be mentioned that walking

speed differed between groups. The authors stated that

‘Stability was not influenced by walking velocity, indicating

that group differences in walking speed could not fully

explain the differences in stability’ [101, p. 172]. However,

walking speed differences between groups, which were not

reported in detail, may have been larger than within

groups, thus rendering this conclusion questionable.

In sum, it seems that the validity of the maximum Floquet

multiplier in modelling, experimental and observational studies

is not yet established, which casts doubt on their use as a valid

predictor of the probability of falling. A recent review [104]

attributed this lack of correlation between the maximum

Floquet multiplier and measures of the probability of falling

to methodological issues. However, Bruijn et al. [91] showed

good correlations between semi-analytically and numerically

calculated maximum Floquet multipliers, which renders this

conclusion less likely. Moreover, as discussed under predictive

validity in model studies, even in those studies it is the case

that, when the maximum Floquet multiplier is calculated in a
semi-analytical manner, it does not correlate with the probability

of falling.

2.1.4. Variability measures

2.1.4.1. General description
When using the term ‘variability’ in this section, we refer to the

amount of variability of a certain parameter over strides during

walking. Examples of variability measures are stride time and

stride width variability, and the variability of trunk move-

ments. It should be noted that these measures are essentially

statistical in nature, and, thus, some explanation is needed as

to why we discuss them under §2.1. The rationale is that, in cer-

tain simple dynamical systems involving stable fixed points

with constant white noise, such as the stochastic version of

the Haken–Kelso–Bunz model for bimanual coordination

[105], an increase in variability in the coordination pattern is

indicative of a loss of stability of the coordination pattern in

question.5 Similarly, increased variability of gait may be

indicative of a loss of stability and hence of increased prob-

ability of falling. However, it should be kept in mind that

measured variability in a complex dynamical system may

also arise from the deterministic dynamics of the system

itself (e.g. when a chaotic attractor is present, which appears

to be the case for human gait [51]). If so, the measured

variability is merely a reflection of the multiple degrees of

freedom available to the system and does not necessarily

imply destabilization of the system.

In practice, variability measured in a biological system is

likely to stem from both sources (i.e. noise and deterministic com-

ponents), and it may be impossible to separate these two sources

of measured variability. Still, on a more pragmatic level, if, in an

unperturbed environment, we measure the variability of a vari-

able that is critical to the stability of walking, and find that this

variability is increased, we may conclude that the probability

that a larger state deviation will occur is increased as well, and

thus the probability of falling (note that this is independent of

the question of whether the variability has a stochastic or

deterministic origin, as long as the variability is critical to gait).

It should be kept in mind, however, that variability may be

a natural consequence of the multiple degrees of freedom

available within the system [106]. Hence, this theoretical argu-

ment only holds if we know both the constraints and the

control strategy of the system. For instance, consider two subjects

with identical anthropometrics, walking with identical trunk

motions and equal step width variability, but different step

widths. The subject with the smaller step width is more likely

to tip over, and, thus, variability alone is not sufficient to

describe stability in this case. Both subjects have the same

constraints (i.e. keeping the centre of mass (or, rather, the

extrapolated centre of mass, see §2.2.2) within the base of sup-

port), but have a different control strategy (i.e. one of them

walks with a larger step width), and, thus, variability does

not in this case index gait stability. Therefore, while variability

may be related to stability, this relationship is hardly ever

straightforward, since we do not know the control strategies of

the nervous system, or the prevailing constraints. Nonetheless,

variability measures have unrivalled popularity in the gait

community [8,35,46,78,80,86,87,89,107–125]. This may in part

be explained by the simplicity of the calculations involved, in

combination with easily understandable metrics. Moreover,

variability is one of the few measures with proven success in

predicting the probability of falling [113,117].
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2.1.4.2. Calculation
Although many measures exist to quantify variability, most

variability measures are based on the standard deviation of

a signal or a variable.

For discrete gait variables (e.g. step times and step width),

the variability is usually calculated over the entire data series of

values. For continuous gait variables (e.g. joint angle time

series and acceleration time series), the time series of the

variable is usually ‘cut’ into strides, and these strides are

time-normalized (usually to a 0–100% time basis) and aligned.

For each of the aligned time intervals, the variability is then cal-

culated, and the mean or sum over these 101 variability values

is usually analysed further. When calculating variability in

this manner, it is of importance that the data are stationary;

non-stationarities in the data would lead to overestimations

of variability. To reduce the impact of non-stationarities, varia-

bility calculations are usually performed on velocity (or

acceleration) time series, rather than on position time series.

Recently, the median absolute deviation was proposed as

a measure for gait variability [126]. In general, the median

absolute deviation is more robust than the standard devi-

ation, and may thus be a good choice to use as an indicator

of variability [126].

In some cases, it may be necessary to normalize the var-

iance to the mean of the variable. This is particularly the

case for variables that have certain natural ‘bounds’. For

instance, stride times cannot be smaller than 0. Thus, if aver-

age stride times are closer to zero, it is to be expected that

variability in stride times is lower (since there can be no

values of stride times less than 0). Using a model, we recently

showed that such normalization procedures indeed lead to

better results ([91]; see also below).

It should be noted that, as in the calculation of the

maximum Lyapunov exponent and the maximum Floquet

multiplier, a considerable number of strides is required

to obtain precise and reliable estimates of gait variability.

Owings & Grabiner [109] estimated that the precision of esti-

mates of variability measures did not further increase when

using more than 200 strides.
2.1.4.3. Validity of variability measures
Construct validity. As mentioned earlier, the validity of varia-

bility measures is equivocal and depends on the theoretical

framework of choice and the appropriateness of certain

assumptions. Increased variability is often regarded as disad-

vantageous, but sometimes also as a sign of adaptability

in that it may be a consequence of the exploitation of the mul-

tiple degrees of freedom available within the system. Clearly,

much work is needed to reconcile those two views into one

coherent framework that is able to predict with certainty

when and what variability is ‘good’, and when and what

variability is ‘bad’. Without such a coherent framework, it

seems we cannot conclude that there is good construct

validity for variability measures as predictors of the

probability of falling. As outlined in the introduction on

variability measures, we believe that an important step in

achieving such a coherent framework would be to think in

terms of ‘critical’ (or ‘goal equivalent’ [127]) variability, ‘control

strategies’ and ‘control constraints’.

Predictive validity in models. Su & Dingwell [92] showed that

the probability of falling, as induced by irregularities in a
slope a passive dynamic walker was walking on, was

reflected by variability in the kinematics (i.e. state variables

of the walker), indicating that variability is correlated with

the probability of falling. Hobbelen & Wisse [23] went one

step further by showing that a variability-based measure

(the GSN) can be used as an accurate predictor of a model’s

capability to overcome perturbations (expressed as the maxi-

mum perturbation the model could handle), also when the

probability of falling is altered by changing properties of

the model (rather than just the irregularities of the slope).

Interestingly, in this study, only the GSN when calculated

using stride times gave a good indication of the probability

of falling, while other variables did not, suggesting that it

is important to study variability measures of variables that

are critical. Moreover, Hobbelen & Wisse [23] correlated

1/GSN with the maximum perturbation the model could

handle, suggesting a nonlinear relationship between variabil-

ity measures and the probability of falling. In agreement with

this, Roos & Dingwell [128] reported that the relationship

between variability measures and the probability of falling

(expressed as the percentage of trials in which the model did

not fall) was far from linear in a three-dimensional passive

dynamic walker. They found this to be the case for both varia-

bility measures of the kinematic states and step lengths, step

widths and step times. Still, it must again be noted that, in

this model, the probability of falling was only affected by chan-

ging the amplitude of the irregularities in the slope. Bruijn et al.
[102] performed similar simulations to those of Hobbelen &

Wisse [23] and also examined the kinematic state variability.

In doing so, we found that kinematic state variability did

not correlate with the probability of falling (expressed as the

maximum perturbation the model could handle), whereas

the inverse of step time variability correlated fairly well, but

we noted that this relationship was dependent on the mean

step time. First log-transforming step times and then calculat-

ing the inverse of step time variability led to better results,

with relationships being more similar across different manipu-

lations of the model. All in all, these findings in model studies

suggest that variability measures may indeed be related to the

probability of falling. However, this relationship may only exist

for the variability of certain critical gait variables and is not

necessarily linear.

Convergent validity in experimental studies. Most experimental

studies cited in the validity sections of the maximum Lyapunov

exponent and the maximum Floquet multiplier also emplo-

yed variability measures [34,39,75,77,86,95]. Interestingly, no

matter which measures were used in these studies, they

always reflected increased variability when stability was

impaired experimentally. Moreover, besides those studies in

which subjects were destabilized experimentally, Dean et al.
[129] attached an elastic cord to their subjects (thereby stabiliz-

ing them), and showed that this manipulation decreased step

width variability. All in all, there appears to be growing

evidence from experimental studies that measures of gait

variability may be correlated with the probability of falling.

Predictive validity in observational studies. Several observational

studies have reported that measures of variability are related

to the probability of falling in the elderly [76,113,117,

121,122] (for an overview, see [28,119]). Most of these report

higher values of gait variability in those elderly with a history

of falling (or those elderly who will fall after the assessment, in

the case of a prospective study).
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It is interesting to note that Maki [113] reported a decreased

step width variability in fall-prone subjects. Similarly, Moe-Nils-

sen & Helbostad [110] reported a lower variability of trunk

accelerations in the medio-lateral direction in frail elderly sub-

jects than in healthy elderly subjects, whereas Brach et al. [122]

found that both an increase and a decrease in step width varia-

bility (expressed as the coefficient of variation) were related to a

history of falling. Interestingly, from both modelling [130] and

experimental work [112,129,131], it has been suggested that lat-

eral stability (i.e. step width variability) is critical for human

walking. Thus, the aforementioned findings of lower variability

levels in (supposedly) more unstable populations clearly show

that variability measures are predictive of the probability of

falling only when the control strategy is invariant between the

groups or measurements being compared.

Although gait variability seems to be correlated to the

probability of falling in modelling, experimental and observa-

tional studies alike, more research into the how and why of

this relationship is needed. Moreover, as it stands, it is still

an open question which parameters of variability best predict

falls since research has shown that some measures of variabil-

ity may be better predictors than others. In conclusion,

studying the variability of the most relevant variable seems

of paramount importance.

2.1.5. Long-range correlations

2.1.5.1. General description
Over the past years, it has become evident that gait variations,

as discussed in §2.1.4, are not random [132], but exhibit depen-

dencies such that future variations are dependent on past

variations. These dependencies manifest themselves as long-

range correlations, which can be revealed by detrended fluctu-

ation analysis (DFA; [133]).

It is not immediately obvious why and how long-range

correlations relate to dynamic gait stability. However,

Hausdorff et al. [132] noted that ‘processes with long-range

correlations are generally more error tolerant and resistant

to both internal and environmental perturbations’ [132,

p. 356], based upon which these authors posed the question

of whether the long-range correlations in locomotor control

are also a sign of adaptability. This implies that they seem

to regard systems with values of the scaling exponent (a)

further away from 0.5 as being more stable (because systems

with values of a ¼ 0.5 are uncorrelated). Indeed, in several

pathologies, patient groups have been shown to have

values of a closer to 0.5 than control groups. Nonetheless,

while studying the effects of walking speed on a, Jordan

et al. [134] found values of a closer to 0.5 at preferred walking

speed. Based on the assumption that preferred walking speed

is the most stable walking speed (which was confirmed by the

effects of speed on lS in this study), these authors reasoned that

weaker long-range correlations (a closer to 0.5) during walking

and running at preferred speed ‘are suggestive of an increased

degree of flexibility or adaptability at this speed’ [134, p. 98].

Still, they also mention the fact that patient groups often have

values of a closer to 0.5.

The strength of long-range correlations can be calculated

for a number of gait parameters, including step length, step

time, impulse, duration of contact and peak active force

[134–136]. We chose to include this measure in the current

review because of its prominence in the gait literature

[3,9,35,79,119,132,134–155].
2.1.5.2. Calculation
The calculation of scaling exponents using DFA in this

section follows the description of Peng et al. [133].

Because of the nature of the calculation, rather long data

series are necessary for the calculation of this measure (i.e.

most studies used data series longer than 5 min, although

Herman et al. [3] used data series of 2 min). Damouras et al.
[137] studied the number of strides required, and rec-

ommended a minimum of 600 strides. After a data series

has been created from a quantity, the data series in question

is integrated first.

The integrated data series is divided into windows

of equal length n. In each window, a line is fitted to the

data (figure 3). Subsequently, the average fluctuation of

the data around the line (i.e. the residual variance) is calcu-

lated. This procedure was suggested to work best for n
ranging from 16 to N/9 (with N being the length of the

data series), to obtain the relationship between n and f (n)

(where f (n) is the average residual variance for window

size n; [137]). Typically, f(n) will increase with increasing n,

and a linear relationship between f(n) and n on a log–log

plot indicates the presence of power-law scaling.

The slope of the line relating f(n) to n (on a log–log plot)

is the scaling exponent (a). When subsequent strides are

completely unrelated, a ¼ 0.5, values of a , 0.5 indicate anti-

persistence of the fluctuations, where a large value is more

likely to be followed by a smaller value of the variable in

question and vice versa, whereas a . 0.5 indicates positive

long-range correlations, where a large (small) value is

more likely to be followed by another larger (smaller) one.

Typically, in human gait, values of 0.5 , a , 1.0 are found.

2.1.5.3. Validity of long-range correlations
Construct validity. As mentioned in §2.1.5.1, the theoretical

relationship between long-range correlations and dynamic

gait stability is under debate. In our opinion, the argument

put forward by Jordan et al. [134] that less correlated gait

allows more flexibility, and thus greater stability, is not gener-

ally valid; measured variations reflect not only planned

variations but also reactions to perturbations [156]. For example,

during walking, humans experience perturbations (impacts,

sensory and motor noise), and it would be unusual if they

did not react to those perturbations in subsequent strides. React-

ing properly would automatically lead to some relationship

between the previous and current stride, and thus a stronger

correlation (either positive or negative, i.e. 0 , ja 2 0.5j). In

view of this debate, it is interesting to mention that, in general,

both patients and elderly subjects are found to have values of a

closer to 0.5 than healthy young adults [119], in accordance

with the suggestion made by Hausdorff et al. [132] that pro-

cesses with long-range correlations ‘are generally more error

tolerant and resistant to both internal and environmental per-

turbations’ [132, p. 356]. Nevertheless, this was based on only

empirical observations, and not on a clearly articulated theoreti-

cal rationale. All in all, it seems that the construct validity of

long-range correlations as measures of the probability of falling

is weak, and that long-range correlations are in need of a

stronger theoretical foundation.

Given the debate about whether values of a closer to 0.5,

or higher than 0.5, would predict the probability of falling,

the results of modelling, experimental and observational

studies are difficult to interpret.
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Predictive validity in models. To the best of our knowledge,

there are no model studies relating long-range correlations

to the probability of falling. However, one study [154]

showed that long-range correlations are present in a fairly

simple model, indicating that no complex central nervous

system is needed for them to arise.

Convergent validity in experimental studies. Long-range corre-

lations were assessed in one study [95] in which stability

was impaired experimentally by having subjects walk over

a compliant surface, laid out on a circular track. In this

study, no differences in long-range correlations between

stable and unstable conditions were found.

Predictive validity in observational studies. As far as we know, only

one (retrospective) observational study, by Herman et al. [3], has

been published to date, which succeeded in discriminating fallers

([25] elderly with a higher level gait disorder) from non-fallers

using long-range correlations. In this study, long-range corre-

lations were less strong (i.e. a closer to 0.5) for the fallers than

for the non-fallers, even though gait speed, stride time variability

and several other parameters were equal between groups.

In sum, the theoretical relationship between long-range

correlations and the probability of falling is unclear at present.

Moreover, there seems to be only limited modelling, exper-

imental and observational evidence from the literature to

support this measure being related to the probability of falling.

Still, long-range correlations may help to quantify other rel-

evant aspects of motor control, such as the control strategy

used [127,138]. In order for long-range correlations to become

a useful measure in predicting the probability of falling, a

clear theoretical account is needed as to which values of a

(i.e. closer to or higher than 0.5 or perhaps values in between)

are to be considered as more stable, and why this is so.
2.2. Measures derived from biomechanics

2.2.1. Background
In simple mechanical systems, stability can be defined in a

straightforward manner. A canonical example of such

a system is the inverted pendulum, which is often used as a

model for human standing (figure 4). In this model, the

centre of mass (CoM) needs to be controlled such that it stays

over the base of support (BoS). Because walking is not static,

this simple model cannot hold and needs to be extended

taking into account the velocity of the CoM and BoS. In the cur-

rent literature, there are several methods available that provide
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such extensions for the analysis of dynamic gait stability. All

of these require at least the measurement (or calculation) of

the CoM and BoS positions. Here, we discuss three such

measures: the extrapolated centre of mass (XCoM) (§2.2.2), sta-

bilizing and destabilizing forces (§2.2.3) and the FPE (§2.2.4).

We refrain from discussing similar concepts that do not include

velocities of the CoM as these may be too simplistic for

quantifying stability in a dynamic situation [157].

Since these methods are based on such general principles,

they may also be used to assess the ability to overcome large

external perturbations of the gait pattern. In this section, we

will describe their use in the unperturbed gait pattern. In

§3, we will describe their use in perturbed gait.

2.2.2. Extrapolated centre of mass (margin of stability)

2.2.2.1. General description
The extrapolated centre of mass (XCoM) concept extends the

classical condition for static equilibrium of an inverted pendu-

lum, in which the CoM must be positioned over the BoS by

adding a linear function of the velocity of the CoM to the

CoM position [157–159]. The XCoM can be used to calculate

both the spatial margin of stability (b) and a temporal stability

margin (bt). The margin of stability describes the distance

between the XCoM and the border of the BoS, whereas the tem-

poral stability margin indicates the time in which the stability

boundary of the BoS would be reached without intervention.

In theory, this method describes how close an inverted pen-

dulum is to falling, given the position and velocity of its CoM,

and the positions of the margins of its BoS. Although human

walking may be described using inverted pendulum models

[22], it may be clear that adaptive actions such as moving the

arms and trunk are not captured by such a model. In some

cases, it may even be unwanted to behave like an inverted pen-

dulum (e.g. when the XCoM is moving past the BoS, and

adaptive actions are required [160]). Then, using the theoretical

assumption of an inverted pendulum model may be useful to

indicate when adaptive actions are needed.

Furthermore, the margin of stability may be seen as a reflec-

tion of a control strategy. Hof [158] showed that, for stable

walking, the feet should be placed lateral and posterior to the

XCoM, and that a deviation of the state of the CoM due to a per-

turbation can be compensated for by a change in foot position,

which can be expressed in terms of the XCoM times a constant.

By calculating this constant, insight can be gained into how fast

perturbations are accommodated. While this constant can in

principle be calculated from unperturbed walking, it should

be noted that information on a feedback system can in principle

only be obtained by opening the control loop in some way, e.g.

by means of perturbations [156].

The XCoM concept has gained considerable popularity

over the past decade or so [77,157–159,161–171], although

mostly in an experimental context. One of the potential

reasons why it has not been used in observational studies

could be that both the position of the feet and the CoM

need to be measured for the extrapolated centre of mass

and margin of safety to be calculated. This requires consider-

ably more (expensive) measurement equipment and time to

achieve than many other measures.

2.2.2.2. Calculation
For the full derivation of the formulae from the inverted

pendulum model, we refer to Hof et al. [157]. Here, we
confine ourselves to a description of how the method may

be applied to unperturbed walking.

For the calculation of the margin of stability and the tem-

poral stability margin, first the position of the whole body

CoM and BoS need to be known. These can in principle be

obtained from kinematic data alone (using a sufficient

number of (virtual) markers on the feet), force plate data

alone (using a filtering procedure to obtain CoM position

from centre of pressure (CoP) data, and assuming that

the BoS coincides with the CoP position) [159,172], or a

combination of both force plate and kinematic data [157].

Next, the XCoM is calculated as

XCoM ¼ CoMþVCoM

v0
; ð2:4Þ

with VCoM being the CoM velocity and v0 being the inverted

pendulum’s eigenfrequency

v0 ¼
ffiffiffi
g
l

r
; ð2:5Þ

where g represents the acceleration of gravity (9.81 m s22)

and l is equivalent to the pendulum length of the subject.

The margin of stability is defined as

b ¼ BoS� XCoM: ð2:6Þ

The most unstable point can be found by identifying the

minimum of b (bmin) within a step [159]. Furthermore, to

quantify the time available before the XCoM crosses the

BoS, bt can be estimated using

bt ¼
b

VCoM
; ð2:7Þ

this is the time that corrections to the CoM position and/or vel-

ocity can be made without the need to move the arms, trunk or

the use of a stepping strategy [160]. In theory, if b , 0 or bt , 0,

stability cannot be recovered without such actions.

In principle, the XCoM concept could be applied to

both antero-posterior stability and medio-lateral stability.

This works out fine in the analysis of medio-lateral stability,

but in the analysis of antero-posterior stability this method

will result in negative values for b and bt, indicating that

gait cannot be stopped within that step. Perhaps this infor-

mation could be used as an indicator of how easy it is to

stop within a step. However, this will also depend on other

factors, such as maximum attainable swing speed, ground

clearance, etc., which reduces the value of the concept for

the antero-posterior direction.

2.2.2.3. Validity of the extrapolated centre of mass
Construct validity. Given its sound mechanical basis, there is

little doubt about the construct validity of the extrapolated

centre of mass for assessing stability in the frontal plane. For

assessing stability in the sagittal plane, however, there is uncer-

tainty about what this measure has to offer, as it quantifies gait

as unstable in this plane. It may give an indication as to how far

the foot is placed behind the extrapolated centre of mass, which

in turn could indicate how many steps need to be taken to

recover stability. Also, the variability of the antero-posterior

foot placement with respect to the extrapolated centre of mass

when walking on level ground may be seen as resulting from

movement errors, and thus as a source of instability [173].

Predictive validity in models. Hof [158] showed that a simple

model could use the rules imposed by the XCoM to walk, take
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corners and stop walking. However, this is different from show-

ing that this measure actually predicts the probability of falling

for a simple model, and such studies have yet to be undertaken.

Convergent validity in experimental studies. Hoehne et al. [161]

used the extrapolated centre of mass in a setting where gait stab-

ility was impaired experimentally (by intradermal injections

of an anaesthetic solution in the sole of the foot). Results

showed that subjects with desensitized feet showed no signifi-

cant differences in antero-posterior foot placement during

normal walking. In another study by Curtze et al. [171], ampu-

tees and healthy subjects were asked to walk over a smooth and

a rough surface. No differences between surfaces or groups (nor

in interaction) were found for the frontal plane margin of stab-

ility. However, the amputees walked with significantly wider

steps than the controls in both conditions (with no difference

between conditions), while the controls increased their step

width when walking on the rough surface. These results may

suggest that people tend to use a constant margin of stability,

and that patients may use an increased step width to compensate

for increased trunk sway [171]. However, it must be noted that

walking speeds were different between conditions and groups,

which renders these results difficult to interpret. In another

study by McAndrew Young et al. [173], subjects were destabilized

using platform and visual perturbations. In this study, walking

speed was kept equal between conditions, but, nevertheless, it

was found that during destabilized conditions subjects walked

with a higher b, indicating that subjects were actually more

stable when walking in a destabilizing environment.

Predictive validity in observational studies. As far as we know,

there are no studies that used the extrapolated centre of

mass to predict the probability of falling. Future studies

should focus on the question of whether subjects at risk of

falling can indeed be discriminated from healthy subjects

using the extrapolated centre of mass.
2.2.3. Stabilizing and destabilizing forces

2.2.3.1. General description
Duclos et al. [174] introduced the concept of stabilizing and

destabilizing forces. It may be viewed as an extension of

the method adopted by Delisle et al. [175] to assess stability

during lifting. In short, it aims at quantifying the forces

needed to stop the CoP motion in the direction of the

border of BoS (stabilizing force), and the force needed to

bring the CoP outside the BoS, ignoring current velocity

(destabilizing force). From these two forces, a ratio of destabi-

lizing over stabilizing force can be calculated. A lower ratio

indicates that it is easy to make the body fall over from its

current position, and conversely that it requires a large

effort to prevent a fall.
2.2.3.2. Calculation
As stated in §2.2.3.1, this method involves the calculation of

the ratio of destabilizing over stabilizing force. For the calcu-

lation of this measure, positions of CoM, CoP and BoS are

necessary, implying measurement of ground reaction forces

as well as kinematics of at least the feet and a trunk marker

(although full body kinematics may be preferable). In

describing the calculations, we follow the description of

Duclos et al. [174].
The stabilizing force (Fst) is calculated for each sample by

first calculating the work (W) needed to bring the CoM to a

standstill (i.e. kinetic energy ¼ 0),

W ¼ �mV2
CoM

2
; ð2:8Þ

where m is the mass of the subject and VCoM is the velocity of

the CoM. Realizing that this work can be conceptualized as

that delivered by the ground reaction force over the mini-

mum distance between the CoP and the edge of the BoS

(DCoP), we can calculate the theoretical average force (Fst)

necessary to bring the CoM to a standstill since

W ¼ Fst �DCoP: ð2:9Þ

The destabilizing force, indicating the force needed to tip the

subject over, can be calculated from the (minimum) torque

(Md) that would be needed to tip the subject over (assuming

that the subject is not moving)

Md ¼ Fz �DCoP; ð2:10Þ

where Fz is the vertical component of the ground reaction

force. If we assume that this destabilizing force (Fd) will be

applied at the height of the CoM (CoMz), we can calculate

the required force as

Fd ¼
Md

CoMz
: ð2:11Þ

This destabilizing force is hence the force that needs to

be exerted at the CoM to bring the CoP outside the BoS,

ignoring instantaneous CoM velocity. An index of stability

may then be calculated by dividing the destabilizing force

by the stabilizing force. As stated before, this ratio provides

an indicator of how easy it is to make the body fall from its

current position, or conversely the effort required to prevent

a fall.

Since all the above calculations are performed per recor-

ded sample, statistical analysis of the index of stability (or

stabilizing and destabilizing forces) requires some averaging

procedure. Duclos et al. [174] chose to average over the single

stance phase, but, in principle, any phase may be used.

2.2.3.3. Validity of the concept of stabilizing and

destabilizing forces
Construct validity. From the description above, it is evident

that, in the calculation of the destabilizing force, movement

speeds and accelerations are not taken into account. This

part of this concept is based on static assumptions, and

thus, in accordance with our reasoning in §2.2.1, we regard

this measure as too simplistic.

The stabilizing force, in contrast, may be more interesting.

It indicates how much effort is required to come to a standstill

with the CoM within the BoS. If combined with a theoretical

maximum force that can be produced, it can be seen as a pre-

dictor of the instants that an extension of the BoS is needed

(i.e. when the stabilizing force exceeds the maximum force

that can be produced), similar to the model of Pai & Patton

[176] for the control of standing still. In this sense, the stabi-

lizing force is also a measure of a margin of stability, just like

the extrapolated centre of mass concept (see §2.2.2). How-

ever, for walking, it may only be applicable to medio-lateral

motions, as walking requires by definition that the CoM

moves out of the BoS in the antero-posterior direction

during each step.
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Given the different nature of the destabilizing and stabiliz-

ing forces (i.e. based on static versus dynamic assumptions), it

seems inappropriate to use a ratio of these forces. The stabilizing

force alone would seem a more appropriate measure.

We are not aware of modelling, experimental or observa-

tional studies directly testing the validity of the concept of

stabilizing and destabilizing forces.

In conclusion, much work is needed to further develop

this measure and to assess its validity. This work should

start by developing a more valid equivalent to the destabiliz-

ing force, which takes into account the velocity (and

acceleration) of the CoM.
SocInterface
10:20120999
2.2.4. Foot placement estimator

2.2.4.1. General description
The FPE is a recently developed measure that estimates

where the feet should be placed for stable gait [162,177,178].

The measure is based on the assumption of conservation of

angular momentum during the transition from one leg to the

other. In short, the FPE estimates where the foot should be

placed so that, after the transition from one leg to the other,

the system energy is equal to its peak potential energy. In a

pendulum gait, involving a perfect exchange between poten-

tial and kinetic energy, this would imply that the system

would come to a standstill when potential energy reaches its

peak (i.e. at its apex, at mid-stance).

2.2.4.2. Calculation
The calculation of the FPE first requires the calculation of total

body angular momentum (Htot), using conventional rigid body

mechanics [179]. From the total body angular momentum, total

body angular velocity can then be calculated as

_u ¼ Htot

ICoM
; ð2:12Þ

in which ICoM is the total body inertia, calculated from segment

inertias using the parallel axes theorem.

Next, the value of the leg angle (f ) for which the post-

contact system energy would be equal to the peak potential

energy has to be found. This can be achieved by finding a sol-

ution to

0 ¼
ðmCoMzðVCoMx cos(f)þVCoMz sin(f)Þ cos (f)þ ICoM

_u cos2(f)Þ2

mCoM2
z þ ICoM cos2(f)

þ 2mgCoMz cos (f)ðcos (f)� 1Þ;
ð2:13Þ

where m is the subject’s mass, CoMz is the height of the CoM,

VCoMx and VCoMz are the horizontal and vertical velocity of

the CoM and g is the gravitational constant. From here on,

simple trigonometry can be used to find the actual position

where the foot has to be placed

FPEðfÞ ¼ CoMZ tanðfÞ: ð2:14Þ

If the swing leg is placed in front of this point, coming to a

standstill is possible within one stride, without actively brak-

ing in the stance phase. If it is placed behind this point,

multiple strides are needed to come to a standstill. The dis-

tance between foot placement and FPE(f ) will thus give an

indication of the stability of the gait pattern.

It is important to note that the validity of the FPE depends

on four assumptions, namely (i) angular momentum is con-

served during foot contact and (ii) leg length, (iii) moment of
inertia, and (iv) system energy (potential and kinetic energy)

are constant. The validity of these assumptions when calculat-

ing the FPE can be tested by using a sensitivity analysis, as has

been carried out by Millard et al. [162].

The above equations pertain to planar movements only;

three-dimensional movements are not taken into account.

Recent work [178] on the FPE has focused on using the FPE

in three dimensions. To this aim, three-dimensional walking

is actually represented as two-dimensional walking, by creat-

ing a ‘plane of progression’ for each moment in time, and

projecting all quantities on this plane. In doing so, calculations

again become two-dimensional (within the plane of pro-

gression). After these two-dimensional calculations, the FPE

can be projected back onto the three-dimensional world, so

that an estimate of both medio-lateral and antero-posterior

foot placement can be obtained.

2.2.4.3. Validity of the foot placement estimator concept
Construct validity. Like the other measures derived from biome-

chanical models, the FPE has a good construct validity, that is to

say, if its assumptions are fulfilled, its laws fully apply. How-

ever, there are some differences between the simple models

in which these assumptions hold and actual human walking.

Millard et al. [162] assessed the FPE as calculated from

human walking’s sensitivity to deviations from the underlying

assumptions. They concluded that assumption violations of

human gait could not account for the observed effects of walk-

ing speed, as the effects of violations of assumptions were an

order of magnitude smaller than the effects of walking speed.

Predictive validity in modelling studies. When introducing the

FPE concept, Wight et al. [177] showed that it works well as

a control algorithm for a seven-link biped. They succeeded

in using the FPE to control the biped’s gait, make it start

and stop walking, and to overcome perturbations during

gait. All in all, it seems that, as long as the assumptions of

the measure hold, the FPE works well to control models of

human gait. However, it remains to be established if, and

how well, the post hoc-calculated FPE from a model that is

not controlled by the FPE concept can also be used to predict

its probability of falling.

Convergent validity in experimental studies. As of yet, there are no

truly experimental studies using the FPE, although there are

two studies showing that the underlying assumptions of the

concept hold for human gait [162,178]. Studies using exper-

imental manipulations of stability are needed to assess

whether the FPE can adequately predict the probability of

falling in humans.

Predictive validity in observational studies. To date, there are

also no observational studies using the FPE concept, presum-

ably because it is rather novel. Also the fact that full body

kinematics and kinetics are needed, which renders the

method laborious, may play a role in this regard. Yet, given

its strong theoretical validity, it would be interesting to see

how well it is able to discriminate fallers from non-fallers.
3. Measures that reflect the ability to recover
from larger perturbations

As stated in §1, the ability to overcome larger perturbations may

be partially independent from the ability to overcome smaller
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perturbations. Therefore, this ability should be probed along-

side the ability to overcome smaller perturbations. Methods to

do so will most probably involve mechanical perturbations of

walking subjects. Applying such a mechanical perturbation

will require more instrumentation than the measures discus-

sed so far, which may be why they have been used less often.

Still, there is a vast body of literature on gait responses following

trips, slips and surface perturbations [4]. However, most of this

research has focused on the biomechanical nature of the recov-

ery response, quantifying joint torques, muscle activity and so

forth, without trying to develop a more global, quantitative

measure of dynamic gait stability.

There are, however, some studies that did attempt the

latter, and the measures used in those studies will be dis-

cussed in the next section; the GSN (§3.1), the extrapolated

centre of mass (§3.2) and the FPE (§3.3).

Before addressing these measures, it is useful to discuss some

principles that pertain to all perturbation studies and measures

derived thereof. Theoretically, to consistently assess dynamic

gait stability, a perturbation applied to a subject during walking

should (i) have equal magnitude for all conditions and subjects

and (ii) be applied at the same instant of the stride cycle for

every condition and subject. In real life, however, both of these

requirements may be hard to achieve. For instance, it may be

possible to generate perturbations with the same force; however,

it is difficult to predict whether these perturbations will have the

same effect for persons of different body size/mass. Moreover,

one may be able to time these perturbations at exactly the same

moment within a gait cycle (by using kinematic information to

trigger the perturbation), but, nevertheless, since the length of

the perturbations is finite, the end of the perturbation may occur

at different phases in the gait cycle, depending on stride times.

Apart from these technical difficulties in applying per-

turbations, there is also the problem of anticipation and

adaptation (of both the steady-state gait and the reaction

to the perturbations). The problem of anticipation may be

hard to overcome because it seems unethical not to inform

subjects that at some point of a walking trial they will be

perturbed in some way. Still, some studies perturbed subjects

without telling them [180], but these have not investiga-

ted differences between completely unexpected and more

or less expected perturbations. However, anticipation of

being perturbed affected the steady-state gait only a little

[181,182]. Apart from anticipation, perturbations may cause

altered responses to subsequent perturbations. Van der

Linden et al. [183] found that, in a set of perturbations, only

the reaction to the first perturbation was different from the

others. Thus, using multiple perturbations will probably

avoid the problem that reactions to perturbations are altered

in the course of time. Moreover, anticipation can be reduced

by interspersing enough unperturbed periods of gait in

between perturbations [182]. However, by repeated pertur-

bations, one will most probably always overestimate the

ability to overcome perturbations in real life.

3.1. Gait sensitivity norm
3.2.1. General description
The GSN [23] is a stability measure that was constructed to

predict the dynamic stability of limit cycle walkers. It is

based on the reaction of a specific gait indicator (e.g. step

time and step width) to a specific perturbation (i.e. push,

pull and step down). This specific perturbation should be
chosen to ‘instigate the important failure modes (ways to

fall)’ [23, p. 1214] and the specific gait indicator should be

chosen to ‘quantify the characteristics of the walking gait

that are directly related to the failure modes’ [23, p. 1214].

While the GSN seems to be a successful construct in robotics

[23,184], we are unaware of any literature on the use of the GSN

in human walking, apart from some pilot data that we have

presented at a conference ([185]; see also §2.2.3).

3.2.2. Calculation
The calculation of the GSN in robotic walking starts with the

choice of a perturbation (denoted e0), and gait indicator(s)

(denoted yi with i the number of the gait indicator).

Next, the value of the gait indicators during steady-state

gait is calculated (denoted by y�i ). Then, the response to a per-

turbation can be estimated by assuming a linear relationship

between the size of a perturbation (e0) and the response of the

gait indicators to that perturbation

@y
@e

����
����

2

¼ 1

je0j

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXu

i¼1

X1
k¼0

ðyiðkÞ � y�kÞ
2

vuut ; ð3:1Þ

in which yk(i) is the value of gait indicator i at step k after

the perturbation and jj@y/@ejj2 is the response to perturbation

e0. From equation (3.1), it can be seen that higher values of

jj@y/@ejj2 indicate a less stable walker.

While the GSN is rather easy to calculate for robotic

walking, this is not the case for human walking for two

reasons: (i) the gait indicator(s) cannot be measured for an

infinite number of strides after a perturbation and (ii) the

natural variability of the chosen gait indicator may vary

between conditions (thereby greatly influencing the GSN).

The former problem may be resolved by analysing a fixed

number of strides after a perturbation. To address the latter pro-

blem, Bruijn et al. [185] proposed first normalizing the variance

present in the gait indicator to the variance levels found

in unperturbed walking, thus accounting for differences in

natural variability.

Besides these two obvious problems, the choice of a per-

turbation type and a gait indicator are much more complex in

human walking, in which failure modes may not be as

straightforward as in models or robots.

3.2.3. Validity of the gait sensitivity norm
Construct validity. The GSN is a theoretically sound concept,

which has as its greatest issue the choice of perturbation

type and gait indicators. Still, it has thus far not been applied

(except for one pilot study) to human gait, and thus clearly

requires further research.

Predictive validity in models. Since it was designed for passive

dynamic walkers, it is not surprising that it works well in

these types of models in predicting the probability of falling [23].

Convergent validity in experimental studies. In a pilot study, we

tested whether the basic assumption of the GSN, namely that

the reaction to a perturbation scales linearly with the perturba-

tion size, is valid for human walking [185]. We used a

sideways pull as perturbation (with force e0), and examined

two gait indicators (step time and CoM position at heel-

contact). We found that, for these gait indicators, this assumption

did hold. The GSN as calculated using the CoM position as a gait

indictor was lower during faster walking than during slow
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walking, indicating a more stable walking pattern. Thus, the GSN

seems sensitive enough to detect changes in stability caused by

differences in walking speed.

As far as we know, there are no other experimental

studies, nor observational studies, using the GSN.

3.2. Extrapolated centre of mass (margin of stability)
3.2.1. General description
The use of the extrapolated centre of mass to quantify the

ability to recover from small perturbations has been

described in §2.2.2. Owing to the general nature of this

measure, it can also be used to assess recovery of the gait pat-

tern after a perturbation. To date, however, the extrapolated

centre of mass has only been used in this manner in a few

studies [161,165,166].

3.2.2. Calculation
For the calculation of the spatial and the temporal margins of

stability after a perturbation of gait, we refer to the calcu-

lations of these measures from steady-state gait (see §2.2.2.2).

3.2.3. Validity of the extrapolated centre of mass
Construct validity. Given its sound mechanical basis, there is

little doubt about the construct validity of the extrapolated

centre of mass for assessing stability in the frontal plane

after a perturbation. Interestingly, with perturbations, it can

also provide insight into how quickly subjects are able to

recover stability in the antero-posterior direction after a per-

turbation (i.e. how quickly the foot placement relative to

the extrapolated centre of mass returns to normal).

Predictive validity in models. As stated in §2.2.2.3, Hof [158] showed

that a simple model could use the rules imposed by the extrapo-

lated centre of mass to walk straight ahead, take corners and

stop walking without falling. All of these actions can be regarded

as perturbations of gait, and, thus, it seems that the extrapolated

centre of mass as a control strategy for perturbed walking works

well for models. Still, it remains to be seen whether it can also

be used as a predictor of the probability of falling in such models.

Convergent validity in experimental studies. We are aware only of

one study in which the extrapolated centre of mass after a pertur-

bation was used, and gait stability was manipulated, namely that

of Hoehne et al. [161]. In this study, gait stability was reduced

experimentally by altering cutaneous sensation of the feet by

means of an intradermal injection of an anaesthetic solution.

This was found to lead to an increase in the antero-posterior dis-

tance between the extrapolated centre of mass and the border of

the BoS at touchdown after a perturbation, suggesting an

increased stability. While this may seem odd at first sight, it

could be a strategy to deal with altered system constraints.

Predictive validity in observational studies. As of yet, there are

no studies available that test the ability of the extrapolated

centre of mass calculated after a perturbation to discriminate

fallers from non-fallers.

3.3. Foot placement estimator
3.3.1. General description
The FPE as used to quantify the ability to recover from small

perturbations has been described in §2.2.3. Given the general

nature of this measure, it can also be used to assess recovery
of stability after a perturbation. Basically, all calculations are

similar, only this time they are applied to perturbed gait.
3.3.2. Calculation
For the calculation of the FPE after a perturbation of gait, we

refer to the calculations of these measures as described for

steady-state gait (see §2.2.3.2).
3.3.3. Validity of the foot placement estimator
Construct validity. Given its sound theoretical basis, the FPE has

good construct validity, even when applied to perturbed gait.

Moreover, while investigating sensitivity to the assumptions of

the FPE for gait termination, and landing from a jump, Millard

et al. [178] concluded that violations of the assumptions affected

results only a little, making the method also valid for these kinds

of movements. This makes it likely that these assumptions also

hold for gait after a perturbation, although this has not been

tested to date.

Predictive validity in models. Given the fact that it was derived

from a model, it is not surprising that the FPE concept can be

used to control such models, even after perturbations. How-

ever, this has only been shown in one study, for a simulation

model of a seven-link biped [177]. Still, this study only

showed that a biped could be controlled with this concept,

not that the probability of falling could be predicted from

this concept. Moreover, no data are available on the conver-

gent validity in experimental studies, or on the predictive

validity in observational studies for the FPE.
4. Measures that reflect the maximum
perturbation that can be handled

As stated in §1, we foresee that the ability to overcome larger

perturbations may be different from the ability to overcome

the largest perturbation that can be handled under optimal

conditions (such as full attention to the gait pattern, etc.). How-

ever, since the largest perturbation that can be handled may be

hard to assess, and probably only has limited meaning in daily

life (where the smaller and larger perturbations will occur more

often), we will dedicate only a short paragraph to it. Moreover,

because we are not aware of anyone who has used a measure

similar to the one we have in mind, we will abandon the struc-

ture of the previous two sections, in which we distinguished

between ‘general description’, ‘calculation’ and ‘validity’, and

discuss these together in the present section.

The maximum allowable perturbation is the maximum

perturbation of the gait pattern that a subject can handle,

before falling. It is very likely that this will be different for per-

turbations in different directions, perturbations occurring in

different phases of the gait cycle, and so on. Thus, it might not

be a very practical measure to use. Of course, it is highly unlikely

that for any perturbation there will be a clear-cut boundary

between falling and being able to recover. More likely, for

any magnitude of perturbation, there is a finite probability

that somebody will fall. Assessing the maximum allowable

perturbation would thus result in a very long experiment.

Another approach may be to perturb subjects with an

equal perturbation magnitude, and see how many times

they fall. In fact, the latter method has been used by some



Table 2. Support at different validity levels for the different stability measures. Each measure and each validity level are represented by one shaded cell,
coded such that light grey denotes support for a certain measure for a certain level of validity; black, falsification of support for a certain measure for a
certain level of validity; and dark grey, conflicting or no data available. Numbers with an asterisk: *1, the light grey colour here only holds for the stabilizing
force; *2, unless the assumption is made that subjects perform a stabilizing strategy when destabilized.

construct
validity

predictive validity in
models

convergent validity in
experimental studies

predictive validity in
observational studies

unperturbed gait

maximum Lyapunov exponent (lS)

maximum Lyapunov exponent (lL)

maximum Floquet multiplier

kinematic variability

long-range correlations

extrapolated centre of mass *2

stabilizing and destabilizing forces *1

foot placement estimator

mechanically perturbed gait

gait sensitivity norm

extrapolated centre of mass

foot placement estimator

maximum perturbation
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and proved to be successful to pinpoint risk factors associated

with falling after a trip [4].
5. Discussion
We set out to review existing measures of gait stability, and

the different levels of validity that these measures exhibit.

In this final concluding paragraph, we will summarize our

findings, give directions for best-choice stability measures

and indicate directions for future research. We will do so

using table 2, which contains for each measure and each val-

idity level we considered one cell, colour coded so that light

grey denotes support for a certain measure for a certain level

of validity, black denotes falsification of support for a certain

measure for a certain level of validity and dark grey denotes

conflicting or no data available.

5.1. Best measures to assess dynamic gait stability
Given table 2, the choice for a stability measure would, on

first pass, amount to looking up the measure with most

light grey cells. In doing so, one may conclude that (i) the val-

idity of variability measures and the maximum Lyapunov

exponent (lS) across all levels is supported best by evidence,

(ii) the maximum Floquet multiplier and the maximum

Lyapunov exponent (lL), while having good construct validity,

have negative predictive validity in models, negative conver-

gent validity and (for lL) negative predictive validity in

observational studies, (iii) long-range correlations lack construct

validity and predictive validity, in models and have negative

convergent validity, and, lastly, (iv) for measures derived

from perturbation experiments there is good construct validity,

but data are lacking on convergent validity in experimental

studies and predictive validity in observational studies.

Nevertheless, it should be remembered that there are prob-

ably three different requirements for gait stability—i.e. (i) the
system has to be able to limit or recover from the small pertur-

bations that occur during every stride (e.g. owing to small

differences in floor height and noise), (ii) the system has to be

able to recover from large perturbations, which require a

change in behaviour, and (iii) the largest recoverable perturbation

specified by the limits of the system needs to be larger than the

perturbations encountered—which may be more or less indepen-

dent, and that not all measures may be feasible in the practical

sense (some for instance require full body kinematics, others

just a single accelerometer). Thus, the choice of stability measure

will most probably depend on several factors, such as sample

size, available time per subject and available equipment, and

most probably, in most studies, only one aspect of gait stability

will be assessed. As discussed below, it remains to be investigated

which aspect of gait stability is related most to the probability of

falling, and should thus be assessed, if possible.

5.2. Directions for future research
An obvious first step for future research would be to further

validate measures for which evidence for a certain level of

validity is lacking. As discussed in §1, we are of the opinion

that it is preferable to do so in the more or less logical order in

which we presented the three levels of validity. This also

implies that we think that attempting to further validate

measures that have been proved to be invalid for a previous

level of validity may be a useless undertaking. However, it

would be good to collect further evidence at lower levels of

validity, for measures where this does not yet exist.

A second important direction for future research was already

briefly touched upon in the paragraph above on the best choice of

stability measures, as well as in §1. It is the relationship between

the three requirements for gait stability (ability to overcome small

perturbations, ability to overcome larger perturbations and the

largest recoverable perturbation) and their relationship to the

probability of falling. As of yet, it is not known how each of
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these three requirements relates to the other two, and how all

three of them relate to the probability of falling. Future research

should thus focus on how these three requirements are related,

and how each of the three requirements contributes to the real-

life probability of falling. If the sensitivity and specificity of a

measure from one aspect of gait stability are already high, and

measures related to the second and third aspect do not add any-

thing, then there is no need to add those to an assessment of

stability. However, if including two requirements leads to a

marked increase in sensitivity and specificity, then it would

make sense to include multiple measures. This kind of research

requires large cohort studies, in which all requirements for gait

stability are assessed, and the actual incidence of falls is tracked.

While in practice it may be difficult to perform such a study, it

would most probably lead to very interesting results.

As mentioned in §1, the probability of falling is depen-

dent not only on a person’s gait stability, but also on the

amount and size of perturbations a person encounters

during daily life. This factor has received little attention so

far. While it is outside the scope of the current review, factors

such as reduced vision or proprioception may lead to more

perturbations than expected, e.g. in an environment that

contains objects that could cause perturbations (see [186]).

Thus, the interplay between environment and person may

determine to a large degree how perturbing a certain

environment is for a given person. This is important infor-

mation to adequately predict the probability of falling and

should be a focus of future research.

The last direction for future research that we would like to

highlight is the development of new stability measures, and the

improvement of algorithms to estimate existing parameters to

enhance their validity and reliability. In doing so, we believe

that it is important to validate them according to the four-

step scheme (construct validity, predictive validity in models,

convergent validity, predictive validity in observational

studies) proposed here.

This work was partly funded by a grant from Biomet Nederland. Dr
Melvyn Roerdink was so kind as to supply the data represented in
the DFA figure. We are also grateful to Dr Steve Collins, who
provided comments on an earlier version of this manuscript.
Endnotes
1We define a perturbation as an external or unplanned internal force
or moment acting on the system.
2It should be noted that, in this category, we only include studies that
test whether a stability measure is correlated to the probability of fall-
ing (percentage of trials without falling, maximum perturbation the
model can handle before falling, etc).
3It should be noted that, in this category, we only include studies that
contain manipulations that are explicitly aimed at destabilizing (or
stabilizing) gait. Therefore, studies using, for instance, dual tasks to
study the effects of attention to gait will be excluded from this cat-
egory. However, studies using deprivation or distortion of sensory
information are included. These latter studies rely on the idea that
gait can be destabilized by depriving one of the senses from infor-
mation/feeding wrong information into one of the senses. This
would mean that the control system has less reliable information to
control gait, and, thus, gait becomes less stable (although the subject
may not actually fall).
4It should be noted that, in this category, we only include observational
studies containing pro- or retrospective measures on the number of
falls. We will thus not include any studies comparing stability in a cer-
tain (supposedly unstable) patient group and a control group, unless in
these studies falling was actually measured in the patient group. The
reason for this is that supposedly unstable patient groups may actually
show compensatory behaviour, making them actually more stable. In
the present review, we will not distinguish between prospective and
retrospective studies, although it may be clear that prospective studies
are to be preferred.
5It should be noted that this kind of instability is sometimes also
argued to lead to a more stable system, as it would be easier for
the system to enter different modes of coordination in response to
a perturbation. Nevertheless, in our scheme, it would make the
steady-state gait pattern less stable, as it would make one more
likely to need recovery from a larger perturbation.
Appendix A. State spaces
State spaces are spaces in which all possible states of a system are

represented, with each possible state of the system correspond-

ing to one unique point in the state space. For mechanical

systems, these spaces mostly contain positions and velocities

of all elements of the system. Thus, by describing gait in state

space, we have an unambiguous description of the gait pattern.

Typically, these experimental data exhibit the structure of an
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attractor, i.e. a subspace of the d-dimensional state space to

which neighbouring trajectories converge [62,187].

To obtain a state estimate of walking, one could measure

the positions and velocities of all segments in space, which

would yield the exact state of the system. However, if we rea-

lize that all segments are coupled and their motions will thus

influence each other [188], analysis may focus on trunk

movements, or a certain joint angle only. Indeed, the latter

approach has been used in several studies [31,63,64].

According to Taken’s theorem [82], since the states of

walking may be seen as being on an attractor, we do not

need to measure all states of the walking system. From one

state variable of a system, an attractor can be reconstructed

that has similar features tp the original attractor formed

from all state variables [82,189]. This can be accomplished
by using any state variable of a system and time-delayed

copies (figure 5). The number of time-delayed copies can be

estimated using a global false nearest neighbour analysis

[190], and the time delay can be calculated by using the

first minimum in the average mutual information function

[191], among other methods. Apart from all the details

involved in choosing a delay and embedding dimension

[59,192], it should be noted that, mostly, data used to con-

struct state spaces are not filtered, because of the problems

associated with filtering nonlinear signals [193].

In analysing human gait data, both state spaces formed

from a full description of trunk motions and state spaces

based on embedding delay are being used. An overview of

state space definitions used for analysis of human gait data

may be found in Gates & Dingwell [59].
ce
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JH. 2010 The validity of stability measures: a modelling
approach. In Proc. 16th US National Congress on
Theoretical and Applied Mechanics, University Park, PA,
27 June – 2 July 2010.

103. Schwab AL, Wisse M. 2001 Basin of attraction of the
simplest walking model. In Proc. ASME Design
Engineering Technical Conf. 2001, Pittsburgh, PA,
9 – 12 September 2001.

104. Riva F, Bisi MC, Stagni R. 2013 Orbital stability
analysis in biomechanics: a systematic review of a
nonlinear technique to detect instability of motor
tasks. Gait Posture 37, 1 – 11. (doi:10.1016/j.
gaitpost.2012.06.015)

105. Haken H, Kelso JA, Bunz H. 1985 A theoretical
model of phase transitions in human hand
movements. Biol. Cybern. 51, 347 – 356. (doi:10.
1007/BF00336922)

106. Bernstein N. 1967 The coordination and regulation of
movement. Oxford, UK: Pergamon.

107. Romkes J, Peeters W, Oosterom AM, Molenaar S,
Bakels I, Brunner R. 2007 Evaluating upper body
movements during gait in healthy children and
children with diplegic cerebral palsy. J. Pediatr.
Orthop. B 16, 175 – 180. (doi:10.1097/BPB.
0b013e32801405bf )

108. Owings TM, Grabiner MD. 2004 Step width
variability, but not step length variability or step
time variability, discriminates gait of healthy young
and older adults during treadmill locomotion.
J. Biomech. 37, 935 – 938. (doi:10.1016/j.jbiomech.
2003.11.012)

109. Owings TM, Grabiner MD. 2003 Measuring
step kinematic variability on an instrumented
treadmill: how many steps are enough? J. Biomech.
36, 1215 – 1218. (doi:10.1016/S0021-9290(03)
00108-8)

110. Moe-Nilssen R, Helbostad JL. 2005 Interstride trunk
acceleration variability but not step width variability
can differentiate between fit and frail older adults.
Gait Posture 21, 164 – 170. (doi:10.1016/j.gaitpost.
2004.01.013)

111. Moe-Nilssen R, Aaslund MK, Hodt-Billington C,
Helbostad JL. 2010 Gait variability measures may
represent different constructs. Gait Posture 32,
98 – 101. (doi:10.1016/j.gaitpost.2010.03.019)

112. McAndrew PM, Dingwell JB, Wilken JM. 2010
Walking variability during continuous pseudo-

http://dx.doi.org/10.1016/j.medengphy.2011.07.024
http://dx.doi.org/10.1016/j.medengphy.2011.07.024
http://dx.doi.org/10.1242/jeb.026153
http://dx.doi.org/10.1249/MSS.0b013e31818a0ea4
http://dx.doi.org/10.1249/MSS.0b013e31818a0ea4
http://dx.doi.org/10.1016/j.jbiomech.2011.03.003
http://dx.doi.org/10.1016/j.jbiomech.2011.03.003
http://dx.doi.org/10.1016/j.jbiomech.2010.11.007
http://dx.doi.org/10.1016/j.jbiomech.2010.11.007
http://dx.doi.org/10.1016/j.gaitpost.2012.05.016
http://dx.doi.org/10.1016/j.gaitpost.2012.05.016
http://dx.doi.org/10.1016/j.gaitpost.2012.03.005
http://dx.doi.org/10.1016/j.gaitpost.2012.03.005
http://dx.doi.org/10.1186/1743-0003-8-2
http://dx.doi.org/10.1186/1743-0003-8-2
http://dx.doi.org/10.1016/j.medengphy.2010.07.001
http://dx.doi.org/10.1016/0167-2789(93)90009-P
http://dx.doi.org/10.1016/j.gaitpost.2009.05.003
http://dx.doi.org/10.1016/0021-9290(93)90027-C
http://dx.doi.org/10.1016/0021-9290(93)90027-C
http://dx.doi.org/10.1016/j.jelekin.2007.06.009
http://dx.doi.org/10.1016/j.jelekin.2007.06.009
http://dx.doi.org/10.1016/j.jelekin.2008.06.006
http://dx.doi.org/10.1016/j.clinbiomech.2009.12.003
http://dx.doi.org/10.1016/j.clinbiomech.2009.12.003
http://dx.doi.org/10.1007/s10877-006-1032-7
http://dx.doi.org/10.1016/j.clinbiomech.2010.07.015
http://dx.doi.org/10.1016/j.clinbiomech.2010.07.015
http://dx.doi.org/10.1016/0167-2789(85)90011-9
http://dx.doi.org/10.1016/0167-2789(85)90011-9
http://dx.doi.org/10.1016/j.jbiomech.2011.06.031
http://dx.doi.org/10.1115/1.2800760
http://dx.doi.org/10.1115/1.2800760
http://dx.doi.org/10.1115/1.2798313
http://dx.doi.org/10.1016/j.humov.2010.04.009
http://dx.doi.org/10.1016/j.humov.2010.04.009
http://dx.doi.org/10.1080/02681118608806015
http://dx.doi.org/10.1080/02681118608806015
http://dx.doi.org/10.1115/1.2746383
http://dx.doi.org/10.1115/1.2746383
http://dx.doi.org/10.1186/1743-0003-5-12
http://dx.doi.org/10.1016/j.jelekin.2007.06.008
http://dx.doi.org/10.1016/j.jelekin.2007.06.008
http://dx.doi.org/10.1016/j.gaitpost.2012.06.015
http://dx.doi.org/10.1016/j.gaitpost.2012.06.015
http://dx.doi.org/10.1007/BF00336922
http://dx.doi.org/10.1007/BF00336922
http://dx.doi.org/10.1097/BPB.0b013e32801405bf
http://dx.doi.org/10.1097/BPB.0b013e32801405bf
http://dx.doi.org/10.1016/j.jbiomech.2003.11.012
http://dx.doi.org/10.1016/j.jbiomech.2003.11.012
http://dx.doi.org/10.1016/S0021-9290(03)00108-8
http://dx.doi.org/10.1016/S0021-9290(03)00108-8
http://dx.doi.org/10.1016/j.gaitpost.2004.01.013
http://dx.doi.org/10.1016/j.gaitpost.2004.01.013
http://dx.doi.org/10.1016/j.gaitpost.2010.03.019


rsif.royalsocietypublishing.org
JR

SocInterface
10:20120999

22
random oscillations of the support surface and
visual field. J. Biomech. 43, 1470 – 1475. (doi:10.
1016/j.jbiomech.2010.02.003)

113. Maki BE. 1997 Gait changes in older adults:
predictors of falls or indicators of fear. J. Am.
Geriatr. Soc. 45, 313 – 320.

114. Li L, Haddad JM, Hamill J. 2005 Stability and
variability may respond differently to changes in
walking speed. Hum. Mov. Sci. 24, 257 – 267.
(doi:10.1016/j.humov.2005.03.003)

115. Leitner Y, Barak R, Giladi N, Peretz C, Eshel R,
Gruendlinger L, Hausdorff JM. 2007 Gait in
attention deficit hyperactivity disorder: effects of
methylphenidate and dual tasking. J. Neurol. 254,
1330 – 1338. (doi:10.1007/s00415-006-0522-3)

116. Lamoth CJC, Meijer OG, Daffertshofer A, Wuisman
PIJM, Beek PJ. 2006 Effects of chronic low back pain on
trunk coordination and back muscle activity during
walking: changes in motor control. Eur. Spine J. 15,
23 – 40. (doi:10.1007/s00586-004-0825-y)

117. Hausdorff JM, Rios DA, Edelberg HK. 2001 Gait
variability and fall risk in community-living older
adults: a 1-year prospective study. Arch. Phys. Med.
Rehabil. 82, 1050 – 1056. (doi:10.1053/apmr.
2001.24893)

118. Hausdorff JM, Cudkowicz ME, Firtion R, Wei JY,
Goldberger AL. 1998 Gait variability and basal
ganglia disorders: stride-to-stride variations of gait
cycle timing in Parkinson’s disease and Huntington’s
disease. Mov. Disord. 13, 428 – 437. (doi:10.1002/
mds.870130310)

119. Hausdorff JM. 2005 Gait variability: methods,
modeling and meaning. J. Neuroeng. Rehabil. 2, 19.
(doi:10.1186/1743-0003-2-19)

120. Dingwell JB, Cavanagh PR. 2001 Increased
variability of continuous overground walking in
neuropathic patients is only indirectly related to
sensory loss. Gait Posture 14, 1 – 10. (doi:10.1016/
S0966-6362(01)00101-1)

121. Brach JS, Studenski SA, Perera S, VanSwearingen
JM, Newman AB. 2007 Gait variability and the risk
of incident mobility disability in community-
dwelling older adults. J. Gerontol. A Biol. Sci. Med.
Sci. 62, 983 – 988. (doi:10.1093/gerona/62.9.983)

122. Brach JS, Berlin JE, VanSwearingen JM, Newman AB,
Studenski SA. 2005 Too much or too little step
width variability is associated with a fall history in
older persons who walk at or near normal gait
speed. J. Neuroeng. Rehabil. 2, 21. (doi:10.1186/
1743-0003-2-21)

123. Beauchet O, Dubost V, Herrmann FR, Kressig RW.
2005 Stride-to-stride variability while backward
counting among healthy young adults. J. Neuroeng.
Rehabil. 2, 26. (doi:10.1186/1743-0003-2-26)

124. Bauby CE, Kuo AD. 2000 Active control of lateral
balance in human walking. J. Biomech. 33,
1433 – 1440. (doi:10.1016/S0021-9290(00)00101-9)

125. Zeni JA, Higginson JS. 2010 Gait parameters and
stride-to-stride variability during familiarization to
walking on a split-belt treadmill. Clin. Biomech.
(Bristol, Avon) 25, 383 – 386. (doi:10.1016/j.
clinbiomech.2009.11.002)
126. Chau T, Young S, Redekop S. 2005 Managing
variability in the summary and comparison of gait
data. J. Neuroeng. Rehabil. 2, 22. (doi:10.1186/
1743-0003-2-22)

127. Dingwell JB, John J, Cusumano JP. 2010 Do humans
optimally exploit redundancy to control step
variability in walking? PLoS Comput. Biol. 6,
e1000856. (doi:10.1371/journal.pcbi.1000856)

128. Roos PE, Dingwell JB. 2010 Influence of simulated
neuromuscular noise on movement variability
and fall risk in a 3D dynamic walking model.
J. Biomech. 43, 2929 – 2935. (doi:10.1016/j.
jbiomech.2010.07.008)

129. Dean JC, Alexander NB, Kuo AD. 2007 The effect of
lateral stabilization on walking in young and old
adults. IEEE Trans. Biomed. Eng. 54, 1919 – 1926.
(doi:10.1109/TBME.2007.901031)

130. Kuo AD. 1999 Stabilization of lateral motion in
passive dynamic walking. Int. J. Robot Res. 18,
917 – 930. (doi:10.1177/02783649922066655)

131. O’connor SM, Kuo AD. 2009 Direction-dependent
control of balance during walking and standing.
J. Neurophysiol. 102, 1411 – 1419. (doi:10.1152/
jn.00131.2009)

132. Hausdorff JM, Peng CK, Ladin Z, Wei JY, Goldberger
AL. 1995 Is walking a random walk? Evidence for
long-range correlations in stride interval of human
gait. J. Appl. Physiol. 78, 349 – 358.

133. Peng CK, Mietus J, Hausdorff JM, Havlin S,
Stanley HE, Goldberger AL. 1993 Long-range
anticorrelations and non-Gaussian behavior of
the heartbeat. Phys. Rev. Lett. 70, 1343 – 1346.
(doi:10.1103/PhysRevLett.70.1343)

134. Jordan K, Challis JH, Newell KM. 2007 Speed
influences on the scaling behavior of gait cycle
fluctuations during treadmill running. Hum.
Mov. Sci. 26, 87 – 102. (doi:10.1016/j.humov.
2006.10.001)

135. Jordan K, Challis JH, Newell KM. 2007 Walking
speed influences on gait cycle variability. Gait
Posture 26, 128 – 134. (doi:10.1016/j.gaitpost.
2006.08.010)

136. Jordan K, Challis JH, Cusumano JP, Newell KM. 2009
Stability and the time-dependent structure of gait
variability in walking and running. Hum. Mov. Sci.
28, 113 – 128. (doi:10.1016/j.humov.2008.09.001)

137. Damouras S, Chang MD, Sejdic E, Chau T. 2010 An
empirical examination of detrended fluctuation
analysis for gait data. Gait Posture 31, 336 – 340.
(doi:10.1016/j.gaitpost.2009.12.002)

138. Dingwell JB, Cusumano JP. 2010 Re-interpreting
detrended fluctuation analyses of stride-to-stride
variability in human walking. Gait Posture 32,
348 – 353. (doi:10.1016/j.gaitpost.2010.06.004)

139. Jordan K, Challis JH, Newell KM. 2006 Long range
correlations in the stride interval of running. Gait
Posture 24, 120 – 125. (doi:10.1016/j.gaitpost.
2005.08.003)

140. Ma QD, Bartsch RP, Bernaola-Galvan P, Yoneyama
M, Ivanov P. 2010 Effect of extreme data loss on
long-range correlated and anticorrelated signals
quantified by detrended fluctuation analysis. Phys.
Rev. E Stat. Nonlin. Soft Matter Phys. 81, 031101.
(doi:10.1103/PhysRevE.81.031101)

141. Meardon SA, Hamill J, Derrick TR. 2011 Running
injury and stride time variability over a prolonged
run. Gait Posture 33, 36 – 40. (doi:10.1016/j.
gaitpost.2010.09.020)

142. Terrier P, Turner V, Schutz Y. 2005 GPS analysis of
human locomotion: further evidence for long-range
correlations in stride-to-stride fluctuations of gait
parameters. Hum. Mov. Sci. 24, 97 – 115. (doi:10.
1016/j.humov.2005.03.002)

143. Delignieres D, Torre K. 2009 Fractal dynamics of
human gait: a reassessment of the data of
Hausdorff et al. J. Appl. Physiol. 106, 1272 – 1279.
(doi:10.1152/japplphysiol.90757.2008)

144. Goldberger AL, Amaral LA, Hausdorff JM, Ivanov P,
Peng CK, Stanley HE. 2002 Fractal dynamics in
physiology: alterations with disease and aging. Proc.
Natl Acad. Sci. USA 99(Suppl. 1), 2466 – 2472.
(doi:10.1073/pnas.012579499)

145. Hausdorff JM. 2004 Stride variability: beyond length
and frequency. Gait Posture 20, 304; author reply 5.
(doi:10.1016/j.gaitpost.2003.08.002)

146. Hausdorff JM. 2007 Gait dynamics, fractals and falls:
finding meaning in the stride-to-stride fluctuations
of human walking. Hum. Mov. Sci. 26, 555 – 589.
(doi:10.1016/j.humov.2007.05.003)

147. Hausdorff JM, Ashkenazy Y, Peng CK, Ivanov PC,
Stanley HE, Goldberger AL. 2001 When human
walking becomes random walking: fractal analysis
and modeling of gait rhythm fluctuations. Physica A
302, 138 – 147. (doi:10.1016/S0378-4371(01)
00460-5)

148. Hausdorff JM, Balash J, Giladi N. 2003 Effects of
cognitive challenge on gait variability in patients
with Parkinson’s disease. J. Geriatr. Psychiatry
Neurol. 16, 53 – 58.

149. Hausdorff JM, Lertratanakul A, Cudkowicz ME, Peterson
AL, Kaliton D, Goldberger AL. 2000 Dynamic markers of
altered gait rhythm in amyotrophic lateral sclerosis.
J. Appl. Physiol. 88, 2045 – 2053.

150. Hausdorff JM, Mitchell SL, Firtion R, Peng CK,
Cudkowicz ME, Wei JY, Goldberger AL. 1997 Altered
fractal dynamics of gait: reduced stride-interval
correlations with aging and Huntington’s disease.
J. Appl. Physiol. 82, 262 – 269.

151. Hausdorff JM, Purdon PL, Peng CK, Ladin Z, Wei JY,
Goldberger AL. 1996 Fractal dynamics of human
gait: stability of long-range correlations in stride
interval fluctuations. J. Appl. Physiol. 80,
1448 – 1457.

152. Hausdorff JM, Zemany L, Peng C, Goldberger AL.
1999 Maturation of gait dynamics: stride-to-stride
variability and its temporal organization in children.
J. Appl. Physiol. 86, 1040 – 1047.

153. Gates DH, Dingwell JB. 2007 Peripheral neuropathy
does not alter the fractal dynamics of stride
intervals of gait. J. Appl. Physiol. 102, 965 – 971.
(doi:10.1152/japplphysiol.00413.2006)

154. Gates DH, Su JL, Dingwell JB. 2007 Possible
biomechanical origins of the long-range correlations
in stride intervals of walking. Phys. A Stat. Mech.

http://dx.doi.org/10.1016/j.jbiomech.2010.02.003
http://dx.doi.org/10.1016/j.jbiomech.2010.02.003
http://dx.doi.org/10.1016/j.humov.2005.03.003
http://dx.doi.org/10.1007/s00415-006-0522-3
http://dx.doi.org/10.1007/s00586-004-0825-y
http://dx.doi.org/10.1053/apmr.2001.24893
http://dx.doi.org/10.1053/apmr.2001.24893
http://dx.doi.org/10.1002/mds.870130310
http://dx.doi.org/10.1002/mds.870130310
http://dx.doi.org/10.1186/1743-0003-2-19
http://dx.doi.org/10.1016/S0966-6362(01)00101-1
http://dx.doi.org/10.1016/S0966-6362(01)00101-1
http://dx.doi.org/10.1093/gerona/62.9.983
http://dx.doi.org/10.1186/1743-0003-2-21
http://dx.doi.org/10.1186/1743-0003-2-21
http://dx.doi.org/10.1186/1743-0003-2-26
http://dx.doi.org/10.1016/S0021-9290(00)00101-9
http://dx.doi.org/10.1016/j.clinbiomech.2009.11.002
http://dx.doi.org/10.1016/j.clinbiomech.2009.11.002
http://dx.doi.org/10.1186/1743-0003-2-22
http://dx.doi.org/10.1186/1743-0003-2-22
http://dx.doi.org/10.1371/journal.pcbi.1000856
http://dx.doi.org/10.1016/j.jbiomech.2010.07.008
http://dx.doi.org/10.1016/j.jbiomech.2010.07.008
http://dx.doi.org/10.1109/TBME.2007.901031
http://dx.doi.org/10.1177/02783649922066655
http://dx.doi.org/10.1152/jn.00131.2009
http://dx.doi.org/10.1152/jn.00131.2009
http://dx.doi.org/10.1103/PhysRevLett.70.1343
http://dx.doi.org/10.1016/j.humov.2006.10.001
http://dx.doi.org/10.1016/j.humov.2006.10.001
http://dx.doi.org/10.1016/j.gaitpost.2006.08.010
http://dx.doi.org/10.1016/j.gaitpost.2006.08.010
http://dx.doi.org/10.1016/j.humov.2008.09.001
http://dx.doi.org/10.1016/j.gaitpost.2009.12.002
http://dx.doi.org/10.1016/j.gaitpost.2010.06.004
http://dx.doi.org/10.1016/j.gaitpost.2005.08.003
http://dx.doi.org/10.1016/j.gaitpost.2005.08.003
http://dx.doi.org/10.1103/PhysRevE.81.031101
http://dx.doi.org/10.1016/j.gaitpost.2010.09.020
http://dx.doi.org/10.1016/j.gaitpost.2010.09.020
http://dx.doi.org/10.1016/j.humov.2005.03.002
http://dx.doi.org/10.1016/j.humov.2005.03.002
http://dx.doi.org/10.1152/japplphysiol.90757.2008
http://dx.doi.org/10.1073/pnas.012579499
http://dx.doi.org/10.1016/j.gaitpost.2003.08.002
http://dx.doi.org/10.1016/j.humov.2007.05.003
http://dx.doi.org/10.1016/S0378-4371(01)00460-5
http://dx.doi.org/10.1016/S0378-4371(01)00460-5
http://dx.doi.org/10.1152/japplphysiol.00413.2006


rsif.royalsocietypublishing.org
JR

SocInterface
10:20120999

23
Appl. 380, 259 – 270. (doi:10.1016/j.physa.
2007.02.061)

155. Khandoker AH, Taylor SB, Karmakar CK, Begg RK,
Palaniswami M. 2008 Investigating scale invariant
dynamics in minimum toe clearance variability of
the young and elderly during treadmill walking.
IEEE Trans. Neural Syst. Rehabil. Eng. 16, 380 – 389.
(doi:10.1109/TNSRE.2008.925071)

156. van der Kooij H, van Asseldonk E, van der Helm FCT.
2005 Comparison of different methods to identify
and quantify balance control. J. Neurosci.
Methods 145, 175 – 203. (doi:10.1016/j.jneumeth.
2005.01.003)

157. Hof AL, Gazendam MG, Sinke WE. 2005 The
condition for dynamic stability. J. Biomech. 38,
1 – 8. (doi:10.1016/j.jbiomech.2004.03.025)

158. Hof AL. 2008 The ‘extrapolated center of mass’
concept suggests a simple control of balance in
walking. Hum. Mov. Sci. 27, 112 – 125. (doi:10.
1016/j.humov.2007.08.003)

159. Hof AL, van Bockel RM, Schoppen T, Postema K.
2007 Control of lateral balance in walking:
experimental findings in normal subjects and
above-knee amputees. Gait Posture 25, 250 – 258.
(doi:10.1016/j.gaitpost.2006.04.013)

160. Hof AL. 2007 The equations of motion for a
standing human reveal three mechanisms for
balance. J. Biomech. 40, 451 – 457. (doi:10.1016/j.
jbiomech.2005.12.016)

161. Hoehne A, Stark C, Brueggemann G-P, Arampatzis
A. 2011 Effects of reduced plantar cutaneous
afferent feedback on locomotor adjustments in
dynamic stability during perturbed walking.
J. Biomech. 44, 2194 – 2200. (doi:10.1016/j.
jbiomech.2011.06.012)

162. Millard M, Wight D, McPhee J, Kubica E, Wang D.
2009 Human foot placement and balance in the
sagittal plane. J. Biomech Eng. 131, 121001.
(doi:10.1115/1.4000193)

163. Rosenblatt NJ, Grabiner MD. 2010 Measures of
frontal plane stability during treadmill and
overground walking. Gait Posture 31, 380 – 384.
(doi:10.1016/j.gaitpost.2010.01.002)

164. Arampatzis A, Karamanidis K, Mademli L. 2008
Deficits in the way to achieve balance related to
mechanisms of dynamic stability control in the
elderly. J. Biomech. 41, 1754 – 1761. (doi:10.1016/j.
jbiomech.2008.02.022)

165. Bierbaum S, Peper A, Karamanidis K, Arampatzis A.
2011 Adaptive feedback potential in dynamic
stability during disturbed walking in the elderly.
J. Biomech. 44, 1921 – 1926. (doi:10.1016/j.
jbiomech.2011.04.027)

166. Hof AL, Vermerris SM, Gjaltema WA. 2010 Balance
responses to lateral perturbations in human
treadmill walking. J. Exp. Biol. 213, 2655 – 2664.
(doi:10.1242/jeb.042572)
167. Karamanidis K, Arampatzis A, Mademli L. 2008 Age-
related deficit in dynamic stability control after
forward falls is affected by muscle strength and
tendon stiffness. J. Electromyogr. Kinesiol. 18,
980 – 989. (doi:10.1016/j.jelekin.2007.04.003)

168. Mademli L, Arampatzis A, Karamanidis K. 2008
Dynamic stability control in forward falls: postural
corrections after muscle fatigue in young and older
adults. Eur. J. Appl. Physiol. 103, 295 – 306. (doi:10.
1007/s00421-008-0704-z)

169. Moraes R, Allard F, Patla AE. 2007 Validating
determinants for an alternate foot placement
selection algorithm during human locomotion in
cluttered terrain. J. Neurophysiol. 98, 1928 – 1940.
(doi:10.1152/jn.00044.2006)

170. Carty CP, Mills P, Barrett R. 2011 Recovery from
forward loss of balance in young and older adults
using the stepping strategy. Gait Posture 33,
261 – 267. (doi:10.1016/j.gaitpost.2010.11.017)

171. Curtze C, Hof AL, Postema K, Otten B. 2011 Over
rough and smooth: amputee gait on an irregular
surface. Gait Posture 33, 292 – 296. (doi:10.1016/j.
gaitpost.2010.11.023)

172. Morasso PG, Schieppati M. 1999 Can muscle
stiffness alone stabilize upright standing?
J. Neurophysiol. 82, 1622 – 1626.

173. McAndrew Young PM, Wilken JM, Dingwell JB. 2012
Dynamic margins of stability during human walking
in destabilizing environments. J. Biomech. 45,
1053 – 1059. (doi:10.1016/j.jbiomech.2011.12.027)

174. Duclos C, Desjardins P, Nadeau S, Delisle A, Gravel
D, Brouwer B, Corriveau H. 2009 Destabilizing and
stabilizing forces to assess equilibrium during
everyday activities. J. Biomech. 42, 379 – 382.
(doi:10.1016/j.jbiomech.2008.11.007)

175. Delisle A, Gagnon M, Desjardins P. 1998 Knee
flexion and base of support in asymmetrical
handling: effects on the worker’s dynamic stability
and the moments of the L(5)/S(1) and knee joints.
Clin. Biomech. (Bristol, Avon) 13, 506 – 514. (doi:10.
1016/S0268-0033(98)00014-X)

176. Pai YC, Patton J. 1997 Center of mass velocity-
position predictions for balance control. J. Biomech.
30, 347 – 354. (doi:10.1016/S0021-9290(96)
00165-0)

177. Wight DL, Kubica EG, Wang WL. 2008 Introduction
of the foot placement estimator: a dynamic
measure of balance for bipedal robotics. J. Comput.
Nonlinear Dyn. 3, 011009. (doi:10.1115/1.2815334)

178. Millard M, McPhee J, Kubica E. 2012 Foot
placement and balance in 3D. J. Comput. Nonlinear
Dyn. 7, 021015. (doi:10.1115/1.4005462)

179. Toussaint HM, Commissaris DACM, Vandieen JH,
Reijnen JS, Praet SFE, Beek PJ. 1995 Controlling the
ground reaction force during lifting. J. Motor Behav.
27, 225 – 234. (doi:10.1080/00222895.1995.
9941712)
180. Shinya M, Fujii S, Oda S. 2009 Corrective postural
responses evoked by completely unexpected loss
of ground support during human walking. Gait
Posture 29, 483 – 487. (doi:10.1016/j.gaitpost.
2008.11.009)

181. Pijnappels M, Bobbert MF, van Dieen JH. 2001
Changes in walking pattern caused by the
possibility of a tripping reaction. Gait Posture 14,
11 – 18. (doi:10.1016/S0966-6362(01)00110-2)

182. Pijnappels M, Bobbert MF, van Dieen JH. 2006 EMG
modulation in anticipation of a possible trip during
walking in young and older adults. J. Electromyogr.
Kinesiol. 16, 137 – 143. (doi:10.1016/j.jelekin.2005.
06.011)

183. van der Linden MH, Hendricks HT, Bloem BR, Duysens
J. Submitted. Influence of expectancy on foot
placement and limb loading when stepping down.

184. Hobbelen DGE, Wisse M. 2008 Controlling the
walking speed in limit cycle walking. Int. J. Robot
Res. 27, 989 – 1005. (doi:10.1177/027836490
8095005)

185. Bruijn SM, Wisse M, Draaijers E, van Dieën JH,
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