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Optimal concentration for sugar transport
in plants

Kaare H. Jensen, Jessica A. Savage and N. Michele Holbrook

Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, USA

Vascular plants transport energy in the form of sugars from the leaves where

they are produced to sites of active growth. The mass flow of sugars through

the phloem vascular system is determined by the sap flow rate and the sugar

concentration. If the concentration is low, little energy is transferred from

source to sink. If it is too high, sap viscosity impedes flow. An interesting

question is therefore at which concentration is the sugar flow optimal.

Optimization of sugar flow and transport efficiency predicts optimal

concentrations of 23.5 per cent (if the pressure differential driving the

flow is independent of concentration) and 34.5 per cent (if the pressure is

proportional to concentration). Data from more than 50 experiments

(41 species) collected from the literature show an average concentration in

the range from 18.2 per cent (all species) to 21.1 per cent (active loaders),

suggesting that the phloem vasculature is optimized for efficient transport

at constant pressure and that active phloem loading may have developed

to increase transport efficiency.
1. Introduction
Flows of matter, energy and information are ubiquitous. Whether biological (vas-

cular systems of plants and animals), geological (rivers, oceans and glaciers) or

engineered (pipes, roads, electrical grids and the Internet), they serve the purpose

of moving matter, energy or information from one place to another. Often, we

find that such flows are constrained by a desire to either maximize the flow of

material or minimize the energy dissipated by the flow. While a higher mass

flow can be achieved by increasing the concentration, this happens at the expense

of increased impedance which eventually causes the volume flow to decrease.

At an intermediate optimum value of concentration the mass flow is therefore

at a maximum, a phenomena well known in blood flow where the volume fraction

of erythrocytes (haematocrit) that is optimal for transporting a maximum amount

of oxygen is approximately 45% v/v [1] and in nectar feeding animals where the

optimum concentration (approx. 30–50% wt/wt) depends on the drinking strat-

egy employed [2]. Less is known, however, about the situation in plants where a

concentrated solution of sugars dissolved in water transfer energy between distal

parts of the plant.

Sugars produced by photosynthesis are transported in the phloem vascular

system of plants. Transport is initiated in the leaves where sugars are either pas-

sively or actively loaded into phloem. In active loading species, the process is

driven by membrane transporters and sugar polymerization and occurs against a

sugar concentration gradient. However, in passive loading species, sugars move

into the phloem without the use of metabolic energy by travelling down a concen-

tration gradient from the mesophyll to phloem [3]. In the phloem, an aqueous

solution of sugars, amino acids, proteins, ions and signalling molecules flow

through a series of narrowelongated cylindrical cells, known as sieve tube elements,

lying end-to-end forming a microfluidic network spanning the entire length of the

plant. The solution moves with a flow speed u ≃ 1 m h21 [4], and while the sieve

tube radius a varies among species, it is often of the order a ≃ 10 mm [5]. Typically,

the total solute concentration is approximately 20% wt/wt, and sugars, of which

sucrose is the most abundant type, constitute 80–90% of this [6]. The flow in the

phloem is driven by differences in hydrostatic pressure between source (leaves)

and sink (e.g. roots or fruits) tissues believed to be generated by gradients in osmotic
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Figure 1. Optimal concentration for sugar transport in plants. (a) Viscosity h
in units of the viscosity of pure water hw plotted as a function of mass frac-
tion c for sucrose (circles) and other solutes as indicated in the legend. Solid
line is fit to sucrose data. (b) Density r in units of the density of pure water
rw plotted as a function of mass fraction c for sucrose (circles) and other
solutes as indicated in the legend of (a). Solid line is fit to sucrose data.
Data in (a) and (b) are from [11], see appendix A. (c) Normalized mass
flow curves J/ rc/h (equation (2.3)) and J/ (rc)2/h (equation (2.4))
plotted as a function of sucrose concentration c with h and r taken from
data fits in (a) and (b). The maximum rates of sugar transport are found
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potential between distal parts of the plant according to the

Münch pressure flow hypothesis [7,8].

As in animals, it is likely to be physiologically favourable

when a maximum amount of energy is transported through a

given section of the plant vasculature. The existence of an

optimum sugar concentration for this process was first pro-

posed by Passioura [9] who argued that efficient transport

of sugar requires concentrations in the range 14–35% based

on increased viscous friction at high concentrations. Later,

Lang [10] conducted a theoretical comparison of different

sugars and sugar alcohols, and concluded that sucrose at

c � 25% is the most advantageous substance to transport,

since it chemically stable, highly soluble and only generates a

modest osmotic pressure when compared with other sugars,

e.g. glucose and fructose. To our knowledge, however, no

one has tested these predictions against measured values of

phloem sap sugar concentrations. Also, it is not clear how the

relation between driving pressure and sugar concentration

influence the predictions given above, or how phloem loading

mechanisms may be related to transport efficiency.

In this paper, we derive general criteria for determining the

concentrations that maximize the mass flow and efficiency of

sugar transport in plants. Our analysis thus extends the work

of Passioura [9] and Lang [10] by providing a general frame-

work for evaluating the efficiency of sugar transport in

plants. We compare the predictions of the model with

measured sugar concentrations from more than 50 experiments

(41 species) collected from the literature, and consider the

effects of sugar loading mode.

at 23.5% for constant pressure Dp ¼ Dp0 (dashed vertical line) and at
34.5% for variable pressure Dp ¼ RTrc/M (dash-dotted vertical line). The
average value of the sugar concentrations reported in table 2 (18.2%) is
indicated by the solid vertical line. (Online version in colour.)
2. Mathematical model

Sugar is produced in the leaves during photosynthesis and is

then transferred to the phloem vascular system by an either

active or passive loading mechanism as discussed in §1.

Once loaded, the mass flow of sugar J through a given section

of phloem tissue can be expressed in terms of the volumetric

flow rate Q of phloem sap, the sugar mass fraction (concen-

tration) c and the density r of the solution

J ¼ Qrc: ð2:1Þ

The magnitude of the Reynolds number Re ¼ rua=h ≃ 10�3

allows us to assume a laminar Poiseuille pipe flow where

the volume flow rate Q is determined by the geometry of

the phloem channel, the pressure differential driving the

flow Dp and the viscosity of the sugar solution h

Q ¼ X
Dp
h
: ð2:2Þ

Here, X is a geometric parameter which for cylindrical phloem

cells of radius a and length L is given by X ¼ pa4/(8L). In

a plant of length L ¼ 10 m and sieve tube radius a ¼ 10 mm,

the geometric factor X ≃ 3:9� 10�22 m3.

In general, both the pressure differential Dp, density r and

viscosity h in equations (2.1) and (2.2) depend on the sugar

concentration c. The viscosity and density are known func-

tions of concentration, plotted in figure 1a,b. The pressure

differential Dp required to drive the phloem flow is of the

order of 0.1–1 MPa and is believed to be generated by osmo-

tic pressure gradients [7,8]. Other mechanisms have been

proposed, e.g. electroosmotic or protoplasmic streaming,

but these have been less successful in explaining experimental

data [12]. Notwithstanding the mechanism driving the flow,
we divide the problem into two categories: those in which

the pressureDp ¼ Dp0 does not depend on sugar concentration,

and those in which pressure does depend on sugar concen-

tration, Dp ¼ Dp(c). An example of a concentration-dependent

pressure is found in the classical interpretation of the Münch

hypothesis [13–19], where the pressure differential Dp is the

osmotic pressure difference associated with the molar sugar

concentration gradient D(rc)/M between source and sink,

i.e. Dp(c) ¼ RTD(rc)/M, where M is the molar mass of the

solute, R the gas constant and T the absolute temperature.

Here, we use the van’t Hoff value RTD(rc)/M for the osmotic

pressure, which is valid only for dilute (ideal) solutions.

If sugars are unloaded effectively at the sink region, it is

reasonable to take the sugar concentration difference to be

approximately given by the characteristic concentration itself

DðrcÞ ≃ rc and so the pressure is proportional to concentration

Dp(c) ¼ RTrc/M. For simplicity, we do not consider variations

in viscosity along the pathway associated with this estimate of

the osmotic driving pressure.

From equations (2.1) and (2.2), we can finally write the

sugar flow rate J as

J ¼ XDp0
rc
h
; ð2:3Þ

if the pressure Dp ¼ Dp0 is constant, and as

J ¼ X
RT
M
ðrcÞ2

h
; ð2:4Þ

if the pressure Dp(c) ¼ RTrc/M is proportional to concentration.
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Figure 2. Sugar concentration in phloem sap. (a) Sugar concentration ci for species number i as listed in table 2. Legend indicates phloem loading type. Error bars
show standard deviation or range of concentrations reported. (b) Histogram showing distribution of sugar concentrations from (a). Inset shows histogram (i) for
active and (ii) passive loaders. Thin solid lines are normal distributions fitted to the histograms as a guide to the eye. In (a,b), the thick solid line indicates the mean
value 18.2% of phloem sap concentrations given in (a) (table 1). Dashed line indicates the optimum concentration 23.5% for flows driven by constant pressure while
the dash-dotted lined indicates the optimum concentration 34.5% for flows driven by concentration-dependent pressure. (Online version in colour.)

Table 1. Average phloem sugar concentration (in %wt/wt) determined
from the data in table 2 for all species, active loaders and passive loaders.
In the species averaged column, the reported concentrations for each
species were averaged across studies before taking the total average. In the
including repeated species column, the reported concentrations for each
species were not averaged before taking the total average.

species
averaged

including repeated
species
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2.1. Maximizing flux
To optimize sugar mass flow, we must maximize the

expressions in equations (2.3) and (2.4), i.e. find solutions of

@J/@c ¼ 0 and @2J/@c2 , 0. As shown in figure 1c, the

optima for these two cases occur at 23.5 per cent and 34.5

per cent, respectively. Optimal concentrations for the case

where the pressure Dp is linear combination of the forms

given above (i.e. Dp ¼ Dp0þ RTrc/M ) must necessarily lie

between these two values.
all species 18.2 18.4

active loaders 21.1 21.8

passive loaders 15.4 14.9

2.2. Maximizing efficiency
Having established the concentration that maximizes sugar

mass flow, we will now consider the efficiency of the trans-

port process. The energy E transferred per unit time by the

movement of sugars between distal parts of the plant

depends on the sugar flow J and energy content k per unit

mass of solute E ¼ kJ ¼ kXDprc/h. Several factors contribute

to the energetic cost of transporting sugar: maintaining the

pressure gradient, building and preserving the vasculature,

loading and unloading of solutes, and power dissipated by

the viscous flow. While not all these are easily quantifiable,

the viscous power p ¼ XDp2/h dissipated by the flow is

known to strongly influence transport in other biological

systems [20–22]. Assuming this will be the dominant

source of loss, the net energy �E available at the sugar

sink is therefore

�E ¼ E� P ¼ E 1� Dp
krc

� �
: ð2:5Þ

The pressure difference Dp required to drive the observed

flow speeds (u ≃ 1m h– 1, [4]) is of the order of Dp ¼
0.1 2 1 MPa. With c ¼ 0.2 and k ¼ 104 J g– 1 [23], we find

Dp=ðkrcÞ ≃ 10�3 so the energy lost to viscous friction is

almost negligible (i.e. �E), and optimizing the net energy

transfer �E in equation (2.5) is equivalent to maximizing J in

equations (2.3) and (2.4).

Similarly, we can define the efficiency f ¼ �E=P as the

amount of useful energy the plant can extract from the flow
per unit energy spent on the transport process. Using the esti-

mates given above, we find f=P ≃ 103 � 1 and conclude that

optimizing the efficiency f is equivalent to optimizing the

flow J in equations (2.3) and (2.4).
3. Material and methods
3.1. Phloem sap sugar concentration data
Phloem sap sugar concentration from 41 species (55 experiments)

was collected from the literature. The data are listed in table 2

and plotted in figure 2. Phloem sap is challenging to collect

because disruption of the cell membrane releases the hydrostatic

pressure inside a sieve tube, which can potentially damage

intracellular structures [24], block phloem transport [25] and

contaminate fluid samples with apoplastic material. Currently,

there are two commonly used methods for collecting phloem

sap: bleeding and stylectomy. Bleeding is achieved by making

diagonal incisions into the bark of woody species [26] or by

transversely cutting through entire organs, such as petioles, ped-

icels or branches [27]. This technique is primarily used on trees

and a handful of herbs that readily bleed from incisions (e.g.

Ricinus communis [28], cucurbits [29] and some legumes [30]).



Table 2. Phloem sap sugar concentration data. Sugar mass fraction ci and standard error/range dci obtained from reference Ref I using either bleeding (b) or
stylectomy (s) protocols, as indicated in column PC. The protocol for determining the loading mechanism (PLM) was based on studies examining
plasmodesmata (1), autoradiographs (2), leaf sugar concentration (3), osmolality of leaf sap (4), incipient plasmolysis (5) and sugar transporters (6) from
reference Ref II. Whenever possible, species (S)- and genus (G)-level studies were used to infer loading type. For several species loading type was determined
based on plant family (F). Index i refers to the position of the species along the coordinate axis in figure 2a.

i species
common
name ci (dci) PC ref I

loading
mechanism PLM ref II

1 Brassica oleracea L. cabbage 4.3 (b) [53] active G(1) [54]

2 Salix L. sp. willow 4.8 (1.6) (s) [55] passive G(1,2,3,5) [56]

3 Salix viminalis L. basket willow 5.0 (1.0) (s) [37] passive G(1,2,3,5) [56]

4 Humulus lupulus L. common hops 6.8 (b) [7] passive F(1) [54]

5 Ricinus communis L. castor bean 8.3 (1.6) (b) [57] passive S(1) [54]

6 Triticum aestivum L. wheat 8.3 (s) [39] active S(6) [58]

7 Salix acutifolia Willd littletree

willow

8.4 (0.1) (s) [36] passive G(1,2,3,5) [56]

8 Fraxinus

americana L.

white ash 8.5 (1.0) (b) [29] active S(1,2,3) [59]

9 Ricinus communis L. castor bean 9.0 (1.0) (b) [28] passive S(1) [54]

10 Platanus

occidentalis L.

American

sycamore

9.6 (0.9) (b) [29] passive G(1,2,3) [59]

11 Ricinus communis L. castor bean 9.9 (1.6) (b) [60] passive S(1) [54]

12 Fraxinus

pennsylvanica

Marshall

green ash 11.1 (0.7) (b) [29] active G(1,2,3) [59]

13 Arabidopsis thaliana

(L.) Heynh.

mouse-ear

cress

11.1 (1.6) (s) [61] active S(6) [62]

14 Ricinus communis L. castor bean 11.4 (3.1) (b) [45] passive S(1) [54]

15 Pinus sylvestris L. scots pine 11.5 (b) [7] passive G(1) [54]

16 Medicago sativa L. clover 13.0 (s) [63] active G(1) [54]

17 Robinia

pseudoacacia L.

black locust 13.6 (2.6) (b) [64] active G(1) [54]

18 Quercus pedunculata

Willd.

pedunculate

oak

13.6 (b) [7] passive G(1,2,3,4) [3]

19 Lupinus albus L. white lupine 14.0 (4.4) (b) [65] active G(1) [54]

20 Arenga pinnata

(Wurmb) Merr.

sugar palm 14.1 (b) [66] passive F(1) [54]

21 Salix viminalis L. basket willow 15.0 (5.9) (s) [67] passive G(1,2,3,5) [56]

22 Nicotiana glauca

Graham

tree tobacco 15.1 (0.6) (b) [68] active G(1,2,3,4) [3]

23 Carpinus betulus L. European

hornbeam

15.7 (2.0) (b) [7] passive S(1) [54]

24 Salix exigua Nutt. narrowleaf

willow

15.9 (3.0) (s) [40] passive G(1,2,3,5) [56]

25 Lactuca sativa L. lettuce 16.0 (2.1) (s) [32] active F(1,2,3,4) [3]

26 Castanea sativa Mill. European

chestnut

16.2 (b) [7] passive G(1) [54]

27 Oryza sativa L. var.

Towada

rice 16.5 (0.1) (s) [69] passive S(1,3,6) [70]

(Continued.)
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Table 2. (Continued.)

i species
common
name ci (dci) PC ref I

loading
mechanism PLM ref II

28 Robinia

pseudoacacia L.

black locust 16.5 (2.1) (b) [29] active G(1) [54]

29 Tilia platyphyllos

Scop.

large-leaved

lime

16.8 (0.6) (b) [64] passive G(1,2,3,4) [3]

30 Quercus borealis

Michx. f.

northern red

oak

17.0 (0.5) (b) [64] passive G(1,2,3,4) [3]

31 Quercus rubra L. northern red

oak

17.1 (2.3) (b) [7] passive S(1,2,3,4) [3]

32 Triticum aestivum L. wheat 17.2 (0.6) (s) [71] active S(6) [58]

33 Acer platanoides L. Norway maple 17.9 (1.2) (b) [64] passive G(1,2,3,4) [3]

34 Tilia L. sp. basswood 18.5 (b) [7] passive G(1,2,3,4) [3]

35 Tilia parvifolia Ehrh. small-leaved

lime

19.0 (b) [7] passive G(1,2,3,4) [3]

36 Oryza sativa L. var.

Towada

rice 19.4 (2.9) (s) [38] passive S(1,3,6) [70]

37 Acer

pseudoplatanus L.

sycamore

maple

20.6 (3.2) (b) [7] passive G(1,2,3,4) [3]

38 Fraxinus

americana L.

white ash 22.1 (1.1) (b) [72] active S(1,2,3) [59]

39 Brassica nigra (L.)

W. D. J. Koch

black mustard 22.5 (3.5) (s) [73] active G(1) [54]

40 Robinia

pseudoacacia L

black locust 22.8 (5.1) (b) [7] active G(1) [54]

41 Lupinus mutabilis

Sweet

Tarwi 24.0 (4.0) (b) [30] active G(1) [54]

42 Avena sativa L. common oat 24.6 (1.7) (s) [74] active F(1) [54]

43 Spinacia oleracea L. spinach 24.6 (s) [75] active S(3) [76]

44 Fraxinus

americana L.

white ash 25.0 (2.0) (b) [64] active S(1,2,3) [59]

45 Eucalyptus globulus

Labill.

Tansmanian

bluegum

25.1 (4.0) (b) [77] active G(1,3) [54,78]

46 Acer platanoides L. Norway maple 25.2 (b) [7] passive G(1,2,3,4) [3]

47 Zea mays L. maize 25.8 (6.0) (s) [79] active S(1,3,5) [80,81]

48 Tanacetum

vulgare L.

tansy 26.8 (13.9) (s) [45] active F(1,2,3,4) [3]

49 Zea mays L. maize 27.4 (s) [82] active S(1,3,5) [80,81]

50 Hordeum vulgare L. barley 31.0 (5.0) (s) [83] active S(1,3) [76,84]

51 Lolium perenne L. ryegrass 31.3 (s) [31] active S(1,3,5,6) [31,85]

52 Prunus persica L. peach 37.9 (13) (s) [86] passive S(1,2,3) [59]

53 Solanum tuberosum

L. cv. Desiree

potato 38.1 (2.0) (s) [87] active S(1,2,3) [59]

54 Zea mays L. maize 40.7 (s) [81] active S(1,3,5) [80,81]

55 Solanum tuberosum

L. cv. Desiree

potato 50.4 (3.0) (s) [46] active S(1,2,3) [59]
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Bleeding techniques that rely on EDTA and measurements on

cucurbits were not included in this meta-analysis because of

debate over the purity of their exudates [31–34]. Stylectomy

[35] uses the severed stylets (mouthparts) of phloem-feeding

insects (e.g. aphids [36,37], planthoppers [38,39] and scale insects

[40]). These insects feed on individual sieve elements without

disrupting phloem transport, thereby creating a direct tap into

functional sieve tubes with their stylets [41]. Once the stylets

are cut, droplets of relatively pure phloem sap can be collected

with capillary tubes.

Both bleeding and stylectomy have advantages and disadvan-

tages as techniques for sampling phloem sap. Bleeding techniques

are relatively simple to use but they are destructive and susceptible

to contamination by apoplastic material and intracellular contents

of neighbouring cells [31,42]. Samples produced by bleeding are

also subject to dilution over time by water that is osmotically

attracted to the incision [43], and may thus only provide a lower

limit on the actual phloem concentration. Conversely, stylectomy

yields more pure phloem sap because the sampling is less invasive,

and although aphids can alter the amino acid composition of

phloem exudates [44] there is no evidence that these changes

directly affect sugar concentration. The disadvantage of this

technique is that it is technically challenging and is susceptible to

the effects of evaporation because of the small size of the exudate

droplets [45]. Furthermore, it can only be used in plant species

associated with sap-feeding insects [35], which could lead to

biases in sample collection if these insects prefer certain types of

plants. For example, research on transgenic potatoes [46] and in

artificial systems [47] suggests that aphids may selectively feed

on sieve tubes based on their high sugar concentration relative to

neighbouring cells. If this is a common mechanism employed by

sap-feeding insects, they may have a stronger affinity towards

active loading plant species.

A least-squares regression model was used to examine

whether there were systematic differences in the phloem sap

sugar concentrations in samples collected by stylectomy and

bleeding, and between passive and active loading species. The

model considered the effect of each bivariate factor individually

and their interaction, and multiple comparisons of all combi-

nations of these variables were conducted using Tukey’s HSD

(a ¼ 0.05). To avoid oversampling of common species, phloem

sugar concentrations for each species were averaged across

studies. For averages of the different groups, see table 1.
4. Results and discussion
We have derived a general framework for determining sugar

concentrations that optimizes phloem transport under differ-

ent conditions, and a relatively complete physical picture of

the process has emerged. First and foremost, the optimal

sugar concentration for a given plant depends only on how

the pressure differentialDp is maintained. At constant pressure,

we find that the mass flow of sugar is optimal when c ¼ 23.5%,

in agreement with the predictions by Passioura [9] and Lang

[10]. We have further shown that optimizing transport effi-

ciency in this case leads to a similar prediction. On the other

hand, if the pressure is proportional to the concentration, we

have shown that the transport efficiency and mass flow of

sugar is optimal when c ¼ 34.5%.

From figure 1a,b, we observe that the mass fraction c is the

major determinant of both viscosity and density of aqueous

sugar solutions. It follows that all sugars which are dissolva-

ble in water to a concentration of at least 23.5 per cent yield

approximately the same mass flow at constant pressure,

because equation (2.3) does not depend on the molar mass

M. When the flow is driven primarily by the osmotic pressure
of the sugar itself (equation (2.4)), however, light sugars such as

fructose or glucose should have a distinct advantage over

sucrose, since the sugar flow scales J/M21. To argue why

sucrose is nevertheless the most abundant compound, one

must therefore consider other effects, such as the chemical prop-

erties of sugars and sugar alcohols discussed by Lang [10], see §1.

The optimal concentrations discussed above provide a

rationale for the observation that the mean sugar concentration

in the phloem sap of the plants considered in this study is 18.2

per cent, which is closer to the predicted optimum concentration

for sugar transport under constant pressure (figure 2 and table 1).

When considering active sugar loaders separately the trend is

even more clear: average concentration 21.1 per cent (figure

2b(i)). Interestingly, the fact that the observed values cluster

around the optimum value for constant pressure suggests that

the pressure difference Dp driving the flow may be constant,

and consequently does not scale with the sugar concentration

c. Under a scenario where translocation is driven by osmotic

pressure generated by both sugars and ions, this implies that

changes in the sugar concentration c are balanced by additional

terms in the pressure, i.e.Dp¼ f(c)þ RTrc/M¼ const., such that

the total pressure Dp remains constant. This can be achieved by

active loading and unloading of potassium ions [48–51] and

may explain why pressure does not scale with plant size [52].

Together, loading type and sampling method appear to

impact the sugar concentrations measured in the phloem

(ANOVA, F ¼ 3.37, p ¼ 0.028). This effect is due to the signifi-

cant difference (Tukey HSD, t ¼ 2.94, p ¼ 0.027) between

active loaders measured with stylectomy (24.3 + 2.3) and

passive loaders sampled by bleeding (15.2 + 2.1). Although

there is not a direct interaction between loading type and

sampling method (ANOVA, F ¼ 1.95, p ¼ 0.17), these factors

are potentially confounding because of bias in the sampling

method used for each loading type (table 2). As a result,

differences in the sampling methods (described in §3a) may

partially explain the higher sugar concentrations observed

in the active loaders compared with the passive loaders

(figure 2b(i),(ii)). However, if the higher sugar concentrations

measured in the active loaders are not an artefact of differ-

ences in these methods, the data would suggest that active

loaders achieve more optimal concentrations for transport

than passive loading species, thus providing a new perspec-

tive on recent discussions regarding the potential advantages

of using an active loading method [52,88]. If this loading

method allows for more efficient transport, it may facilitate

a faster growth habit and explain why active loaders tend

to be faster growing herbaceous species and passive loaders

tend to be slower growing trees [89]. Plants with the highest

reported sugar concentration are broadly characterized by

rapid growth, and several of those presented here are crop

plants (e.g. potato (c ¼ 50.4%) and maize (c ¼ 40.7%)).

These extreme concentrations may thus be an artefact of

selective breeding.

Several caveats are in order, however. The optimal con-

centration predicted here might differ from that observed in

nature due to the limited availability of light, water and nutri-

ents. Although some plant species maintain fairly constant

sugar concentrations in their phloem (e.g. Ricinus), other species

appear to exhibit diurnal and seasonal changes in sap chemistry.

In the autumn, growth cessation leads to reduced sink activity,

which coincides with a 1.5–5-fold increase in the sugar content

of the phloem exudates of some deciduous [40,67,90] and ever-

green species [91]. In these species, the phloem may serve as a
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reservoir of carbon that plants can access without the use of

temperature-sensitive enzymes [92]. Higher sugar concen-

trations may also prevent desiccation during extracellular

freezing and facilitate supercooling during the winter [40]. On

a smaller temporal scale, sugar concentrations in the phloem

can increase by 25–160% between the night and the day

[45,71,87] and can change in response to disturbance such as

defoliation [31]. Therefore, some of the variation observed in

phloem sugar concentration could be the result of differences

in growth and sampling conditions used in each study. Optimal

concentrations suggested by models thus still need to be care-

fully scrutinized in attempts to understand the evolutionary

implications of sugar loading strategies.

The authors wish thank Maciej Zwieniecki, John Bush, Wonjung
Kim, Nick Carroll, Kenneth Ho and David Weitz. This work was sup-
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Science and Engineering Center (MRSEC, grant no. DMR-0820484)
at Harvard University.
Appendix A. Viscosity and density of
phloem sap
Phloem sap consists of an aqueous solution of sugars, amino

acids, proteins, ions and signalling molecules. Typically, the

total solute concentration is approximately 20% wt/wt, and

sugars, of which sucrose is the most abundant type, consti-

tute 80–90% of this [6]. To approximate the viscosity h and

density r of phloem sap, we used data from sucrose, glucose,

fructose and NaCl solutions of concentration c obtained from

[11]. The data are plotted in figure 1a,b where least-square fits

to sucrose data yield the approximate expressions for vis-

cosity h ¼ hw exp[0.032c 2 (0.012c)2þ (0.023c)3] and density

r ¼ rw(1þ 0.0038cþ (0.0037c)2þ (0.0033c)3), shown as solid

lines in figure 1a,b. We note that viscosity data from all

solutes are well approximated by the fit suggesting that

only the mass fraction c, and not the type of solute, plays a

role as the major determinant of viscosity.
55
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