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Diagnostic test orders to an animal laboratory were explored as a data source

for monitoring trends in the incidence of clinical syndromes in cattle. Four

years of real data and over 200 simulated outbreak signals were used to com-

pare pre-processing methods that could remove temporal effects in the data,

as well as temporal aberration detection algorithms that provided high sensi-

tivity and specificity. Weekly differencing demonstrated solid performance

in removing day-of-week effects, even in series with low daily counts. For

aberration detection, the results indicated that no single algorithm showed

performance superior to all others across the range of outbreak scenarios

simulated. Exponentially weighted moving average charts and Holt–Winters

exponential smoothing demonstrated complementary performance, with the

latter offering an automated method to adjust to changes in the time series

that will likely occur in the future. Shewhart charts provided lower sensitivity

but earlier detection in some scenarios. Cumulative sum charts did not appear

to add value to the system; however, the poor performance of this algorithm

was attributed to characteristics of the data monitored. These findings indicate

that automated monitoring aimed at early detection of temporal aberrations

will likely be most effective when a range of algorithms are implemented

in parallel.
1. Introduction
During the past decade, increased awareness of the need to recognize the

introduction of pathogens in a monitored population as early as possible has

caused a shift in disease surveillance towards systems that can provide

timely detection [1,2]. Some monitoring has shifted to pre-diagnostic data,

which are available early, but lack specificity for the detection of particular dis-

eases. These data can, however, be aggregated into syndromes, a practice that

has led to an increase in the use of the terms ‘syndromic data’ and ‘syndromic

surveillance’ [2,3].

Disease outbreak detection is a process similar to that of statistical quality

control used in manufacturing, where one or more streams of data are inspected

prospectively for abnormalities [2]. For this reason, classical quality control

methods have been used extensively in public health monitoring [4,5].

However, these types of control charts are based on the assumption that obser-

vations are independently drawn from pre-specified parametric distributions,

and therefore their performance is not optimal when applied to raw, unpro-

cessed health data [6], which are typically subjected to the effect of factors

other than disease burden. Some of these factors are predictable, such as day-

of-week (DOW) effects, seasonal patterns or global trends in the data [2].

These predictable effects can be modelled and removed from the data [7,8].

An alternative is to make use of data-driven statistical methods, such as the
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Holt–Winters exponential smoothing, which can efficiently

account for temporal effects [9].

The use of real data is an essential step in the selection of

algorithms and detection parameters, because the character-

istics of the baseline (such as temporal effects and noise)

are likely to have a significant impact on the performance

of the algorithms [10]. However, the limited amount of real

data and lack of certainty concerning the consistent labelling

of outbreaks in the data prevent a quantitative assessment of

algorithm performance using standard measures such as sen-

sitivity and specificity. These issues can be partially overcome

using simulated data that can include the controlled injection

of outbreaks. Furthermore, this approach has the advantage

of allowing for the evaluation of algorithm performance

over a wide range of outbreak scenarios [11].

A recent review [12] indicated that few systems have been

developed for real- or near-real-time monitoring of animal

health data. Previous work [13] has addressed the possibility

of using laboratory test requests as a data source for syndromic

surveillance in aiming to monitor patterns of disease occurrence

in cattle. In this study, these same data streams were used

to evaluate different temporal aberration detection algorithms,

with the aim of constructing a monitoring system that can

operate in near-real-time (i.e. on a daily and weekly basis).

The earlier-outlined points were addressed in an exploratory

analysis designed to

— identify pre-processing methods that are effective in

removing or dealing with temporal effects in the data;

— explore methods that combine these pre-processing steps

with detection algorithms, with the data streams available

and being aware of the importance of having a detection

process interpretable by the analysts; and

— identify the temporal aberration detection algorithms that

can provide high sensitivity and specificity for this specific

monitoring system.

A variety of algorithms and pre-processing methods

were combined and their performance for near-real-time

outbreak detection assessed. Real data were used to select

algorithms, whereas sensitivity and specificity were calcu-

lated based on simulated data that included the controlled

injection of outbreaks.
2. Methods
All methods were implemented using the R environment

(http://www.r-project.org/) [14].
2.1. Data source
Four years of historical data from the Animal Health Laboratory

(AHL) at the University of Guelph in the province of Ontario,

Canada were available from January 2008 to December 2011.

The AHL is the primary laboratory of choice for veterinary prac-

titioners submitting samples for diagnosis in food animals in the

province of Ontario, Canada. The number of unique veterinary

clients currently in the laboratory’s database (2008–2012) is

326. The laboratory receives around 65 000 case submissions

per year, summing up to over 800 000 individual laboratory

tests performed, of which around 10 per cent refer to cattle

submissions, the species chosen as the pilot for syndromic

surveillance implementation.
A common standard for the classification of syndromes has

not been developed in veterinary medicine. Classification was

therefore established firstly upon manual review of 3 years of

available data, and then creating rules of classification reviewed

by a group of experts (a pathologist, a microbiologist and a field

veterinarian) until consensus was reached by the group. These

rules were implemented in an automated system classification

as documented in Dórea et al. [15].

An effort was made to classify every laboratory submission

record into at least one syndromic group. Therefore, the final

syndromic classification was not only based on a direct relation

to clinical syndromes. A ‘syndromic group’ is defined in this

system as laboratory submissions: (i) related to diseases from the

same organ system; (ii) comprising diagnostic tests for the same

specific disease, in the cases of tests requested so frequently that

their inclusion in another group would result in their being,

alone, responsible for the majority of submissions; or (iii) that

have little clinical relevance and should be separated from the pre-

vious cases. Sixteen syndromic groups were created. Nine referring

to clinical syndromes: gastro-intestinal; mastitis; respiratory; circu-

latory, hepatic and haematopoietic; nervous; reproductive and

abortion; systemic; urinary; and ‘others’. Diagnostics for speci-

fic agents assigned to an individual group owing to higher

volume (ii above) were bovine leukaemia virus (BLV); bovine

viral diarrhoea virus (BVD); Mycobacterium paratuberculosis
(Johne’s disease) and Neospora caninum. Lastly, the groups created

to classify general tests (iii above) were: biochemical profile; other

clinical pathology tests; toxicology tests; and non-specific tests

(those which could not be classified into any of the previous

groups). All 16 syndromic groups were subjected to monitoring

using the methods described below.

Individual health events were defined as one syndromic

occurrence per herd, that is, multiple test requests associated

with a veterinarian visit to the same herd on a given day, when

classified into the same syndromic group, are counted as ‘one

case’. In comparison with human medicine, this would mean

that the herd is the individual patient (not each animal within a

herd). Classification is first performed for each requested test.

Once each test request is classified into a syndromic group, the

data are collapsed by the unique herd identification for each

day. Any cases in the database assigned to weekends were

summed to the following Monday, and weekends were removed

from the data. Only syndromic groups with a median greater than

one case per day were monitored daily [13]. It was proposed that

the remaining syndromes (seven of 17 in total) would be moni-

tored on a weekly basis; these series are not discussed further

in this paper. All the methods described in this paper were carried

out for all the syndromic groups monitored daily. As documen-

ted in Dórea et al. [13], the time series of daily cases for each of

these groups showed very similar statistical properties: daily

medians between 2 and 4, except for tests for diagnostic of mastitis

and respiratory syndromes, which daily medians were 9 and 1,

respectively; strong DOW effect; no global monotonic trends;

and weak seasonal effects, especially for the syndromes with

lower daily medians.

Methods and results will be illustrated using the daily counts

of laboratory test requests for identification of BLV. Animals

affected by bovine leucosis present a reduction in condition, diar-

rhoea and tumours in several organs, which can sometimes be

palpated through the skin, though more often only the unspecific

signs are noted. Tests for BLV are often requested in animals

showing a general reduction in condition. This series was

chosen due to the statistical similarities to the time series of

other syndromic groups, while being the only times series show-

ing evident presence of temporal aberrations (outbreak signals)

documented in the historical data. Additionally, the counts of

test requests for diagnostic of mastitis (inflammation of the

udder in lactating cows) are used to illustrate the particular

http://www.r-project.org/
http://www.r-project.org/
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effect of working with time series with stronger seasonal effects,

whereas the daily counts of laboratory submissions for diagnos-

tic of respiratory syndromes are used to illustrate the particular

challenges of working with time series with lower daily

median. The three time series are shown in figure 1.

Data from 2008 and 2009 were used as training data. These data

had been previously analysed to remove temporal aberrations,

creating outbreak-free baselines for each syndromic group [13]. Data

from 2010 and 2011 were used to evaluate the performance of

detection algorithms trained using those baselines.

2.1.1. Simulated data
In order to simulate the baseline (background behaviour) for each

syndromic group the 4 years of data were fitted to a Poisson

regression model with variables to account for DOW and month,

as previously documented [13]. The predicted value for each day

of the year was set to be the mean of a Poisson distribution, and

this distribution was sampled randomly to determine the value

for that day of a given year, for each of 100 simulated years.

To simulate outbreak signals (temporal aberrations that are

hypothesized to be documented in the data stream monitored

in the case of an outbreak in the population of interest) that

also preserved the temporal effects from the original data, differ-

ent outbreak signal magnitudes were simulated by multiplying

the mean of the Poisson distributions that characterized each

day of the baseline data by selected values. Magnitudes of 1, 2,

3 and 4 were used.

Outbreak signal shape (temporal progression), duration and

spacing were then determined by overlaying a filter to these out-

break series, representing the fraction of the original magnified

count that should be kept. For instance, a filter increasing linearly

from 0 to 1 in 5 days (explicitly: 0.2, 0.4, 0.6, 0.8 and 1), when

superimposed to an outbreak signal series, would result in

20 per cent of the counts in that series being input (added to

the baseline) on the first day, 40 per cent in the second, and so

on, until the maximum outbreak signal magnitude would be

reached in the last outbreak day. The process and resulting

series are summarized in figure 2. As can be seen in figure 2,

while the filters had monotonic shapes, the final outbreak signals

included the random variability generated by the Poisson distri-

bution. The temporal progression of an outbreak is difficult to

predict in veterinary medicine, where the epidemiological unit
is the herd rather than individual animals, because a large

proportion of transmission is due to indirect contact between

farms locally and also over large distances [16]. The same patho-

gen introduction can result in different temporal progressions in

different areas as a result of spatial heterogeneity, as seen in the

foot-and-mouth disease outbreak in the UK in 2001 [17] and

the bluetongue outbreak in Europe in 2006 [18]. For this

reason, several outbreak signal shapes previously proposed

in the literature [19,20] were simulated. These shapes were

combined to generate the following filters.

— Single spike outbreaks: a value of 1 is assigned to outbreak

days, whereas all other days are assigned a value of zero.

— Moving average (flat) outbreaks: each outbreak signal is rep-

resented by a sequence of 5, 10 or 15 days (one to three

weeks) with a filter value of 1 (outbreak days), separated by

days of non-outbreak in which the filter value is zero.

— Linear increase: the filter value increases linearly from 0 in

the first day, to 1 in the last day. This linear increase was

simulated over 5, 10 and 15 days.

— Exponential increase: the filter value increases exponentially

from 0 in the first day, to 1 in the last day. For the duration

of 5 days, this was achieved by assigning 1 to the last day,

and dividing each day by 1.5 to obtain the value for the pre-

ceding day. For the durations of 10 and 15 days, a value of

1.3 was used.

— Lognormal (or sigmoidal) increase: the filter value increases

following a lognormal curve from 0 in the first day, to 1 in

the last day. The same values for the distribution are used

for any outbreak signal length (lognormal(4, 0.3)), but the

values corresponding to 5, 10 and 15 equally distributed per-

centiles from this distribution are used to assign the filter

value for outbreaks with these respective durations.

Each filter was composed using one setting of outbreak

signal shape and duration, repeated at least 200 times over the

100 simulated years, with a fixed number of non-outbreak days

between them. The space between outbreak signals was deter-

mined after real data were used to choose the initial settings

for the aberration detection algorithms, in order to ensure that

outbreak signals were spaced far enough apart to prevent one
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outbreak from being included in the training data of the next.

Each of these filters was then superimposed on the four different

outbreak signal magnitude series, generating a total of 52 out-

break signal scenarios to be evaluated independently by each

detection algorithm.

2.2. Detection based on removal of temporal effects
and use of control charts
2.2.1. Exploratory analysis of pre-processing methods
The retrospective analysis [13] showed that DOW effects were the

most important explainable effects in the data streams, and could

be modelled using Poisson regression. Weekly cyclical effects can

also be removed by differencing [6]. Both of the following

alternatives were evaluated to pre-process data in order to

remove the DOW effect.

— Poisson regression modelling with DOW and month as pre-

dictors. The residuals of the model were saved into a new

time series. This time series evolves daily by refitting the

model to the baseline plus the current day, and calculating

today’s residual.

— Five-day differencing. The differenced residuals (the residual

at each time point t being the difference between the observed

value at t and t25) were saved as a new time series.

Autocorrelation and normality in the series of residuals were

assessed in order to evaluate whether pre-processing was able

to transform the weekly- and daily-autocorrelated series into

independent and identically distributed observations.
2.2.2. Control charts
The three most commonly used control charts in biosurveillance

were compared in this paper: (i) Shewhart charts, appropriate for

detecting single spikes in the data; (ii) cumulative sums

(CUSUM), appropriate for use in detecting shifts in the process

mean; and (iii) the exponentially weighted moving average

(EWMA), appropriate for use in detecting gradual increases in

the mean [5,6].

The Shewhart chart evaluates a single observation. It is based

on a simple calculation of the standardized difference between

the current observation and the mean (z-statistic); the mean

and standard deviation being calculated based on a temporal

window provided by the analyst (baseline).

The CUSUM chart is obtained by

CUSUM : Ct ¼ maxf0; ðDt þ Ct�1Þg; ð2:1Þ

where t is the current time point, Dt is the standardized difference

between the current observed value and the expected value. The

differences are accumulated daily (because at each time point t,
the statistic incorporates the value at t21) over the baseline,

but reset to zero when the standardized value of the current

difference, summed to the previous cumulative value, is negative.

The EWMA calculation includes all previous time points, with

each observation’s weight reduced exponentially according to

its age:

EWMA : Et ¼ ð1� lÞtE0 þ
Xt

i¼1
ð1� lÞtlIt; ð2:2Þ

where l is the smoothing parameter (.0) that determines the rela-

tive weight of current data to past data, It is the individual

observation at time t and E0 is the starting value [5,21].
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The mean from values from the baseline are used as the

expected value at each time point. Baseline windows of 10–260

days were evaluated for all control charts.

In order to avoid contamination of the baseline with gradu-

ally increasing outbreaks it is advised to leave a buffer, or

guard-band gap, between the baseline and the current values

being evaluated [22–24]. Guard-band lengths of one and two

weeks were considered for all algorithms investigated.

One-sided standardized detection limits (magnitude above the

expected value) between 1.5 and 3.5 s.d. were evaluated. Based

on the standard deviations reported in the literature for detection

limits [20,25–27], an arbitrary wide range of values was selected

for the initial evaluation of this parameter.

For the EWMA chart, smoothing coefficients from 0.1 to 0.4

were evaluated based on values reported in the literature [27–29].

The three algorithms were applied to the residuals of the pre-

processing steps.

2.3. Detection using Holt – Winters exponential
smoothing
As an alternative to the removal of DOW effects and sequential

application of control charts for detection, a detection model

that can handle temporal effects directly was explored [13,30].

While regression models are based on the global behaviour of

the time series, the Holt–Winters generalized exponential

smoothing is a recursive forecasting method, capable of modify-

ing forecasts in response to recent behaviour of the time series

[9,31]. The method is a generalization of the exponentially

weighted moving averages calculation. Besides a smoothing con-

stant to attribute weight to mean calculated values over time

(level), additional smoothing constants are introduced to account

for trends and cyclic features in the data [9]. The time-series cycles

are usually set to 1 year, so that the cyclical component reflects

seasonal behaviour. However, retrospective analysis of the time

series presented in this paper [13] showed that Holt–Winters

smoothing [9,31] was able to reproduce DOW effects when

the cycles were set to one week. The method suggested by

Elbert & Burkom [9] was reproduced using 3- and 5-day-ahead

predictions (n ¼ 3 or n ¼ 5), and establishing alarms based on

confidence intervals for these predictions. Confidence intervals

from 85 to 99% (which correspond to 1–2.6 s.d. above the

mean) were evaluated. Retrospective analysis showed that a

long baseline yielded stabilization of the smoothing parameters

in all time series tested when 2 years of data were used as train-

ing. Various baseline lengths were compared relatively with

detection performance. All time points in the chosen baseline

length, up to n days before the current point, were used to fit

the model daily. Then, the observed count of the current time

point was compared with the confidence interval upper limit

(detection limit) in order to decide whether a temporal aberration

should be flagged [13].

2.4. Performance assessment
Two years of data (2010 and 2011) were used to qualitatively

assess the performance of the detection algorithms (control

charts and Holt–Winters). Detected alarms were plotted against

the data in order to compare the results. This preliminary assess-

ment aimed at reducing the range of settings to be evaluated

quantitatively for each algorithm using simulated data.

The choice of values for baseline, guard-band and smoothing coef-

ficient (EWMA) was adjusted based on these visual assessments of

real data, to ensure that the choices were based on the actual charac-

teristics of the observed data, rather than impacted by artefacts

generated by the simulated data. These visual assessments were per-

formed using historical data where aberrations were clearly

present—as in the BLV time series—in order to determine how
different parameter values impacted: the first day of detection, sub-

sequent detection after the first day, and any change in the behaviour

of the algorithm at time points after the aberration. In particular, an

evaluation of how the threshold of aberration detection was

impacted during and after the aberration days was carried out.

Additionally, all data previously treated in order to remove exces-

sive noise and temporal aberrations [13] were also used in these

visual assessments, in order to evaluate the effect of parameter

choices on the generation of false alarms. The effect of specific

data characteristics, such as small seasonal effects or low counts,

could be more directly assessed using these visual assessments

rather than the quantitative assessments described later.

To optimize the detection thresholds, quantitative measures

of sensitivity and specificity were calculated using simulated

data. Sensitivity of outbreak detection was calculated as the per-

centage of outbreaks detected from all outbreaks injected into the

data. An outbreak was considered detected when at least one

outbreak day generated an alarm. The number of days, during

the same outbreak signal, for which each algorithm continued

to generate an alarm was also recorded for each algorithm.

Algorithms were also applied to the simulated baselines directly,

without the injection of any outbreaks, and all the days in which

an alarm was generated in those time series were counted as

false-positive alarms. Time to detection was recorded as the first

outbreak day in which an alarm was generated, and therefore

can be evaluated only when comparing the performance of algor-

ithms in scenarios of the same outbreak duration. Sensitivities of

outbreak detection were plotted against false-positives in order

to calculate the area under the curve (AUC) for the resulting

receiver operating characteristic (ROC) curves.
3. Results
3.1. Pre-processing to remove the day-of-week effect
Autocorrelation function plots and normality Q–Q plots are

shown in figure 3 for the BLV series, for 2010 and 2011, to

allow the two pre-processing methods to be evaluated.

Neither method was able to remove the autocorrelations

completely, but differencing resulted in smaller autocorrela-

tions and smaller deviation from normality in all time

series evaluated. Moreover, differencing retains the count

data as discrete values. The Poisson regression had very lim-

ited applicability to series with low daily counts, cases in

which model fitting was not satisfactory.

Owing to its ready applicability to time series with low as

well as high daily medians, and the fact that it retains the dis-

crete characteristic of the data, differencing was chosen as the

pre-processing method to be implemented in the system and

evaluated using simulated data.
3.2. Qualitative evaluation of detection algorithms
Based on graphical analysis of the aberration detection results

using real data, a baseline of 50 days (10 weeks) seemed to

provide the best balance between capturing the behaviour

of the data from the training time points and not allow-

ing excessive influence of recent values. Longer baselines

tended to reduce the influence of local temporal effects,

resulting in excessive number of false alarms generated, for

instance, at the beginning of seasonal increases for certain

syndromes. Shorter baselines gave local effects too much

weight, allowing aberrations to contaminate the baseline,

thereby increasing the mean and standard deviation of the

baseline, resulting in a reduction of sensitivity.
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For the guard-band, the use of one week did not prevent

contamination of the baseline with aberrations when these

were clearly present. For instance, in outbreak signals simu-

lated to last 15 days, the algorithms became insensitive to

the aberrations during the last week of outbreak signal. The

guard-band was therefore set to 10 days.

For the EWMA control charts, the number of alarms gen-

erated was higher when the smoothing parameter was

greater, within the range tested. When evaluating graphi-

cally whether these alarms seemed to correspond to true

aberrations, a smoothing parameter of 0.2 produced more

consistent results across the different series evaluated, and

so this parameter value was adopted for the simulated data.

EWMA was more efficient than CUSUM in generating

alarms when the series median was shifted from the mean

for consecutive days, but no strong peak was observed.

EWMA and Shewhart control charts appeared to exhibit

complementary performance—aberration shapes missed

by one algorithm were generally picked up by the other.

CUSUM charts seldom improved overall system performance

if the other two types of control chart had been implemented.

The performance of the Holt–Winters method was very

similar with 3- and 5-days-ahead predictions. Five-days-

ahead prediction was chosen because it provides a longer

guard-band between the baseline and the observed data.

Because this method is data-driven, using long baselines

(2 years) did not cause the model to ignore local effects, but

it did allow convergence of the smoothing parameters, elimi-

nating the need to set an initial value. The method was set to

read 2 years of data prior to the current time point. The use

of longer baselines (up to 3 years) did not improve perform-

ance, but it would require longer computational time. The

method did not appear to perform well in series characterized

by low daily medians. In the case of the respiratory series, for
instance, the Holt–Winters method generated 19 alarms over

a period of 2 years, most of which seemed to be false alarms

based on visual assessment (the control charts generated

only five to eight alarms for the same period).

Based on qualitative assessment alone, the range of detec-

tion limits to be evaluated using the simulated data could

not be narrowed by more than half a unit for the control

charts. It was therefore decided to evaluate detection limits

(in increments of 0.25) when carrying out the quantitative

investigation: 2–3.75 for the Shewhart charts, 1.75–3.5 for

CUSUM charts and for EWMA. For the Holt–Winters

method, confidence intervals greater or equal to 95% were

investigated using simulated data.
3.3. Evaluation using simulated data
Based on the results of the qualitative analysis (baselines of

50 days and a range or guard-band of 10 days), outbreaks

were separated by a window of 70 non-outbreak days. In

the case of single-day spikes, the separation was 71 days, to

ensure that spikes always fell on a different weekday.

As expected, the effect of increased outbreak magnitude

was to increase sensitivity (and also to increase the number

of days with an alarm, per outbreak signal) and reduce time

to detection. Longer outbreak lengths increased the sensitivity

per outbreak, but reduced the number of days with alarms per

outbreak in shapes with longer initial tails, as linear, exponen-

tial and log normal. For these shapes, a longer outbreak length

also resulted in longer time to detection.

ROC curves for system sensitivities plotted against the

number of false alarms are shown in figure 4 for each of

the four algorithms evaluated and the three syndromes.

Lines in each panel show the median sensitivity for the five

different outbreak shapes, along the eight detection limits
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tested. Error bars represent the 25–75% percentile of 12 scen-

arios, combining the four scenarios of outbreak magnitude

(one to four times the baseline) and the three scenarios of out-

break duration (one to three weeks) simulated. AUC for the

plots are shown in table 1, as well as median time to detection

for the specific scenario of an outbreak of 10 days. A limited

number of detection limits are shown in table 1.

Starting at the first column of figure 4 and table 1, the

results for the mastitis simulated series, the sensitivity of

detection of spikes and flat outbreaks was highest for the

Holt–Winters method. EWMA charts showed low sensitivity

for those, but the highest performance for all slow raising

outbreak shapes (linear, exponential and log normal). The

lowest sensitivity within each algorithm was for the detection

of spikes, which is an artefact of the short duration of these

outbreaks, compared with all other shapes. Similarly, the

relatively high sensitivity for flat outbreaks can be interpreted

as a result of the higher number of days with high counts in

this scenario. Similarly, the performance for detection in log-

normal shapes closely related to the flat outbreaks, being

superior to linear and exponential increases. The CUSUM

algorithm showed good performance in the mastitis series,

but its performance very quickly deteriorated for other

series with smaller daily medians, as discussed below.
Median day of first signal for each outbreak, in the scen-

ario of a 10 days to peak outbreak, is shown in table 1 for a

few key detection limits. Looking at the median day of detec-

tion for the flat and exponential outbreaks in the mastitis

series, it is possible to see, for instance, that even though

the AUC is higher for the Holt–Winters (more outbreaks

detected) when compared with the Shewhart chart, in the

case of detection the latter algorithm detects outbreaks earlier

than the first.

Moving to syndromes with lower daily counts, figure 4

shows that the performance of all algorithms decreases as

daily counts decrease. The problem is critical with the

CUSUM algorithm. Because this algorithm resets to zero if

the difference in observed counts is lower than the expected

counts, its application to a series with a large number of

zero counts (respiratory) resulted in no alarm being detected,

true or false.

The results show that algorithm performance is not only a

function of the syndrome median counts, but also impacted

by the baseline behaviour of the syndromic series. EWMA

charts, which performed better than Holt–Winter for slow

raising outbreaks in the mastitis series, also performed

better for flat shapes in the BLV series, but Holt–Winters

performed better for exponentially increasing outbreaks.
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Moving to even lower daily counts, as in the respiratory

series, the Holt–Winters method outperformed EWMA

charts in all outbreak shapes but flat, the case for which

both the EWMA charts and the Shewhart charts showed

better performance than Holt–Winters.

The impact of the underlying baseline in the absence of

outbreaks is also seen in the range of false-positive values.

The same detection limits generated a greater number of

false alarms in the BLV series for all algorithms. Except for

the BLV series, the number of false alarms generated in

every scenario was smaller than 3 per cent (one false alarm

in each 30 days of system operation). For the Holt–Winters

method, a detection limit of 97.5 per cent would always

result in specificity greater than 97 per cent, without loss of

sensitivity compared with the lowest detection limits evalu-

ated. For the EWMA charts, a detection limit of 2 s.d.

represents the maximum attained specificity without starting

to rapidly decrease sensitivity, but the behaviour should

be evaluated individually for different syndromes. For the

Shewhart chart, such a cut-off seemed to rest on a detection

limit of 2.25 s.d. for the lower count series, but for the mastitis

series a limit of 2.5 would reduce false alarms with very little

reduction in sensitivity.
4. Discussion
A recent review of veterinary syndromic surveillance ini-

tiatives [12] concluded that, owing to the current lack of

computerized clinical records, laboratory test requests rep-

resent the opportunistic data with the greatest potential for

implementation of syndromic surveillance systems in live-

stock medicine. In this study, we have evaluated 2 years of

laboratory test request data, using the two preceding years

as training data, and illustrated the potential of different

combinations of pre-processing methods and detection algor-

ithms for the prospective analysis of these data where the

primary aim is aberration detection.

A large number of studies have documented the use of

public health data sources in syndromic surveillance, such

as data from hospital emergency departments, physician

office visits, over-the-counter medicine sales, etc. [32]. In

veterinary health, however, the epidemiological unit for clini-

cal data is usually the herd, rather than individual animals

[12]. The number of epidemiological units in a catchment

area for individual data sources is therefore generally smaller

than in public health monitoring, resulting in challenges

around handling data with low daily counts, such as those

described in this study. It is hoped that the description of

the steps taken to prepare these data and to select appropriate

detection algorithms together with the results of this evalu-

ation can guide the work of other analysts investigating the

potential of syndromic data sources in animal health.

The data used for algorithm training had been previously

evaluated retrospectively [13] and were found to have a

strong DOW effect. This effect prevented the direct use of con-

trol charts without data pre-processing. Regression (using a

Poisson model) was not an efficient method to remove daily

autocorrelation; in line with a finding previously reported by

Lotze et al. [6]. Differencing has been recommended not only

to remove DOW effects, but any cyclical patterns in addition to

linear trends [6]. Five-day (weekly) differencing demonstrated

solid performance in removing the DOW effect, even in series
with low daily counts, and preserved the data as count data

(integers). Preserving the data as integers is important when

using control charts based on count data, and also in order to

facilitate the analyst’s comprehension of both the observed

and the pre-processed data series.

When pre-processed data were subjected to temporal aber-

ration detection using control charts, EWMA performed better

than CUSUM. EWMA’s superiority in detecting slow shifts in

the process mean is expected from its documented use [6]. In

the particular time series explored in this paper, the general

poor performance of the CUSUM was attributed to the low

median values, when compared with traditional data streams

used in public health. The injected outbreak signals were simu-

lated to capture the random behaviour of the data, as opposed

to being simulated as monotonic increases in a specific shape.

Therefore, as seen in figure 2, often the daily counts were

close to zero even during outbreak days, as is common for

these time series. As a result, the CUSUM algorithm was

often reset to zero, decreasing its performance. Shewhart

charts showed complementary performance to EWMA charts,

detecting single spikes that were missed by the first algorithm.

The use of control charts in pre-processed data was

compared with the direct application of the Holt–Winters

exponential smoothing. Lotze et al. [6] have pointed out the

effectiveness of the Holt–Winters method in capturing sea-

sonality and weekly patterns, but highlighted the potential

difficulties in setting the smoothing parameters as well as

the problems of 1-day-ahead predictions. In this study, the

temporal cycles were set to weeks, and the availability of

2 years of training data allowed convergence of the smooth-

ing parameters without the need to estimate initialization

values. Moreover, the method worked well with predictions

of up to 5 days ahead, which allows a guard-band to be

kept between the training data and the actual observations,

avoiding contamination of the training data with undetected

outbreaks [22–24]. Our findings confirm the conclusions

of Burkom et al. [31] who found, working in the context of

human medicine, that the method outperformed ordinary

regression, while remaining straightforward to automate.

Analyses using real data were important in tuning algor-

ithm settings to specific characteristics of the background

data, such as baselines, smoothing constants and guard-

bands. However, analysis on real data can be qualitative only

due to the limited amount of data available [33]. The scarcity

of data, especially those for which outbreaks days are clearly

identified, has been noted as a limitation in the evaluation

of biosurveillance systems [34]. Data simulation has been com-

monly employed to solve the data scarcity problem, the main

challenge being that of capturing and reproducing the com-

plexity of both baseline and outbreak data [33,35]. The

temporal effects from the background data were captured in

this study using a Poisson regression model, and random

effects were added by sampling from a Poisson distribution

daily, rather than using model estimated values directly.

Amplifying background data using multiplicative factors

allowed the creation of outbreaks that also preserved the

temporal effects observed in the background data.

Murphy & Burkom [24] pointed out the complexity of

finding the best performance settings, when developing

syndromic surveillance systems, if the shapes of outbreak sig-

nals to be detected are unknown. In this study, the use of

simulated data allowed evaluation of the algorithms under

several outbreak scenarios. Special care was given to outbreak
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spacing, in order to ensure that the baseline used by each algor-

ithm to estimate detection limits was not contaminated with

previous outbreaks.

As the epidemiological unit in animal health is a herd,

transmission by direct contact is not usually the main source

of disease spread. Indirect contact between farms through the

movement of people and vehicles is often a large component

of disease spread [36]. The shape of the outbreak signal that

will be registered in different health sources is hard to predict,

and depends on whether the contacts, which often cover a large

geographical area [16], will also be included in the catchment

area of the data provider. The temporal progression of out-

breaks of fast spreading diseases is often modelled as an

exponential progression [37,38], but data from documented

outbreaks [18] and the result of models that explicitly take

into account the changes in spread patterns owing to spatial

heterogeneity [39] more closely resemble linear increases.

Linear increases may also be observed when an increase in

the incidence of endemic diseases is registered, as opposed to

the introduction of new diseases. Owing to these uncertainties,

all the outbreak signal shapes previously documented in simu-

lation studies for development of syndromic monitoring were

reproduced in this study [11,19,40,41].

Evaluation of outbreak detection performance was based

on sensitivity and specificity, metrics traditionally used in

epidemiology, combined with using the AUC for a traditional

ROC curve [42]. The training data used in this study to simu-

late background behaviour were previously analysed in

order to remove aberrations and excess noise [13]. The

number of false alarms when algorithms are implemented

using real data are expected to be higher than that observed

for simulated data. However, all the detection limits explored

generated less than 3 per cent false-alarm days (97% specificity)

in the simulated data, which is the general fixed false-alarm

rate suggested for biosurveillance system implementations

[40]. Because the right tail of the ROC curves was flat in most

graphs, it was possible to choose detection limits that provide

even low rates of false alarms, with little loss of sensitivity.

Metrics used in the industrial literature to evaluate control

charts, such as average run length, are specifically designed for

detection of a sustained shift in a parameter [43], which
corresponds to the flat outbreak shape simulated in this

study, but would be misleading when used to interpret the

algorithms’ performance for other outbreak scenarios. There-

fore, although at times recommended for the evaluation of

prospective statistical surveillance [44], performance measures

from the industrial literature were not used [43].

The results showed that no single algorithm should be

expected to perform optimally across all scenarios. EWMA

charts and Holt–Winters exponential smoothing complemen-

ted each other’s performance, the latter serving as a highly

automated method to adjust to changes in the time series

that can happen in the future, particularly in the context of

an increase in the number of daily counts or seasonal effects.

However, Shewhart charts showed earlier detection of signals

in some scenarios, and therefore its role in the system cannot

be overlooked. The CUSUM charts, however, would not add

sensitivity value to the system.

Besides the difference in performance when encountering

different outbreak signal shapes, the ‘no method fits all’ pro-

blem also applied to the different time series evaluated. The

performance of the same algorithm was different between

two series with similar daily medians (results not shown).

This was likely due to non-explainable effects in the back-

ground time series, such as noise and random temporal

effects. Therefore, the choice of a detection limit that can pro-

vide a desired balance between sensitivity and false alarms

would have to be made individually for each syndrome.

The use of these three methods in parallel—differencing þ
EWMA; differencing þ Shewhart; and Holt–Winters expo-

nential smoothing—ensures that algorithms with efficient

performance in different outbreak scenarios are used. Methods

to implement automated monitoring aimed at early detection

of temporal aberration occurrence using multiple algorithms

in parallel will be evaluated in future steps of this work.
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Ministry of Agriculture, Food and Rural Affairs (OMAFA) and the
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reviewers whose detailed input strengthened the way outbreak
signals and certain algorithmic details are presented in this paper.
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