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The optimal management of breast cancer (BC) presents chal-
lenges due to the heterogeneous molecular classification of the
disease. We performed survival analysis on a cohort of 466
patients with primary invasive ductal carcinoma (IDC), the most
frequent type of BC, by integrating mRNA, microRNA (miRNA),
and DNA methylation next-generation sequencing data from The
Cancer Genome Atlas (TCGA). Expression data from eight other BC
cohorts were used for validation. The prognostic value of the
resulting miRNA/mRNA signature was compared with that of
other prognostic BC signatures. Thirty mRNAs and seven miRNAs
were associated with overall survival across different clinical and
molecular subclasses of a 466-patient IDC cohort from TCGA. The
prognostic RNAs included PIK3CA, one of the two most frequently
mutated genes in IDC, and miRNAs such as hsa-miR-328, hsa-miR-484,
and hsa-miR-874. The area under the curve of the receiver-operator
characteristic for the IDC risk predictor in the TCGA cohort was
0.74 at 60 mo of overall survival (P < 0.001). Most relevant for
clinical application, the integrated signature had the highest prog-
nostic value in early stage I and II tumors (receiver-operator char-
acteristic area under the curve = 0.77, P value < 0.001). The genes
in the RNA risk predictor had an independent prognostic value
compared with the clinical covariates, as shown by multivariate
analysis. The integrated RNA signature was successfully validated
on eight BC cohorts, comprising a total of 2,399 patients, and it
had superior performance for risk stratification with respect to
other RNA predictors, including the mRNAs used in MammaPrint
and Oncotype DX assays.
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Breast cancer (BC) can be influenced by a number of envi-
ronmental factors and is characterized by molecular het-

erogeneity (1). Comprising about 80% of all breast cancers,
invasive ductal carcinomas (IDC) are the most frequent type of
BC. Breast tumors of distinct molecular subtypes [luminal A/B,
HER2 enriched (HER2E), and basal-like] have dramatically
different mRNA profiles (2). Recently, various groups, including
The Cancer Genome Atlas (TCGA) network, analyzed and re-
leased data for a large number of primary breast cancers charac-
terized by genomic DNA copy-number arrays, DNA methylation,
exome sequencing, messenger RNA arrays, and microRNA se-
quencing (3–8). Somatic mutations in three genes (TP53, PIK3CA,
and GATA3) occur frequently across BC, along with subtype-as-
sociated gene mutations (4, 8). The earlier description of the four
main BC subtypes (9), characterized by different subsets of genetic
and epigenetic abnormalities, suggested the hypothesis that much
of the clinically observable plasticity and heterogeneity occurred
within, and not across, these biological subclasses of breast cancer.
In turn, this is thought to impact on the pathways related with
outcome (10). Nonetheless, we wanted to investigate whether
there are common underlying mechanisms related to overall sur-
vival (OS) in the different BC subclasses.
Although much is known about mRNA, microRNA (miRNA),

and DNA methylation profiles in BC, no integrated study

concerning their prognostic significance has yet been performed
on large patient cohorts. The aim of this work was thus to assess
the predictive value of such an integrated profile for OS of
patients affected by IDC, the most frequent type of BC.

Results
Integrated Molecular Profile and Clinical Parameters in the TCGA IDC
Cohort. Integrated miRNA/mRNA tumor profiles (7,735 mRNAs
and 247 miRNAs; integrated expression matrix in Dataset S1)
were analyzed in depth for 466 primary IDCs in the TCGA co-
hort (8). hsa-miR-210, which had been previously associated with
the transition from ductal carcinoma in situ to IDC, and with
poor prognosis (11, 12), was the most up-regulated miRNA in
primary tumors that had distant metastasis (P = 0.02). Before
studying the prognostic values of RNA expression and DNA
methylation, univariate survival tests were conducted to assess
the relationship between clinical parameters and outcome in the
TCGA IDC cohort. N stage, M stage, disease stage, T stage, and
intrinsic subtype (SI Appendix, Figs. S1–S5) were significantly
associated with OS. Estrogen receptor (ER)-positive patients
showed a more favorable outcome and patients with triple-
negative breast cancer (TNBC) a worse prognosis (SI Appendix,
Figs. S6 and S7). Although somatic mutations in IDC were as-
sociated with specific intrinsic subtypes (TP53 with Basal-like
and HER2-enriched and PIK3CA with Luminal A) as previously
reported, they were not associated with OS (SI Appendix, Figs. S8
and S9). The results of this preliminary assessment indicated that
the survival data for the TCGA IDC cohort, although containing a
majority of censored data, were informative and appropriate for
use in further molecular studies.

Association of OS with miRNA/mRNA/methylated DNA in the TCGA
IDC Cohort. The association of OS with the miRNA, mRNA,
and DNA methylation profiles (DNA methylation matrix in
Dataset S2) was then studied in detail for the TCGA IDC co-
hort. The goal of this portion of the study was the identification
of a set of common genes, if existing, consistently driving the
outcome of the disease across the different clinical or molecular
subtypes. The strategy and the underlying rationale are sche-
matically shown in Fig. 1. We conducted univariate survival
analyses for OS, using the integrated miRNA/mRNA profile
within each of the following independent classes: disease stage,
lymph node involvement (N stage), surgical margin, pre- or
postmenopause, intrinsic subtype, and somatic mutations (TP53,
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PIK3CA pathway, GATA3, MAPKs, and remaining less frequently
altered genes). The patient subclasses with different clinical or
molecular characteristics represented disjoint sets within each
class. An mRNA, or an miRNA, was selected only if significant
in at least two independent subclasses from the same class (see
legend to Fig. 1 for details). The list of genes passing this step,
with the respective hazard ratios in each subclass, is shown in the
Dataset S3. As an additional step to refine the risk gene set, we
retained only mRNAs with known protein mutations in cancer
(listed in Dataset S3 according to the Catalogue of Somatic
Mutations in Cancer) (13). Because DNA methylation is a key
mechanism in transcriptional control (14), we also studied the
DNA methylation of coding genes as an additional criterion for
association with OS. We first focused on the relation between
CpG methylation and mRNA expression using the PIK3CA
prognostic gene as a model for subsequent analysis of the
candidate prognostic genes. The methylated CpG sites, which

correlated with PIK3CA expression, were all located in a 2.2-kb
region surrounding PIK3CA’s first exon (SI Appendix, Table S2),
a region with strong acetylation of lysine 27 in histone H3 and
high-density binding of transcription factors (15). The majority
(five of six) of the significant CpG sites in this region had the
expected negative correlation between DNA methylation and
PIK3CA expression. Based on this finding, we used a majority
rule to determine the type of association between a gene’s
methylation and OS in the whole TCGA cohort at once. When
most of the significant methylation sites for a gene (SI Appendix,
Table S3) had hazard ratio (HR) lower than 1, than the corre-
lation between the gene’s methylation and outcome was defined
as “negative.” This procedure allowed us to identify the genes
that had an association of poor outcome with RNA over-
expression and DNA hypo-methylation or vice versa. The DNA
methylation test was applied to the coding genes and not to
miRNAs because of the limited number of CpG sites assayed in
those very small genes. Nevertheless, most miRNAs would have
passed the methylation test (Dataset S2).
The stringent multistep selection that we applied, as shown in

Fig. 1, allowed us to (i) identify the common RNAs related to
clinical outcome across IDC patients, (ii) validate the prognostic
genes in nonoverlapping patient subclasses, (iii) use DNA
methylation as an independent molecular parameter to confirm
a prognostic role for selected mRNAs, and (iv) identify prog-
nostic genes with bona fide cancer activity (SI Appendix, Table
S4). We defined these genes as the common risk integrated gene
set. Some known cancer genes (for example, NME3, an isoform
of the NM23 family) were associated with outcome only within
a single subclass and therefore did not satisfy our selection
requirements for common genes.

Integrated IDC Risk Predictor: Common and Subtype-Directed Prog-
nostic Genes. Having determined the common risk genes across
different BC subclasses, we wanted to remove any gene that might
have divergent prognostic values in the four major BC subtypes,
namely Luminal A, Luminal B, Basal-like, and HER2 enriched.
We assigned to the HER2-enriched group also tumors not be-
longing to any of the other three subtypes (i.e., Claudin low and
normal breast-like). We used the common prognostic gene set to
develop an “RNA model,” using only mRNA and miRNA ex-
pression data. Linear risk predictors were constructed using
the supervised principal component method (16) to divide the
patients in high- and low-risk groups for each of the BC subtypes,
and the receiver operating characteristic (ROC) test was used to
evaluate their prognostic performance. The risk genes that had
divergent association to OS in different subtypes (defined as
their weight contribution to the linear risk predictor)—namely
FAM208B, C2CD2, CHD9, CHM, DPY19L3, NCOA2, hsa-miR-
324, hsa-miR-326, and hsa-miR-365—were removed from the
prognostic gene set. Then we added subtype-directed risk genes
to the prognostic gene set. We started by reassessing each one
of the 195 genes present at step 1 of the selection procedure
(Dataset S3). We stopped the subtype-directed gene selection
when we obtained the maximal area under curve (AUC) for each
one of the four Luminal A, Luminal B, Basal-Like, and HER2E
tumor subtypes. The prognostic value for the Luminal B was not
as high as for the other three subtypes; therefore, we identified
additional markers for this subtype, extending the search to the
genes with highest weights in the whole transcriptome. FAM199×
and PTAR1 had the largest weights in the predictor for Luminal
A tumors; NDRG1, ACSL1, and GLA for the Luminal B tumors;
HRASLS, CXCR7, MCM10, and NOTCH2NL for the Basal-like
tumors; and PGK1, HSP90AA1, and FRZB for the HER2-
enriched group. The prognostic matrix (Fig. 2) visualizes all sig-
nificant hazard ratios (P < 0.05) for the 30 mRNAs and the seven
miRNAs that were finally selected as risk genes. This approach
led to the construction of a linear risk predictor, based exclusively

TCGA mRNA

TCGA miRNA

N Stage Intrinsic SubtypeDisease Stage EROther Classes

Hazard Ra�os

. . . . 

DNA methyla�on Soma�c Muta�ons
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Fig. 1. Strategy used to derive and validate prognostic mRNAs and miRNAs
in breast cancer. mRNAs and miRNAs were integrated in a single 7982-RNA
profile (TCGA IDC cohort, n = 466). Survival analysis was performed within
the various subgroups of the following clinical and molecular classes: disease
stage, lymph node involvement (N stage), surgical margin, pre- or post-
menopause, intrinsic subtype, somatic mutations (TP53, PIK3CA pathway,
TP53/PIK3CA double mutants, GATA3, and the remaining less frequently
altered genes). The subclasses within a class represented disjoint patient sets,
thus enabling immediate validation of the prognostic RNAs within that
class. The HRs and Kaplan–Meier curve were generated for every RNA in all
independent subclass. RNAs that had significant both HRs and log-rank tests
(P < 0.05) in at least two subclasses (within the same clinical or molecular
class) were initially selected. Additional criteria, required for the selection of
coding genes, were the association of DNA methylation with OS and the
presence of somatic mutations in the COSMIC database (www.sanger.ac.uk/
genetics/CGP/cosmic/). The association between DNA methylation and OS
was carried out on the whole cohort (not on each subclass) using univariate
Cox regression (SI Appendix, Tables S2 and S3). The HR was the ratio of
hazards for a twofold change in the DNA methylation level. A majority-rule
voting procedure was applied to all significant HRs for the CpG sites in the
prognostic genes (false discovery rate < 0.001); e.g., the DNA methylation of
a gene with the most significant CpG HRs lower than 1 would be defined as
negatively correlated to outcome or vice versa. A further step for gene
reassessment was then performed in the BC tumor subtype, as detailed in
Results. Eight independent validation cohorts (total n = 2,399) were used
to evaluate the prognostic miRNA/mRNA signature generated in the TCGA
IDC cohort.
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on the RNA expression of 37 genes, i.e., the “RNA model,”
shown in SI Appendix, Table S5. The cross-validated Kaplan–
Meier curves for IDC risk groups obtained from the TCGA co-
hort (n = 466), using the RNA model, are shown in Fig. 3A. The
analysis of AUC for the ROC test was conducted allowing for
time-dependent ROC curve estimation with censored data (Fig.
3B). The AUC for the integrated IDC risk predictor was 0.74 at
60 mo of OS (P < 0.001). Because a prognostic biomarker sig-
nature in BC is most applicable to early stage disease, we also
assessed the risk predictor on stage I and II IDC tumors (n= 348).

The integrated miRNA/mRNA signature had an even better
performance on early tumors than on the overall cohort (AUC =
0.77, P < 0.001), as shown in SI Appendix, Fig. S10.
To evaluate the independent prognostic values of the 37mRNA/

miRNA genes in the integrated RNA predictor, we performed
multivariate analysis, including lymph node involvement (N stage),
disease stage, T stage, molecular subtype, TP53 mutation status,
mutations in the PIK3CA pathway (including AKT1 and PTEN),
and ER status (patients were stratified according to age). The final
multivariate model contained 10 mRNAs—CPT1A, CXCR7,
GLA, HRASLS, NOTCH2NL, PGK1, PIK3CA, TTC3, UBXN7,
and ZFC3H1—and two miRNAs—hsa-miR-1307 and hsa-miR-
328 (SI Appendix, Table S6). Mutations in the PIK3CA/AKT/
PTEN axis, the estrogen receptor status, and N stage were the
three remaining clinical or molecular covariates.

Validation of the Integrated miRNA/mRNA Prognostic Signature in
Independent BC Cohorts. The validation of the prognostic signa-
ture was performed on eight independent BC cohorts. At first
we used a UK cohort of 207 breast cancer patients because it
had both mRNA and miRNA profiles (12). The miRNA/mRNA
prognostic gene set was here reassessed for prediction of distant
relapse-free survival (DRFS). Nine miRNAs and 11 mRNAs,
less than 1/2 of the prognostic genes, were measured in the UK
cohort. Both the Kaplan–Meier curve (P = 0.007) and the ROC
curve for the prognostic signature (AUC = 0.65, P = 0.004) were
significant (Fig. 4). As there were no other available mRNA and
miRNA combined expression data from large BC cohorts, we
then evaluated the mRNA component of the miRNA/mRNA
prognostic signature on the Netherland Cancer Institute (NKI)
(17) (n = 295), Hatzis (18) (n = 508), Kao (19) (n = 327), TNBC
(20) (n = 383), Bos (21) (n = 195), Wang (22) (n = 286), and
TRANSBIG Consortium (20) (n = 198) cohorts. The mRNA
component of the prognostic signature was significantly pre-
dictive for outcome in all these BC cohorts (SI Appendix, Table
S7 and Figs. S11–S17).

Comparison of the Integrated miRNA/mRNA Signature with Other
Prognostic BC Signatures. We compared the prognostic value of
the integrated miRNA/mRNA signature to that of different gene
sets used for risk stratification of BC: the genes used in the
Oncotype DX (23), those used for the Genomic Grade Index
(GGI) (24), for MammaPrint (17, 25), the 76-gene (22), the
Invasiveness gene (IGS) (26), the 95-gene Japanese (27), and the

Fig. 2. mRNAs and miRNAs associated with prognosis in different clinical
and molecular subclasses of invasive ductal carcinoma (TCGA cohort). The
matrix visualizes the significant HRs for the 30 mRNAs and seven miRNAs in
the TCGA IDC cohort (listed in SI Appendix, Table S5). The HRs for expression
with significant univariate Cox regression (P < 0.05) are displayed on a log2

scale. Red squares indicate HRs >1 and blue squares indicate HRs <1.
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Fig. 3. Kaplan–Meier and ROC curves for the integrated miRNA/mRNA signature (TCGA IDC cohort). (A) The cross-validated Kaplan–Meier curves for IDC risk
groups obtained from the TCGA cohort (n = 466), using the integrated signature (“RNA model”). The permutation P value of the log-rank test between risk
groups (P < 0.001) was based on 1,000 permutations. (B) The ROC curve had an AUC of 0.74 (P < 0.001). The permutation P value was computed for testing the
null hypothesis (AUC = 0.5) using 1,000 permutations.

Volinia and Croce PNAS | April 30, 2013 | vol. 110 | no. 18 | 7415

M
ED

IC
A
L
SC

IE
N
CE

S

http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1304977110/-/DCSupplemental/sapp.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1304977110/-/DCSupplemental/sapp.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1304977110/-/DCSupplemental/sapp.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1304977110/-/DCSupplemental/sapp.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1304977110/-/DCSupplemental/sapp.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1304977110/-/DCSupplemental/sapp.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1304977110/-/DCSupplemental/sapp.pdf


10-miRNA signatures (12). We calculated the AUC of the ROC
curves for each possible signature/cohort combination (SI Ap-
pendix, Table S7). The 10-miRNA signature was predictive of
DRFS (12) in the UK dataset, where it was determined (AUC =
0.76, P < 0.001), but not in the TCGA cohort. In the NKI,
Hatzis, and TNBC cohorts, all signatures tested were successful
with similar performances. The gene signature used in Oncotype
DX performed very well in all of the cohorts, with the notable
exception of the TCGA cohort, where it was not significant
(AUC = 0.58, P = 0.12). The GGI, IGS, and 95-gene signatures
had significant AUC in the TCGA cohort. There were only two
signatures with significant ROC tests in early stage tumors from
the TCGA cohort: the integrated miRNA/mRNA signature
(AUC = 0.77, P < 0.001) and the 70-gene NKI signature used in
MammaPrint (AUC = 0.66, P = 0.026).

Discussion
Invasive ductal carcinoma is characterized by different molecular
subtypes (9) that are thought to impact on the cellular pathways
related to clinical outcome (10). miRNAs are modulators of
the cellular processes responsible for cancer that are encoded by
mRNAs (28), the expression of which in turn is at least partially
regulated by DNA methylation. Because of these relations, we
performed an integrated survival analysis on a large breast cancer
cohort of 466 patients, using genome-wide data for miRNA/
mRNA expression and DNAmethylation. The resulting integrated
prognostic signature, composed of seven miRNA and 30 mRNA
genes, was very compact, and it was successfully validated on eight
breast cancer cohorts, for a total of 2,399 additional patients.
Some points should be considered. First, as these cohorts were

not treatment-naive, the identified RNAs could not only be
prognostic but also predictive of response to treatment. Second,
the integration of miRNA and mRNA components augmented
the prognostic strength of the risk predictor. Third, we used DNA
methylation as a criterion to confirm the association between
mRNA expression and OS. Fourth, we identified biomarkers that
were consistent across nine different and heterogeneous breast
cancer cohorts.
Among the few known cancer genes in the prognostic signature,

PIK3CAwas one of the most prominent. PIK3CA is an example of
oncogene addiction (29), including when it is not mutated (30),
and thus could be considered as a primary target for therapy. Both
PIK3CA expression and the somatic mutations in its pathway

(PIK3CA/AKT1/PTEN axis) were retained in the final multivar-
iate model, proving to be important and independent cofactors
in prognosis. The prognostic value of the integrated signature was
the highest in early stage I and II breast cancers, making this a
potentially valuable biomarker signature in the clinical practice.

Methods
Patient Characteristics and Integrated Profiles in the TCGA IDC Cohort. The
miRNA/mRNA tumor profiles (for a total of 19,262 mRNAs and 581 miRNAs)
were studied in 466 primary IDCs from female patients with no pretreatment
(TCGA IDC cohort) (8). Only patients with fully characterized (mRNA and
miRNA profiles) tumors and with at least 1 mo of OS were included in the
study. Extended demographics for these patients, characterized by the TCGA
consortium (8), are provided in SI Appendix, Table S1. Raw RNA, methylated
DNA (meDNA), somatic mutations, and clinical data were obtained from the
TCGA data portal. Detailed methods for the integration of miRNA, mRNA,
and meDNA data are reported in SI Appendix.

Survival Analysis. Clinical covariates for the IDC tumors and patients are
summarized in SI Appendix, Table S1. The association between continuous
RNA expression and OS was carried out using univariate Cox regression. The
hazard ratio was the ratio of hazards for a twofold change in the gene
expression level. It was equal to exp(b) where b was the Cox regression
coefficient. To compute the Kaplan–Meier distribution, the group with gene
overexpression was assigned to samples with expression larger than median
expression. The test of equality for survival distributions was performed
using the log-rank method (Mantel–Cox), except when explicitly stated. For
the multivariate analysis, the Cox proportional hazard model was applied,
and a backward stepwise selection procedure (Wald) was used to identify
genes or covariates with independent prognostic value. All reported P values
were two-sided. All analyses were performed using SPSS (version 21) or
R/BioConductor (version 2.10).

Definition of Risk Predictor and ROC Curve. The gene weights for the linear
RNA risk predictor were computed using the supervised principal component
method (16). The Kaplan–Meier survival curves for the cases predicted to have
low or high risks (median cut) were generated using 10-fold cross-validation
(31). The statistical significance of the cross-validated Kaplan–Meier curves
was determined by repeating the process 1,000 times on random permuta-
tions of the survival data. The P value tested the null hypothesis that there
was no association between expression data and survival. The ability of the
models to predict outcome was assessed by comparing the AUC of the re-
spective ROC curves. Because in all of the survival analyses fewer events
occurred after 60 mo (SI Appendix, Figs. S1–S3), we compared the ability of
models to predict outcome at, and around, this time point. The ROC curve
plots the true-positive vs. false-positive predictions; thus, higher AUC indi-
cates better model performance (with AUC = 0.5 indicating random
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Fig. 4. Kaplan–Meier and ROC curves for the integrated miRNA/mRNA signature in the UK validation cohort. (A) The cross-validated Kaplan–Meier curves for
breast cancer risk groups obtained from the validation cohort (n = 207), using the prognostic integrated signature. The permutation P value of the log-rank
test between risk groups (P = 0.007) was based on 1,000 permutations. (B) The ROC curve had an AUC of 0.65 (P = 0.004). The permutation P value was
computed for testing the null hypothesis (AUC = 0.5) using 1,000 permutations.
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performance). RNA risk scores and groups (high or low risk defined above)
were based on weightings in the linear risk predictor.

Independent Cohorts for the Validation of the miRNA/mRNA Prognostic
Signature. To validate the prognostic signature obtained from the TCGA
IDC cohort, we used genome-wide expression data from eight series of
primary breast cancer patients for a total of 2,399 patients. In the UK cohort
(12) (n = 207), 74% of the patients had IDC, whereas the remaining breast
cancers were mostly lobular (12%) or mixed (7%). The clinical endpoints for
the UK cohort toward DRFS were distant metastasis detection or death, or
the date of last assessment without any such event (censored observation).
The expression of miRNAs [Gene Expression Omnibus (GEO) dataset GSE22216]
was measured using Illumina miRNA v.1 bead-chip and that of mRNAs
(GSE22219) using Illumina Human RefSeq-8 bead-chip. The assays measured
24,332 mRNAs and 488 miRNAs. Quantile normalization was used for both
arrays (12) and for the integrated profile. Validation of the mRNA prog-
nostic component was performed on seven additional breast cancer profiles.
The NKI cohort was composed of a series of 295 consecutive patients with
primary BC. All patients had stage I or II BC and were younger than 53 y old;
151 had lymph-node–negative disease and 144 had lymph-node–positive
disease (17). The cancerBreastNKI package from Bioconductor was used to
retrieve gene expression data and clinical covariates for the NKI cohort. The
Wang cohort (GEO dataset GSE2034) was composed of 180 lymph-node–
negative relapse-free patients and 106 lymph-node–negative patients that
developed a distant metastasis (22). The Hatzis cohort (GSE25066) included

310 newly diagnosed patients from a prospective multicenter study
conducted at the M. D. Anderson Cancer Center and 198 validation patients
(99% clinical stage II–III) who received sequential taxane and anthracycline
chemotherapy (18). The Kao cohort (GSE20685) was used to identify mo-
lecular and clinical subtypes of BC through gene expression profiles of 327
samples (19). The Bos cohort was used to study brain metastasis, one of the
most feared complications of BC (GSE29271; n = 195) (21) The TNBC cohort
(GSE31519) was assembled from 383 German patients to characterize triple-
negative breast cancer (20). The TRANSBIG cohort (GSE7390) was composed
of 198 Belgian patients with lymph-node–negative disease (32). DRFS was
the clinical endpoint for all of the validation cohorts, with the exceptions of
the NKI, Kao, and TRANSBIG cohorts, where OS was used. The clinical data
for the validation cohorts are listed in Dataset S4. The eight validation
cohorts were also used for the comparison of the miRNA/mRNA integrated
signature to other prognostic BC signatures.
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