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Identification of genes that control root system architecture in crop
plants requires innovations that enable high-throughput and accu-
rate measurements of root system architecture through time. We
demonstrate the ability of a semiautomated 3D in vivo imaging and
digital phenotyping pipeline to interrogate the quantitative genetic
basis of root system growth in a rice biparental mapping population,
Bala × Azucena. We phenotyped >1,400 3D root models and
>57,000 2D images for a suite of 25 traits that quantified the distri-
bution, shape, extent of exploration, and the intrinsic size of root
networks at days 12, 14, and 16 of growth in a gellan gum medium.
From these data we identified 89 quantitative trait loci, some of
which correspond to those found previously in soil-grown plants,
and provide evidence for genetic tradeoffs in root growth alloca-
tions, such as between the extent and thoroughness of exploration.
We also developed a multivariate method for generating and map-
ping central root architecture phenotypes and used it to identify five
major quantitative trait loci (r2 = 24–37%), two of which were not
identified by our univariate analysis. Our imaging and analytical
platform provides a means to identify genes with high potential
for improving root traits and agronomic qualities of crops.
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Root systems are high-value targets for crop improvement
because of their potential to boost or stabilize yields in sa-

line, dry, and acid soils, improve disease resistance, and reduce
the need for unsustainable fertilizers (1–7). Root system archi-
tecture (RSA) describes the spatial organization of root systems,
which is critical for root function in challenging environments
(1–10). Modern genomics could allow us to leverage both natural
and engineered variation to breed more efficient crops, but the
lack of parallel advances in plant phenomics is widely considered
to be a primary hindrance to developing “next-generation” ag-
riculture (3, 11, 12). Root imaging and analysis have been par-
ticularly intractable: Decades of phenotyping efforts have failed
to identify genes controlling quantitative RSA traits in crop
species. Several factors confound RSA gene identification, in-
cluding polygenic inheritance of root traits, soil opacity, and
a complex 3D morphology that can be influenced heavily by the
environment. Most phenotyping efforts have relied on small
numbers of basic measurements to extrapolate system-wide traits.
For example, given the length and mass of a few sample roots
and the excavated root system mass, one can estimate the total
root length, volume, and average root width of the entire root
system (13, 14). Other common measurements involve measur-
ing the root surface exposed on a soil core or pressed against
a transparent surface to estimate root coverage at a certain soil
horizon. In these cases, the choices of sample roots and phe-
notyping standards, the size and shape of the container, and the

limitations of 2D descriptions of 3D structure are sources of bias.
Methods to image the unimpeded growth of entire root systems
in 3D could circumvent these problems (15–19). Live 3D imaging
can capture complete spatial and developmental aspects of
RSA and results in value-added digital data that can be pheno-
typed repeatedly for any number of traits. To date, such efforts
have been limited by a throughput insufficient for quantitative
genetic studies.
Here we describe the use of a 3D imaging and phenotyping

system to reveal the genetic basis of root architecture. The in-
tegrated system leverages prior advances in the areas of hard-
ware, imaging, software, and analysis (17, 20–22). We combined
these methods into a semiautomated pipeline to reconstruct and
phenotype a well-studied rice mapping population on days 12,
14, and 16 after planting in gellan gum medium. We identified
89 quantitative trait loci (QTLs) at 13 clusters among 25 RSA
traits. Several clusters correspond to QTLs previously identified
under field and greenhouse conditions; others do not. Apparent
tradeoffs at some clusters are consistent with genetic limita-
tions on “ideal” RSA phenotypes. We also used a multivariate-
composite QTL approach to extract central RSA phenotypes
and identify five large effect QTLs (r2 = 24–37%) that control
multiple root traits.

Significance

Improving the efficiency of root systems should result in crop
varieties with better yields, requiring fewer chemical inputs,
and that can grow in harsher environments. Little is known
about the genetic factors that condition root growth because
of roots’ complex shapes, the opacity of soil, and environ-
mental influences. We designed a 3D root imaging and analysis
platform and used it to identify regions of the rice genome that
control several different aspects of root system growth. The
results of this study should inform future efforts to enhance
root architecture for agricultural benefit.
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Results
Development of a Semiautomated Root Imaging and Analysis Pipeline.
To achieve the throughput necessary to phenotype a mapping
population digitally in 3D, we combined three previously pub-
lished computational advances into a semiautomated pipeline.
The three methods we combined are (i) a method to use 2D ro-
tational image series to estimate root traits (20); (ii) GiA Roots,
a standalone, graphical user interface-based, freely distributed
software with enhanced semiautomated image processing and 2D
analysis features (22); and (iii) an implementation of an algorithm
that generates 3D reconstructions from rotational image series
taken in optical correction tanks (17) as described in Zheng et al.
(21). For this study, we constructed a platform with dual imaging
setups on a massive table designed to reduce vibrations and
maintain the precise calibration necessary for fully automated 3D
reconstructions (the basic design is described in ref. 23). We also
incorporated a barcoded naming scheme and scanners to enable
seamless entry into the computational portion of our pipeline.
This part tied together the image processing steps, recon-
structions, trait estimations, and quality control steps into a sem-
iautomated series of batch processes, centered on the command
line version of GiA Roots.
The pipeline provides physically scaled estimates of 25 RSA

traits as output for each sample (Table S1). These traits were
designed to describe root network geometries in four ways: (i) the
distribution of roots relative to one another and to the soil hori-
zon, (ii) the overall shape of the network, (iii) the extent of that
shape, and (iv) the size of the intrinsic network, including
approximations of the amount of root–soil interface as well as
biomass (Table S1). These traits distinguish features of root sys-
tems and complement one another in important ways. For ex-
ample, a large convex hull value indicates a greater extent of
exploration of the soil environment. By also quantifying the rela-
tive shape of the convex hull using the width:depth ratio (WDR),
we can know if the roots are exploring relatively shallow or deep
soil horizons. When we include the size of the intrinsic network
(for example the surface area), we get an additional measure of
how the root biomass is distributed within the network shape, i.e.,
are the roots ranging widely and deeply with large gaps between
them (low solidity), or are they growing densely together and
thoroughly exploring the space (high solidity).
It is important to note that, to describe and differentiate com-

plex morphologies such as root systems, 3D data must be pro-
jected into a lower-dimensional “trait space.” Some traits may
describe similar aspects of root shape, whereas others may be
mathematically interrelated. We do not yet know which traits
represent elemental aspects of root growth [known as “phenes”
(24)]. Although simpler shapes such as Arabidopsis seeds have
been narrowed down to just few phenes (25), our current limited
understanding of the genetic, spatial, and functional aspects of
root architecture precludes us from knowing the appropriate
number of phenes to expect for RSA.

Quantitative Comparisons with a Ground Truth Model Validate
Phenotyping Methods. Of the 25 RSA traits, 18 were estimates
generated from the average values of the 2D projections in the
rotational image series (“2D traits”) using the GiA Roots pro-
gram, and seven were estimated directly from the 3D recon-
structions themselves (“3D traits”) using a set of algorithms
developed within the pipeline (Table S1). We previously showed
that some 2D RSA estimates could represent a simple 3D root-
object accurately using rotational image series (20). However,
some 3D shapes, such as the volume of nonconvex shapes, cannot
be estimated accurately from 2D projections, particularly from
complex root systems. An important piece of the root phenotyping
puzzle will be to determine which traits can be measured accu-
rately using estimates derived from 2D data and which require 3D

representations (e.g., refs. 17, 26, and 27). To validate the accuracy
of our 2D and 3D trait estimations and reconstruction method, we
developed a ground truth model. This model was designed in silico
to approximate a simple 3D root network for which the precise
parameters are known. A physical model then was printed in 3D
from resin, imaged, and reconstructed (Fig. 1 A–C; and Methods).
The in silico and resin models were highly similar, although the 3D
reconstruction of the resin model had a less regular, more flat-
tened, and slightly larger surface area than the in silicomodel (Fig.
1 E–G). To quantify differences between them, we phenotyped the
resin model and compared 2D and 3D trait estimations with those
of the in silico model (Fig. 1D). Several important traits, such as
total root length, specific root length, and surface area, were
modeled with remarkable accuracy using 2D estimates (for our
relatively simple model), whereas estimates of root branching
frequency were superior in 3D (Fig. 1D). In general, occlusions in
2D images caused by crossing roots will increase with the com-
plexity of the root system and consequently will reduce the accu-
racy of many 2D estimates, particularly for traits in the network
distribution category. We show that 3D estimates can avoid this
type of bias but can be biased for other parameters, such as surface
area, because the voxelization of image reconstructions imperfectly
reflects the smooth surface of a root. Such problems point toward
the need for improved algorithms for estimating root traits in 3D
(Fig. 1D). Our validations suggest that with our present system,
a combination of 2D and 3D traits is the most appropriate ap-
proach to identify the genes controlling RSA.

Comprehensive Digital Phenotyping of a Recombinant Inbred Line
Population Reveals Genetic Correlations and Growth Patterns of
RSA in Rice. We applied our integrated phenotyping pipeline to
an established rice F6 recombinant inbred line (RIL) population
(28). This population, derived from the parental cross Bala ×
Azucena, has been used to identify a number of root-trait QTLs
under conditions ranging from drought stress in the field to vari-
ous stresses in the greenhouse or under hydroponic conditions and
in plants ranging in age from 24 d to maturity (summarized in ref.
29). Thus, RSA traits and QTLs mapped using our 3D system
potentially could be correlated with RSA QTLs for established
field traits under various stresses.
Parental and 171 RILs were imaged at days 12, 14, and 16

postplanting, and ∼1,400 3D models and 2D image sets repre-
senting 488 individuals were phenotyped using our semi-
automated procedure (Methods, Fig. 2 A–D, and Movies S1 and
S2). User involvement was restricted to initial setup; all com-
putations of traits were completely automated. Average RIL
values fell between the parents for most traits (Fig. 2E), and root
distribution values corresponded to values reported in previous
studies of Bala and Azucena in sand and soil (SI Text) (28, 30,
31). In general, Azucena root systems were larger than Bala,
both in the extent to which they explored the growth substrate
(depth and convex hull) and in their network size parameters
(surface area, volume, total root length) (Fig. 2E). In contrast,
the Bala architecture is more solid, indicating a more thorough
coverage of a limited volume of growth substrate.
In our Bala ×Azucena RIL population, the correlation between

two traits can be estimated across all individuals. This phenotypic
correlation is the result of correlated influences of environmental
factors acting on each plant as well as correlated genetic influences
quantified by the correlation of genetic means between traits. In
RIL populations, this genetic correlation results from the pleio-
tropic action of genes on several traits as well as linkage disequi-
librium among tightly linked polymorphic loci (32). To provide
insight into the genetic structure underlying RSA in the Bala ×
Azucena mapping population, we generated a correlation matrix
from the genetic means of each RIL on day 16 for all 25 traits
(Methods and Dataset S1), which we used in a principal compo-
nent analysis (PCA) (Fig. 3, Fig. S1, and Dataset S1). Two com-
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ponents comprise the majority of genetic trait variation in this
population (63%), and no other component comprises more than
13.4%, indicating substantial genetic correlations among these
traits. There remains the potential to identify drivers of root
growth by comparing the changing correlations among a set of
traits for different genotypes, time points, and environmental
conditions. In this population, we found that many of the traits
with both 2D and 3D analogs had strong correlations, such as
network surface area (correlation coefficient = 0.85, P value <.
0001), supporting the fact that these are similar measures. For
the solidity 2D ratio (network pixel area 2D/network convex
area 2D), the correlation between pixel area (the numerator)
and solidity was moderately negative (−0.32, P < 0.0001), in-
dicating, counter intuitively, that increases in root surface area
could result in reduced solidities. These data and the strong
correlation between pixel area and convex area (0.84, P <
0.0001) suggest that new growth tended to be allocated to
expanding the volume of soil exploration rather than filling in
the existing volume. The two main components of variation
derived by the PCA illustrate many of these complex relation-
ships (Fig. 3). Thus, the genetic structure underlying RSA
traits, including whether pleiotropy or tightly linked genes drive
various aspects of root growth, cannot be inferred directly from
their mathematical relationships but instead will require the
identification of the causal genetic elements.
Our noninvasive approach also allowed us to quantify the rates

of change for each trait over the 4-d period between days 12 and
16 (Fig. 4 and Table S2). Most plants grew rapidly during this

time; for example, the average rate of root elongation for the
RIL population was 42.9 mm/d (corresponding to a 8.6%/d in-
crease) (Fig. 4A and Table S2). Remarkably, Bala maintained
a consistent 3D solidity (−2.5%), despite a 38.7% increase in
convex volume (average daily change = 9.7%), whereas the
solidity value for Azucena dropped precipitously (−15.3%) as its
convex volume increased by 57.3% (average daily change =
14.3%) (Fig. 4B). The RILs also appeared constrained in their
global growth patterns, because 3D solidity changed only 0.2%
over 4 d, despite a 47.5% increase in convex hull volume. Sim-
ilarly, our shape metrics were consistent over time for Bala
[−2.2% WDR and −1.8% ellipse aspect ratio (EAR)] and the
RILs (−1.2% WDR and −2.7% EAR), whereas Azucena grew
predominantly along vertically oriented axes resulting in sharp
decreases for WDR (−13.3%) and EAR (−17.0%) (Fig. 4C).
These patterns highlight the juxtaposition between an even,
compact form of growth versus one that is rangy and deep.
Whether these trends are emergent properties of local growth
patterns or in part are controlled globally remains an important
open question that we can begin to answer by mapping RSA over
time and by developing traits that describe specific growth be-
havior (33, 34).

Genetic Architecture and Tradeoffs in Root System Growth Control
Are Revealed by QTL Analysis of Multiple Univariate Traits. Using
QTL Cartographer (35), we identified 89 univariate QTLs across
all days of imaging (Methods, Fig. 5, and Dataset S2). These
QTLs covered a range of estimated effect sizes with 95% of

Average Root Width (mm) 3.32 3.29
Total Root Length (mm) 330.04 333.47
Specific Root Length (mm) 0.11 0.10
Maximum Network Width (mm) 78.64 72.08
Maximum Network Depth (mm) 59.90 65.65
Bushiness 1.75 1.87 1.75 1.75
Median Number Roots 4.00 3.10 4.00 4.00
Maximum Number Roots 7.00 5.60 7.00 7.00
Network Volume (mm^3) 3095.76 3239.37 3012.39 3414.39
Network Surface Area (mm^2) 3449.82 3427.87 5360.80 5798.80
Convex Hull Volume (mm^3)
 (area of projection in mm^2 for 2D estimate) 2478.83 93759.35 99591.98
Solidity 0.36 0.03 0.03
 (solidity of projection for 2D estimate)
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Fig. 1. (A–C) Ground truth validations of 2D and 3D trait estimations. Images of a digital model (A), a physical resin model (B), and a reconstructed physical model
(C). (D) Comparisons of 2D (column 3) and 3D (column 5) trait values from the imaged and reconstructed physical model with hand measurements (column 2) made
on the physical model and with estimates of the in silico digital model used to print the physical model (column 4). Note that the 2D convex hull and solidity
values are based on 3D projections from rotational image series and thus are under- and overestimated, respectively. (E–G) Horizontal 2D slices of digital (E) or
reconstructed (G) models, color-coded by 50-voxel intervals shown in F, illustrate slight irregularities in 3D model reconstruction. (Scale bar in B: 10 mm.)
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QTLs ranging between 6.9% and 14.2% of genetic variation
explained and typically colocalized (Fig. 5). We use the term
“clusters” to describe QTLs that mapped to the same or proximal
markers where there was not a statistically significant reason to
separate them [i.e., their 2-logarithm of odds (LOD) intervals
overlapped]. At many clusters, traits for days 12, 14, and 16
stacked together, emphasizing the ability of our approach to
detect persistent QTLs despite the rapid growth we observed
(Fig. 3). Additionally, several 2D and 3D QTLs for analogous
traits colocalized, further validating the accuracy of our com-
bined phenotyping approach (Fig. 5 and Dataset S2).
A reanalysis of the large number of QTL results previously

generated from this mapping population by Khowaja et al. (29)
allowed us to make direct comparisons between our gel-based
results and more complex growth environments. Univariate QTL
clusters on chromosomes 1, 2, 6, 7, and 9 from our study aligned
with hotspots identified by Khowaja et al. for root traits and
drought tolerance (Fig. 6), including a QTL at marker C601 that
has been used in a breeding program for root improvement (36).

These correlations provide strong evidence that RSA QTLs iden-
tified in young plants growing in gellan gum can be relevant to
agriculture. We also identified a number of clusters (e.g., #1, 2, 5,
10, 13; Fig. 6) containing QTLs for global traits, such as solidity,
length distribution, and branching numbers, that by previous phe-
notyping approaches were either poorly estimated or not possible
to measure. Our data demonstrate that a 3D imaging and digital
phenotyping approach has the potential to identify genes control-
ling both known and previously unidentified RSA phenotypes.
Examination of QTL clusters revealed the genetic basis of

relationships among root traits in unprecedented detail (Fig. 6).
For example, length distribution and total root length QTLs
were found together in clusters #4 and #5 although their trait
values have virtually no correlations and are not intended to
describe similar features of RSA (0.10, P < 0.0001). Conversely,
WDR and EAR are similar shape descriptors and are almost
completely correspondent (0.97, P < 0.0001), but QTLs for these
traits colocalize at only three of five loci. These data highlight the
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Fig. 2. RSA of rice RILs and parental lines grown in nutrient-enriched gellan gum. Images are from day 16. (A–D) Bala (A) and Azucena (C) raw 2D rotational
series images and respective 3D reconstructions (B and D). Movies S1 and S2 convey 3D views. (E) Mean minimum–maximum normalized values of RSA traits in
parental and recombinant inbred lines on day 16 are shown. Error bars indicate 95% confidence intervals. (Scale bars in A and C: 10 mm.)
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fundamental difficulty in identifying the key elements of root
architecture a priori.
Many of our 25 root traits describe the allocation of biomass in

terms of network distribution, extent, and shape, but traits in the

intrinsic network size category also can approximate total bio-
mass (e.g., root system volume) (Table S1). For example, a lone
cluster (#3) of surface area and root length QTLs suggests that
increased biomass could be bred independently of the allocation
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traits we measured. In contrast, QTLs at cluster #1 controlled
biomass allocation as a function of root numbers and distribution
but not the overall size of RSA (Fig. 6). Genetic correlations, in
this case for biomass allocation traits, may result in genetic
tradeoffs when two important phenotypes are negatively corre-
lated because of pleiotropy or tight linkage (37). For example, at
cluster #11, six solidity QTLs at which Bala alleles had larger
effects colocalized with a convex hull QTL at which the Azucena
allele had the larger effect. However, we found no evidence for
tightly linked network-size QTLs, suggesting that this locus had
no effect on overall root biomass and demonstrating a root al-
location tradeoff between thoroughness versus extent of explo-
ration. Comparison of trait covariation in the RIL population
confirmed a strong negative genetic correlation (−0.73, P <
0.001) between solidity and convex hull at this locus (Fig. 7).
Similar evidence for allocation tradeoffs was observed at clusters

#5, 6, 7, and 8 for rooting depth, distribution, and shape (Fig. 6).
These observations highlight additional obstacles to breeding
functionally advantageous RSAs for different soil and moisture
conditions. Nonetheless, the large number of QTLs we identified
suggests that in large part, targeted breeding for multiple traits
(such as a large and highly branched RSA) can reassemble complex
trait variation in desired combinations to serve agronomic goals.

Multivariate QTL Analysis Identifies Regions Central to RSA Growth
Control.Our PCA (Fig. 3) and examination of QTL clusters (Fig.
6) revealed a complex architecture controlling the root traits
identified by our phenotyping algorithms. To identify regions in
the genome that have the greatest influence on RSA, we took
a multivariate approach, following the multivariate least squares
interval mapping (MLSIM) procedure (38). MLSIM can probe
the multivariate space of any number of traits and identify
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Fig. 5. Univariate QTLs controlling RSA in a rice Bala × Azucena F6 mapping population. Linkage groups (chromosomes) generated by the Haldane function
with QTL hits are shown with centimorgan positions on the left and the marker name on the right. The width of each box represents 1-LOD range, and
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on the overlap of 2-LOD ranges with intensities scaled to the entire genome. Full univariate QTL results are reported in Dataset S2.
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pleiotropic or linked QTLs causing correlations among multiple
traits. This approach applies multivariate analysis of variance
(MANOVA) at many points across the linkage map, with
permutation tests to infer genome-wide levels of statistical sig-
nificance for all traits simultaneously, controlling for multiple
tests. This permutation procedure does not assume multivariate
normality or other parametric trait distributions. In addition,
pairwise graphical analyses among traits in this data set showed
little evidence of nonlinearity among RIL genotype means.
MLSIM was focused on a subset of nine 2D traits that were

spread across the two major principal components of growth and
also represented each of the four biological categories (Table
S1): depth, maximum width, convex area, WDR, EAR, length
distribution, solidity, maximum number of roots, and average
root width. These traits correspond to established field traits with
QTLs mapped in previous studies (depth, root width, root
numbers) and previously unmapped traits (solidity, convex area,
WDR, and EAR).
We ran four separate multivariate analyses, examining multi-

variate QTLs across the time course of our experiment or re-
spectively for day 12, day 14, or day 16 (Methods and Dataset S3).
To examine possible epistatic interactions among QTLs, we used
MANOVA to test for pairwise interactions among all multivar-
iate QTLs identified by MLSIM. After correcting for multiple
tests, no significant epistatic interactions were detected. We fo-
cused on five multivariate QTLs that were significant across all
days, because of their consistency during this phase of root de-
velopment (Fig. 6). The most significant (P < 2.88E-05) multi-
variate QTL at C39 colocalized with the cluster of solidity QTLs
at cluster #11 as well as with previously mapped root trait and
drought hotspots for plants grown in soil substrates. The third-
(a18438; P < 6.89E-04) and fourth- (C601; P < 2.38E-03) ranked

QTLs also hit major clusters common to our univariate study and
the meta-analysis (29). Surprisingly the second- (a12451; P <
3.46E-04) and fifth- (C734; P < 3.71E-03) ranked QTLs identi-
fied regions on chromosomes 2 and 4, respectively, which had
no previous univariate QTL support (even at a relaxed alpha =
0.1). Thus, our multivariate approach can identify highly in-
fluential QTLs that are not detected by single-trait analyses. The
combined allelic effects of all five multivariate QTLs on solidity
and convex volume further strengthened the evidence for a genetic
tradeoff between these traits (solid and hollow boxes, Fig. 7).
Most importantly, we were able to identify genomic regions that
control phenotypes at the intersection of multiple root traits,
providing a path to genes central to the control of RSA.

Composite Root Architecture Phenotypes Derived from Multivariate
QTLs Can Map Large-Effect QTLs Central to RSA Growth Control. The
difficulty in visualizing and interpreting the phenotype and effect
size of each multivariate QTL potentially complicates the fine
mapping and cloning of genes controlling them. Therefore,
we extracted the “composite trait” values from each multivariate
QTL using discriminant function analysis (DFA), projected the
multivariate phenotypes onto these axes of greatest divergence,
and reanalyzed these composite traits by CIM (Methods, Fig. 8,
and Table S3). For each multivariate QTL, we used the most
significant marker to separate RILs into the two alternative
homozygous genotypes. The composite trait represents the axis
(combination of phenotypes) where the QTL has strongest
effects in the multivariate trait space. Because most traits result
from complex combinations of many underlying biological
mechanisms (each controlling another trait), the use of DFA
composite traits allows us to identify the QTL’s biologically
meaningful effects, which we were not able to identify a priori
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Fig. 6. Genetic landscape of RSA QTL. Blue (Bala) or red
(Azucena) color indicates the parent contributing the positive
allele. Univariate QTLs on multiple days for the same trait are
coded by hue. Columns indicated by darker gray lines separate
traits by measurement type. Root trait hotspots identified by
Khowaja et al. (29) that colocalize with those identified in this
study are shown in gray. Multivariate QTLs are shown in black
with significance rank (full results are given in Dataset S3), and
the corresponding DFA-derived composite QTLs are shown
near them in green, with percentage indicating phenotypic
effect size (full results are given in Fig. 8). The composite QTL
on chromosome 6 at MRG6488 corresponds to multivariate
rank #2 at a18438, and the composite QTL on chromosome 7 at
L09 corresponds to multivariate rank #1 at C39. For clarity, only
markers associated with QTLs are shown. Clusters are grouped
by linearity and proximity on the genetic map.
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(39, 40). Major effect QTLs (r2 = 24–37%, corresponding
to differences between homozygotes of 0.68–0.77 genetic SD
units) for each composite trait localized to their corresponding
multivariate positions as well as to two additional loci (Figs. 6
and 8). Each composite trait was composed of a unique combi-

nation of univariate traits that reflect the effects of the un-
derlying gene(s) on RSA. For example, the Bala genotype at the
C734 QTL controls an expansive but shallow RSA, whereas the
Bala genotype at C601 controls an investment in deep, densely
arrayed roots (Fig. 8). Thus, we have developed a general
method for extracting composite phenotypes and mapping large-
effect QTLs from suites of single traits that alone have small
effects. This pattern of large-effect composite traits and small-
effect univariate traits is intuitively reasonable, because MAN-
OVA and DFA find the direction with greatest genetic di-
vergence among many correlated traits, whereas a QTL effect on
a given trait is an incomplete picture of many pleiotropic aspects
of development. This approach appears particularly useful, and
may be necessary, to identify the functionally important genes
controlling complex morphological traits such as RSA.

Discussion
Despite the availability of vast genetic resources, little is known
about the genes that contribute to RSA. This knowledge gap
exists primarily because of the difficulties in imaging root systems
and in identifying relevant quantitative phenotypes from com-
plex topologies (3, 4, 41, 42). Computer simulations supported by
empirical field work can suggest ideal root architectures, or
ideotypes, that are best suited to a particular environment (10,
43–46). Moreover, root allocation tradeoffs may limit certain
RSA combinations, such as between root growth in the topsoil
versus deep soil horizons (3, 10, 47, 48), and these tradeoffs may
have a genetic basis. Thus, to understand the full architectural
possibilities for crop improvement, it is imperative to identify the
precise nucleotide polymorphisms that underlie quantitative
differences in central RSA traits (49).
We used 3D imaging and digital phenotyping to detect regions

of the rice genome that control the growth of RSA. Comparisons
of QTL clusters suggest that alleles at several loci influence
a tradeoff continuum between extent and thoroughness of root
system exploration, which could limit certain architectural
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hull volume (x-axis). Logarithm-transformed genetic means of each RIL family
with either the Azucena (green circles) or Bala allele (magenta circles) at
marker C39 (chromosome 7). Gray circles indicate missing marker data. Allele
means for Azucena (“A”) or Bala (“B”’) illustrate a genetic tradeoff between
these phenotypes. Aggregate maximum allele values at all five multivariate
QTL markers for solidity (filled square) or convex hull (open square) are shown.
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Fig. 8. Multivariate phenotypes and composite QTL analysis. (A) DFA was used to extract the relative contributions of each univariate trait to each multi-
variate QTL. (B) These data were used to map projected composite phenotypes as univariate QTLs. ch, chromosome; m, marker number on that chromosome.
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combinations. However, they also suggest that quantitative var-
iation in root biomass potentially could be exploited for larger
RSA. Our multivariate mapping approach identified five regions
of the rice genome that had the most significant impacts on many
RSA traits during development. Three of these regions were
supported by univariate QTLs, but we also found two other
major loci. We showed that all five multivariate QTLs had large
effects when mapped as composite traits, making them prime
targets for cloning root architecture genes in a crop species.
Although it is possible that multiple genes with aggregate effects
underlie the multivariate QTLs, they instead may represent
single genes controlling central RSA growth processes. We cur-
rently are accelerating the gene identification process by com-
bining our imaging and phenotyping system with next-generation
sequencing approaches (50, 51).
3D imaging allowed us to interrogate root systems at a global

level and thus to expand our analyses beyond what could be tra-
ditionally measured by hand or eye. Although 2D systems po-
tentially are cheaper and more accessible to the wider scientific
community, mapping genes controlling complex topologies over
time may require the precision afforded by 3D imaging. For ex-
ample, the enormous potential of genomic selection to revolu-
tionize agriculture is grounded in accurate phenotypic predictions
tailored to specific environments (52). The current push toward in
situ 3D phenotyping (15–19) ultimately will provide a compre-
hensive view of RSA, because we are able to follow the growth
and development of each root through time and space. Further-
more, phenotyping from 3D models will allow direct comparisons
of gellan gum and hydroponic data with data from emerging im-
aging technologies such as X-ray computed tomography and PET-
MRI (15, 16, 19, 53), which currently allow analysis of roots in
more natural environments at low throughput. Our results also
highlight the importance of empirically testing all phenotyping
methods to determine their inherent biases (e.g., refs. 17, 27, and
54). The most successful applications of RSA research to agri-
culture undoubtedly will integrate knowledge gained from a num-
ber of complementary approaches (12, 27, 41, 55–57).
Phenotypes and genes identified by any research endeavor

eventually will need field-testing. Because of the strong influences
of environmental factors on root growth, we see controlled, ho-
mogenous conditions as an advantage to identifying genes un-
derlying RSA. Our results support this view, because many
univariate and multivariate QTLs that we identified colocalized
with previously identified root trait and drought resistance hot-
spots (29). Incorporating the time domain into future analyses will
be another important component of a comprehensive approach to
dissecting the genetic basis of RSA. The average RIL root system
increased by >42% during 4 d of growth, and many other traits
changed at a similar rate (Fig. 4). We found it notable that during
this period the solidity and WDRs remained nearly constant in the
parental line Bala but dropped dramatically in the parental line
Azucena. Genes controlling such architectural trends could be
mapped using functions derived from time-course phenotyping
data (33, 34). We envision the combination of high-throughput 3D
root imaging and multitrait analysis with modern sequencing as
a powerful approach to closing the phenotype–genotype gap.

Methods
Growth Conditions. F6 RIL and parental plants were grown according to Iyer-
Pascuzzi et al. (20), except that 0.2% Gelzan (Caisson Laboratory) was used to
solidify Yoshida’s nutrient solution. We also pre-germinated surface-sterilized
seeds in the dark at 28 °C on plates containing medium identical to that in the
cylinders. After 2 d healthy seedlings were transferred to the 2-L sterile glass
cylinders. Plants were imaged at days 12, 14, and 16 after transfer. At no point
did any root touch the surface of the cylinder and affect 3D structure.

Imaging. Root systems growing in nutrient-enriched gellan gumwere imaged
in 360° view by a computer-controlled camera (17, 20). The resulting image
sets were uploaded automatically to a server for processing and phenotyp-

ing by GiA Roots, a free and extensible software package for the general
phenotyping of plant root architecture (www.giaroots.org) (22). An average
imaging session lasted 5 min and produced a rotational series of 40 images
(9° apart), which were uploaded to a server for processing. Two (43%) or
three (39%) replicates were performed for the majority of RILs, although in
some cases one (11%), four (5%), or five (1%) replicates were included.
Imaging occurred at approximately the same time on each day.

Image Processing. Images were processed in an automatic phenotyping
pipeline centered on GiA Roots (22). Steps consisted of scaling, rotating, and
cropping images as a set, creating a greyscale image, and then applying
a double adaptive thresholding with preset parameters specific to our im-
aging conditions to produce binary foreground (root) or background (non-
root) (22). Thresholded image sets were subjected to human quality control
using tools built into the pipeline. Rejected images were reprocessed or
image sets were removed from the analyses. Because some traits require
a skeleton representation of the root network, one further processing step
was required to generate medial axis images using an iterative erosion ap-
proach. The binary and skeleton images formed the basis for all 2D trait
calculations, and pixel values were scaled to millimeters in the appropriate
dimension (millimeters, square millimeters, or cubic millimeters; Table S1).

3D Reconstructions. To reconstruct the 3D shape of RSA from a set of 2D
images, we used Rootwork software (21). Rootwork uses harmonic back-
ground subtraction to threshold images and preserves the fine detail of root
systems using the regularized visual hull (21). We built an adjustable imag-
ing table (23) that allowed us to align the camera and sample to within
a few microns, greatly reducing picture-to-picture error in our rotational
series and improving the root models.

Trait Calculations.GiA Roots 2D traits aremeasurements taken from 2D image
series, which are reported as the average values. GiA Roots 3D traits are
measurements taken directly from the voxel files of 3D reconstructions via
custom algorithms developed as add-ons to the published implementation of
GiA Roots via its application programming interface. The technical details of
trait computation are presented in Table S1. Our current estimate of the
surface area suffers from a jagged, voxelized representation of the smooth
shape of the root (Fig. 1D). In the future we plan to improve this estimate by
using explicit representations of the root shape, including its surface.

Ground Truth Validation. The digital model was developed in Python, con-
verted from voxels to a triangular mesh by exporting as “.obj” from Qvox
(http://qvox.sourceforge.net), and 3D printed into a physical model made of
epoxy resin (FineLine Prototyping). Depth, maximum network width, and
the total root length and width of the physical resin model were measured
by hand with a set of mechanical calipers. Average root width, specific root
length, surface area, and volume were derived from these measurements.
2D and 3D digital estimates of the physical model were obtained by placing
the model into the gellan gum, imaging, reconstructing, and running
through the GiA Roots phenotyping pipeline. We computed the same 3D
estimates for the original digital voxel model to control for artifacts that
could be introduced during the imaging and reconstruction process.

Statistical Analyses. Trait correlations on genetic means and PCA (Fig. S1 and
Dataset S1) were performed in JMP Pro-10 (www.jmp.com/software/jmp10/).
Univariate QTL analysis. QTL analyses was performed in QTL Cartographer
[model 6, version 1.16 (35)] with 1,000 permutations for each trait to de-
termine genome-wide significance thresholds at α = 0.05. The initial models
were generated by forward and backward stepwise regressions (P = 0.05)
with a 2-cM walk speed and a 10-cM window size, including the five default
markers as cofactors. We calculated 1.0 and 2.0 LOD confidence limits for
each QTL (58).
Multivariate QTL analysis. Multivariate QTL mapping followed the MLSIM
procedure outlined in ref. 38. Briefly, for each point in the genome of each
recombinant inbred line, we calculated Pqm, the QTL allele frequency con-
ditional on the flanking marker genotypes. We then used Pqm to predict
multivariate phenotypes for each RIL using MANOVA. We determined sta-
tistical significance with randomization tests, for which we created 1,000
permuted datasets by randomizing phenotypes relative to genotypes. These
genome-wide analyses were repeated sequentially, conditional on the
presence of each previously identified QTL, until no further significant QTLs
were found.
Identification and confirmation of composite traits defined by multivariate QTLs. We
used DFA to identify traits defined by the observed multivariate QTL. For
a specific QTL in the multidimensional trait space, DFA identifies an axis that
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best separates RIL families by their alleles in that QTL. Each RIL family has
a unique projection on the DFA axis, which is defined by a linear combination
of all traits used for multivariate QTL mapping. We therefore called this
projection a “composite” and treated it as a new univariate trait that
maximizes the phenotypic effect of different alleles in this QTL. As a con-
firmation of the composite trait created by each multivariate QTL, we used
QTL Cartographer (as described above) to map the QTL for the composite
traits. Colocalization of this new univariate QTL and the previous multivar-
iate QTL supports the validity of our method.
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