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Genome-wide experiments often measure quantitative differences
between treated and untreated cells to identify affected strains. For
these studies, statistical models are typically used to determine
significance cutoffs. We developed a method termed “CLIK” (Cutoff
Linked to Interaction Knowledge) that overlays biological knowl-
edge from the interactome on screen results to derive a cutoff.
The method takes advantage of the fact that groups of functionally
related interacting genes often respond similarly to experimental
conditions and, thus, cluster in a ranked list of screen results. We
applied CLIK analysis to five screens of the yeast gene disruption
library and found that it defined a significance cutoff that differed
from traditional statistics. Importantly, verification experiments
revealed that the CLIK cutoff correlatedwith the position in the rank
order where the rate of true positives drops off significantly. In
addition, the gene sets defined by CLIK analysis often provide fur-
ther biological perspectives. For example, applying CLIK analysis
retrospectively to a screen for cisplatin sensitivity allowed us to
identify the importance of the Hrq1 helicase in DNA crosslink repair.
Furthermore, we demonstrate the utility of CLIK to determine opti-
mal treatment conditionsbyanalyzinggenome-wide screensatmul-
tiple rapamycin concentrations. We show that CLIK is an extremely
useful tool for evaluating screen quality, determining screen cutoffs,
and comparing results between screens. Furthermore, because CLIK
uses previously annotated interaction data todetermine biologically
informed cutoffs, it provides additional insights into screen results,
which supplement traditional statistical approaches.
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Advances in high-throughput biological techniques have
resulted in a wealth of data on diverse cellular processes (1).

These analyses are often performed using strain libraries, whose
members differ by discrete changes in gene expression (e.g., via
gene disruption or RNAi). Strains are exposed to a screen condi-
tion, a response is quantified for each member of the library, and
the population is ranked by that metric. Affected members can
then be compared with previously published data, to provide
broader biological context. However, this prior knowledge is not
typically used to determine the affected set. Instead, statistical
models are used to assign probability values (P values) to pop-
ulation members, and then a significance threshold is applied.
Unfortunately, there are limitations to statistical models. For ex-
ample, because of the large population size of high-throughput
experiments, simple analysis using a P value cutoff often produces
an unacceptable number of false positives (2). Familywise error
adjustments, such as Bonferroni corrected P values, minimize the
type I errors (false positives) but result in an increase in type II
errors (false negatives) (3). In an effort to strike a balance between
type I and type II errors, Benjamini and Hochberg developed
a method known as false discovery rate (FDR) (4). The FDR
methodology, later improved upon by Storey (5), aims to increase
statistical power at the cost of increasing the rate of type I errors.
However, these statistically based methods do not take into

account the biological interactions among the affectedmembers of
a screen and, thus, ignore an important aspect of screen results.
In contrast to using population-driven statistics, other screen

analysis approaches may be used that take into account previously
determined biological relationships. For example, gene-set enrich-
ment analysis (GSEA) is a method wherein rank-ordered results
from a high-throughput experiment are queried for the enrichment
of known sets of functionally or physically related genes, thus pro-
viding some biological context to the affected population of the
screen (6). However, GSEA does not define a cutoff in the pop-
ulation and is limited in that gene sets for comparison need to be
predefined (7). Thus, biases may develop in GSEA if a particular
cellular process is over- or under-represented in the gene sets.
More recently, new algorithms have been developed that com-

bine systems biology data with statistical models to improve the
scoring of high-throughput screen results (e.g., refs. 8 and 9). These
methods use preexisting knowledge to help inform the ranking
of affected queries in high-throughput screens (10, 11). However,
these methods still require the user to determine a significance
cutoff. This decision presents a problem because, a priori, it is dif-
ficult to determine a cutoff that will maximize discriminatory power
(selectivity) while maintaining sensitivity.
Here, we present a method, termed CLIK (Cutoff Linked to

Interaction Knowledge), which overcomes the issues described
above by using the knowledge implicit in biological databases to
define a cutoff. CLIK takes advantage of two properties of genome-
wide screens: first, successful high-throughput screens organize
functionally related genes into clusters by virtue of similar response
scores (12–14); and second, the frequency of genetic and physical
interactions among these clusters is higher than that of unrelated
genes (15). We used CLIK to analyze five screens performed with
the haploid budding yeast gene-disruption library. For these
screens, we observe an increased density of known interactions
among members of the affected population and find that the
magnitude of the interaction density reflects validation rate. Fur-
thermore, because CLIK cutoffs are automatically determined
using previously defined biological data, we find that it is more
robust than choosing an arbitrary statistical cutoff. The gene sets
defined by CLIK often extend beyond the sets determined by
standard statistical cutoffs without substantially increasing the
number of false positives. Finally, we show that the additional genes
defined by CLIK analysis often lead to unique biological insights.
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Results
Interaction Density Among Affected Mutants Is Higher than Random.
A successful genome-wide screen typically organizes a small
percentage of related genes high in the rank order. The rate of
genetic and physical interactions among related genes is high (12–
15), so interactions among genes at the top of the rank order are
correspondingly high. Conversely, strains showing no response to
treatment are dispersed randomly elsewhere in the rank order
and, correspondingly, there is lower interaction density in this
region of the rank order. We hypothesized that this differential
interaction density between affected and unaffected members of
the population could be visualized and used to define a screen
cutoff. To define this cutoff, we developed CLIK, in which known
interaction data are overlaid on top of the results from a screen to
generate a scatterplot. The rank-order list of genes is used as both
the x and y axes of a graph and a point is plotted for each known
interaction between ORFs on the axes such that the query gene
rank provides the x coordinate, and the target gene rank provides
the y coordinate (Fig. 1A). For the purposes of this paper, all
Saccharomyces cerevisiae interactions within the BioGRID data-
base were considered when generating CLIK graphs (11).
We applied this method to a high-throughput screen for

mutants sensitive to DNA damage induced by overexpression of
a mutant allele of TOP1 (top1-T722A) (16). The affected set from
the screen is enriched for genes involved in the DNA-damage
response, and the numerous interactions among these genes
produces a dense plot near the top of the rank order (Fig. 1A). A
control plot in which the ∼4,800 strains from the original screen
are randomly ordered shows many fewer interactions in the same
region (Fig. 1B).

To more clearly represent the differential densities on a graph,
the CLIK algorithm quantifies the local densities of every plot
point and colors them according to their relative magnitude. All
density values significantly above the background signal are col-
ored according to their relative values, and all other points are
colored gray (Fig. 1C and SIMaterials andMethods). As seen in the
CLIK graph for the top1-T722A screen, contiguous significant (i.e.,
colored) points form distinct areas that we term “CLIK groups”
(Fig. 1C). In this graph, the largest CLIK group (lower-left corner)
identifies the sensitive mutants in the screen. Interestingly, in ad-
dition to sensitive mutants, CLIK groups representing suppressors
are observed at the upper-right corner of the graph when the entire
rank order is plotted (Fig. 1D). Hereafter, we focus our analyses on
the sensitive mutants.

Interaction Density Effectively Defines Screen Cutoff. The utility of
the CLIK method to define screen cutoffs was evaluated by ana-
lyzing the top1-T722A screen, along with three previously un-
reported genome-wide screens of the haploid yeast gene-disruption
library. These include a screen with the target of rapamycin (TOR)
inhibitor, rapamycin, and two synthetic dosage-lethality (SDL)
screens overexpressing the spindle pole body gene, SPC110, or the
meiosis-specific recombination gene, DMC1. We also analyzed
a previously published screen for mutants sensitive to the DNA
cross-linking agent cisplatin (17). The ratio of strain growth on
control vs. experimental conditions was used to define the rank
order for each screen.
In four of the five screens, well-defined CLIK groups are present

at the top of the rank order, with the exception being the DMC1
SDL screen (Fig. 2 A–D and Fig. S1). These CLIK groups each
contain a “core” of genes that highly interact among themselves,
extending from the origin to the point on the diagonal where in-
teraction density drops below the level of significance (red boxes in
Fig. 2A). The core is often connected to “tails” that extend along

Fig. 1. CLIK graph creation. (A) Scatter plot of interaction data from the
top1-T722A mutant screen generated using interaction data from the Bio-
GRID database. The rank-ordered list of genes from a genome-wide screen is
used to generate a scatterplot of interaction data, as described in the text.
Only the first 600 ranks are shown on each axis. (B) Plot of the same screen
data as in A but using a randomized rank order. (C) Same plot as in A with
color scale (Inset) applied to indicate plot density. Plot point densities below
the significance threshold are colored gray (for details, see SI Materials and
Methods). (D) Complete CLIK graph of interaction data using the top1-T722A
screen rank order. Color scale is the same as in C.

Fig. 2. CLIK graphs of four genome-wide screens. Plot density scale is the
same as in Fig. 1. Only the first ∼900 rank positions are shown. Red dashed
boxes indicate the CLIK-derived cutoffs. Insets show ROC curves derived from
validation data for each screen. The trend line of each ROC graph is colored
according to the density from the CLIK graph along the diagonal. Arrows
indicate the position of the Youden index for each ROC curve. (A) top1-
T722A–sensitivity screen. (B) Cisplatin-sensitivity screen. (C) Rapamycin-sen-
sitivity screen. (D) SPC110 SDL screen.
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the axes (Fig. 2). This tailing-interaction density represents sec-
tions of the rank order in which strains do not highly interact with
their neighbors but do interact strongly with members at the top of
the ranked list. We, therefore, use the distal edge of the core along
the diagonal to define the CLIK group cutoff.
For the four screens with well-defined CLIK groups, the cutoffs

define affected sets that vary in size from 114 to 309 genes and
whosemean interaction densities range from 0.045 to 0.072. These
mean density values are all more than sevenfold greater than the
control values that were generated in the corresponding random
sets (Dataset S1-1). To evaluate these cutoffs, we retested 16
replicates of each individual strain within the CLIK-defined set
plus the next 100 strains in the rank order (Dataset S2). The val-
idation rate of each CLIK group varied widely among the different
screens, with the top1-T722A screen showing the highest validation
and the SPC110 SDL screen showing the lowest (Table 1). The
results were used to generate receiver operating characteristic
(ROC) curves (Fig. 2, Insets), which show the tradeoff between the
rate of true positives (sensitivity) and the rate of false positives
(specificity) at any point within the validated set. The better an
individual screen is at separating true positives from false positives,
the larger the resulting area under theROC curve. The point along
the curve where the perpendicular distance from the diagonal is
greatest is referred to as theYouden index, which some view as the
optimal cutoff because it balances sensitivity and specificity (18).
Strikingly, we find that the CLIK-derived cutoffs lie near the
Youden index in the ROC curves for the top1-T722A screen, the
SPC110-overexpression screen, and the cisplatin-sensitivity screen
(Fig. S2 A–E).
We next compared CLIK-derived cutoffs to FDR, the current

standard statistical method for determining screen cutoffs. CLIK-
defined cutoffs correspond to widely different FDRs for each
screen (Table 1 and Fig. S2F). In the top1-T722A screen, the
CLIK-derived cutoff implicates the top 242 strains, corresponding
to an FDR of 24.5%. Interestingly, this cutoff extends 70 positions
beyond a more traditional 5% FDR cutoff, while maintaining
a similar validation rate: 87% for 5% FDR vs. 82% for CLIK
(Table 1 and Fig. S2F). Importantly, after the CLIK-derived
cutoff, the validation rate of the next 100 genes drops to only 36%
(Dataset S2-1). In the rapamycin screen, the CLIK group defines
309 sensitive mutants, more than twice as many as a 5% FDR
cutoff, without significantly compromising validation rate. Here,
once again, we find that the validation rate after the CLIK cutoff
drops (Dataset S2-3). Furthermore, the predicted FDR corre-
sponding to the CLIK cutoff for rapamycin is arbitrarily high (Fig.
S2F), making this an unlikely choice without the insight from
CLIK. Likewise, the 5% FDR cutoff in the cisplatin screen cor-
responds to the top 26 affected ORFs vs. 155 ORFs for the CLIK-
derived cutoff (corresponding FDR cutoff not available). Again
the CLIK-derived cutoff is informative in defining the affected
population members, because it identifies a sixfold larger gene set
than that identified by the FDR method, with only a modest
corresponding reduction in percentage of validation (Table 1).

Furthermore, the validation rate of the next 100 genes past the
CLIK cutoff falls to 10% (Dataset S2-2). Interestingly, even for
screens with relatively low validations rates, such as the SPC110
screen (42%), we find that the CLIK cutoff corresponds to the
Youden index and only 18% of the next 100 genes validate
(Dataset S2-4).
Intriguingly, we find that top1-T722A has the strongest CLIK

group, as shown by the coloring of interaction density in the plot,
and, correspondingly, has the highest validation rate (Fig. 2 and
Table 1). Conversely, the SDL screen performed by overexpressing
the meiosis recombination gene, DMC1, results in only a small,
weak CLIK group, the mean interaction density of which is the
same as theminimum value on the color scale (Fig. S1 andDataset
S1-1). The lack of strong interaction density among the sensitive
mutants predicts a low rate of validation. Indeed, only 12% of the
ORFs within the CLIK group validate (Dataset S2-5). Impor-
tantly, in this screen, neither the 5% FDR cutoff (35 ORFs; vali-
dation rate: 17%) nor the P value cutoff (106 ORFs; validation
rate: 9%) anticipate this low rate of validation, which CLIK
analysis correctly predicted. The lack of true positives identified in
the DMC1 screen is not surprising given that its gene product
mainly functions during meiosis and our screens are performed in
mitotically dividing cells.
Taken together, these results show that CLIK analysis effectively

identifies functional organization (i.e., related genes) in screen
results by overlaying previously defined biological relationships.
CLIK defines cutoffs by identifying a point in a rank where screen
organization, and, thus, true positives, begins to dissipate. This point
is often different from that determined using statistical models,
which rely on the underlying population distribution and require the
user to define a cutoff.

CLIK Analysis Captures Additional Biologically Relevant Genes. To
demonstrate the utility of CLIK analysis to uncover unique bi-
ological insights, we looked more closely at the gene set identified
in the analysis for cisplatin sensitivity. CLIK identified a 155
member gene set vs. 26 identified in the original study, and 66 of the
additional genes validated (Fig. 2C) (17). Many of them fall into
repair pathways that are enriched in the 26-member set. Moreover,
additional gene-ontology (GO) categories are enriched in the
larger CLIK-defined set, including sister chromatid cohesion, rep-
lication fork stability, and chromatin remodeling (Dataset S1-2).
Next, we focused on the hrq1 strain, which shows weak cisplatin

sensitivity, falls within the CLIK group, but is outside of the FDR
cutoff. Hrq1 belongs to the family of RecQ helicases orthologous
to human RECQ4 (19). The repair pathways that respond to cis-
platin-induced lesions include translesion synthesis (TLS), repli-
cation fork regression (FR) [collectively called postreplication
repair (PRR)], and homologous recombination (HR) (reviewed in
ref. 20). Nucleotide excision repair (NER) also plays a role in
cisplatin resistance, particularly in G1 cells (21). To investigate its
role in cisplatin resistance, we combined hrq1withmutations in the
TLS (pol32, rev1, rev3), FR (rad5), HR (rad51, sgs1), and NER
(rad14, rad10) pathways.
A mutant rev1 strain shows an approximate 100-fold growth

reduction at 83 μM cisplatin compared with wild type (Fig. 3A).
Interestingly, the double hrq1 rev1 mutant shows a strong syner-
gistic growth reduction on 83 μM cisplatin (>1,000-fold), well
below the concentration of cisplatin necessary to see sensitivity in
an hrq1 single mutant (125 μM). A similar synergistic effect was
observed between hrq1 and other mutants in the PRR pathways,
including rev3, rad5, and pol32 (Fig. S3), indicating a dramatic
effect on a pathway parallel to PRR. In contrast, an hrq1 rad51
mutant strain showed the same sensitivity as a rad51 single mutant.
A similar epistatic effect was also observed between hrq1 and rad14
(Fig. 3) and between rad10 and sgs1 (Fig. S3).
The synergistic effect between hrq1 and PRR, and epistasis to

both the NER and HR pathways, suggests a model in which

Table 1. Total set size based on CLIK analysis and 5% FDR
analysis

Screen

CLIK group 5% FDR

No.* Validated, % No.* Validated, %

top1-T722A 242 81.8 172 86.6
Cisplatin 155 63.6 26 96
4 nM rapamycin 309 80.9 142 92.1
SPC110 overexpression 114 42.1 99 44.4
DMC1 overexpression 82 12.3 35 17

*No. indicates set size for each screen. Percentage of validation is also
shown.

Dittmar et al. PNAS | April 30, 2013 | vol. 110 | no. 18 | 7391

G
EN

ET
IC
S

http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1219582110/-/DCSupplemental/sd01.xlsx
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1219582110/-/DCSupplemental/sd02.xlsx
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1219582110/-/DCSupplemental/pnas.201219582SI.pdf?targetid=nameddest=SF2
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1219582110/-/DCSupplemental/pnas.201219582SI.pdf?targetid=nameddest=SF2
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1219582110/-/DCSupplemental/pnas.201219582SI.pdf?targetid=nameddest=SF2
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1219582110/-/DCSupplemental/pnas.201219582SI.pdf?targetid=nameddest=SF2
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1219582110/-/DCSupplemental/pnas.201219582SI.pdf?targetid=nameddest=SF2
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1219582110/-/DCSupplemental/sd02.xlsx
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1219582110/-/DCSupplemental/sd02.xlsx
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1219582110/-/DCSupplemental/pnas.201219582SI.pdf?targetid=nameddest=SF2
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1219582110/-/DCSupplemental/pnas.201219582SI.pdf?targetid=nameddest=SF2
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1219582110/-/DCSupplemental/sd02.xlsx
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1219582110/-/DCSupplemental/sd02.xlsx
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1219582110/-/DCSupplemental/pnas.201219582SI.pdf?targetid=nameddest=SF1
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1219582110/-/DCSupplemental/sd01.xlsx
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1219582110/-/DCSupplemental/sd01.xlsx
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1219582110/-/DCSupplemental/sd02.xlsx
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1219582110/-/DCSupplemental/sd01.xlsx
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1219582110/-/DCSupplemental/pnas.201219582SI.pdf?targetid=nameddest=SF3
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1219582110/-/DCSupplemental/pnas.201219582SI.pdf?targetid=nameddest=SF3


Hrq1 functions after a convergence of HR and NER. On the
other hand, HR and NER are genetically separable pathways for
cisplatin resistance (22). Thus, Hrq1 may only function in the
processing of specific cisplatin-induced lesions that require the
function of both NER and HR [e.g., interstrand crosslinks (23)].

CLIK Analysis Can Be Used to Compare Experimental Treatments.
Rapamycin, an antiproliferative drug targeting the highly con-
served mammalian TORpathway (24, 25), has been used to screen
the yeast gene-disruption library multiple times (26–33). Although
each screen has identified a set of rapamycin-resistance genes,
there is poor overlap in the results, possibly attributable to varia-
tion in the drug concentrations used. To test for concentration-
based variability, we conducted rapamycin drug screens at 4, 10,
and 16 nM. Because CLIK enables a visualization of the functional
grouping of related genes in a screen, we expected that the CLIK
graphs would help interpret any differences in screen organization.
The 4 nM rapamycin treatment does not significantly reduce

the growth rate of most strains in the gene-disruption library.
Because this growth rate is similar to the no-drug control, vari-
ation within this screen is small and the plot of growth ratios ap-
pears flat (Fig. 4A). As a result, the transition between affected

and unaffected strains is obvious. In contrast, 16 nM rapamycin
inhibits the growth of most strains; thus, small experimental
variations lead to comparatively large variations in growth ratio,
and the plot is sloped over most of the distribution (Fig. 4A). The
10 nM screen was intermediate; growth was somewhat reduced
and variation between strains was moderate (Fig. 4A and
Dataset S2).
Comparing the CLIK groups for the three drug concentrations

(Fig. 4B), we found a set of 309 genes with an average of 13.3
interactions per ORF for the 4 nM screen, a set of 166 genes with
8.8 interactions per ORF for the 10 nM screen, and a set of 160
genes with 6.9 interactions per ORF for the 16 nM screen. These
network differences are attributable to changes in interaction
frequency between genes at the top of each rank order. In-
terestingly we find that the mutants identified in all three screens
validate at similar levels: 81%, 75%, and 80% for 4, 10, and 16
nM, respectively (Dataset S2). These results confirm that, for
rapamycin, CLIK analysis successfully determines cutoffs of
similar specificity, despite the large differences in variance among
the screens (Fig. 4A).
Strikingly, we find that only 46 mutants are commonly identified

in all three rapamycin screens (Fig. S4A), including mutants in
TOR1 complex members tor1 and tco89. Interestingly, the 10 nM
screen overlaps the 4 and 16 nM screens more than the 4 and
16 nM screens overlap with each other (Fig. S4A). These results ar-
gue that the differing concentrations affect fundamentally different
pathways. To analyze this hypothesis further, we performed GO
category-enrichment analysis on the 4 and 16 nM gene sets, which
are the most dissimilar (Fig. S4B and Dataset S1). From these
analyses, it is apparent that although the different concentrations
affect many common genes, they also affect distinct processes. A
particularly striking example is found among mutants in the
Rim101-processing pathway. Thirteen of 18 genes involved in this
pathway are sensitive to 4 nM rapamycin but show wild-type sen-
sitivity at 16 nM (34, 35). This differential sensitivity was confirmed
by separate dilution assays (Fig. 5A). These genes are ranked
within the CLIK group in the 4 nM screen but are dispersed in the
rank order at higher doses (Fig. 5B). Because 16 nM rapamycin is
more cytostatic than 4 nM rapamycin, the growth reduction in
the Rim101-disruption strains at the higher dosages was in-
distinguishable from that of wild-type strains. Strikingly, CLIK
analysis revealed this result, whereas the RIM101 genes would not
be considered hits even with a more lenient FDR threshold (Fig. 4
and Fig. S2F).
We also identified several genes involved in dyneinmetabolism,

the disruptions of which show an inverse relationship to rapa-
mycin drug concentration compared with the RIM101 genes.
Mutations inDYN1,DYN3, NAP1,NIP100,NDL1, and PAC1 are
more sensitive at 16 nM and less sensitive at 4 nM. These genes
cluster at the top of the rankings at 16 nM but are dispersed into
the ranked lists at 10 and 4 nM (Fig. 5C). This relationship was
confirmed by validation experiments and a separate dilution assay
for dyn1Δ (Fig. 5A and Dataset S2-11).
In summary, the three rapamycin concentrations affect the

population of mutants differently. CLIK accurately identifies af-
fected members of each population and also reveals differences
between the screens that were confirmed by validation. Inter-
estingly, the genes identified reflect the different underlying bi-
ological effects at 4, 10, and 16 nM rapamycin. Importantly, CLIK
analysis helped us to readily identify many of these biological
insights.

Discussion
CLIK analysis leverages the fact that the rate of interactions
among true positives in a screen is higher than for a random set of
genes. CLIK uses this differential-interaction density to automat-
ically identify biologically informed cutoffs. This method contrasts
with statistical methods, which require a user-defined confidence

Fig. 3. Pathways affecting cisplatin sensitivity and the role of Hrq1. (A) The
hrq1-null mutant was crossed to rev1, rad14, and rad51 mutant strains to
generate single- and double-mutant combinations as indicated. wt, wild
type. Cultures were serially diluted and spotted onto plates with and with-
out cisplatin. (B) Arrows indicate major repair pathways that respond to
crosslinks after replication fork stalling, including PRR, TLS, FR, NER, and HR.
The epistasis data predict that Hrq1 acts at a point of convergence of the
NER and HR pathways.

Fig. 4. The effect of increasing rapamycin concentration on screen results.
(A) Rank-order plots of strains from the yeast gene-disruption library sorted
by log growth ratio (LGR) for three rapamycin concentrations. The most
sensitive strains are on the left in each graph. Dashed horizontal lines in-
dicate population mean and solid horizontal lines indicate 2 SDs above and
below the mean. Vertical dashed blue lines indicate the cutoff defined by
CLIK analysis. Blue shading indicates the section of the growth curve in-
cluded in the CLIK graphs below. (B) CLIK graphs for three rapamycin con-
centrations. All graph interaction densities are color scaled to be the same as
the 4 nM rapamycin results (Inset). q and p with black and gray vertical
arrows indicate the 5% FDR cutoff and the 0.05 P value cutoff for each
graph, respectively. There are no q values <10% for the 16 nM screen.
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threshold (e.g., 5% FDR or 10% FDR, etc.). In four separate
genome-wide screens, CLIK cutoffs successfully increased screen
sensitivity, while maintaining reasonable specificity. These cutoffs
corresponded to widely different FDR cutoffs, highlighting the
difficulty of applying a uniform statistical metric to assess diverse
screen results. In three of those screens, few true positives are
identified after the CLIK cutoff. The exception is the 4 nM rapa-
mycin screen, which shows a relatively high verification rate be-
yond theCLIK cutoff (69%;Dataset S2-3). This screen is unique in
that the interaction density of the tails is similar to the interaction
density of the core group (Fig. 2C). We, therefore, recommend
that tail interaction density not be ignored in all cases.
We additionally show that the interaction density within a CLIK

group reflects the validation rate of the ORFs within it. The top1-
T722ACLIK group contained the highest mean interaction density,
and, correspondingly, the ORFs within it validate at the highest
rate (Table 1 and Dataset S1-1). Conversely, the lack of a strong
CLIK group in the DMC1 screen successfully predicted an ex-
tremely low validation rate. In contrast, a 5% FDR cutoff impli-
cated the top 35 genes, which only showed a 17% validation rate.
Thus, CLIK is a useful tool for evaluating screen efficacy.

CLIK Analysis Defines a Role for Hrq1 in Crosslink Repair. CLIK
analysis of the cisplatin sensitivity data from Lee et al. demon-
strates how interaction density supplements traditional statistical
analyses (17). It is clear that the 5% FDR cutoff used by the
authors appropriately maintains specificity in the dataset (i.e.,
most genes in the set are true positives). However, the CLIK group
contains 66 additional true positives (Dataset S2-2), and the cost to
verify these additional cisplatin resistance genes is offset by the
benefit of additional biological insight. For example, the hrq1
mutant at position 98 in the rank order is 72 positions beyond the
FDR cutoff but within the CLIK cutoff of 155. This mutant is
weakly sensitive to cisplatin, but when combined with mutants in
PRR, its role in resistance is clear (Fig. 3 and Fig. S3). Further-
more, epistasis analysis shows that NER and HR, which have
previously been defined as separate pathways affecting cisplatin
sensitivity (22), work in concert withHrq1 (Fig. 3 and Fig. S3). This

relationship suggests either that Hrq1 has independent functions
downstream of each of these pathways or that the NER and HR
pathways operate together when Hrq1 function is required. We
favor the latter because interstrand crosslinks (ICLs) make up less
than 5% of cisplatin lesions (36). If Hrq1 has a specific role in
processing ICLs, then both HR and NER mechanisms would
converge on Hrq1 for repair. In the absence of Hrq1, such lesions
may be routed through the PRRpathways. Further support for this
view comes from the fact that hrq1 mutants are highly sensitive to
drugs that produce more ICLs than cisplatin [mechlorethamine
and mitomycin C (17)].
We suggest that a helicase such as Hrq1 functions to denature

the dsDNA near an ICL after incision of the strands and helps
initiate strand invasion to allow completion of repair. Similar to
our findings in S. cerevisiae, in Schizosaccharomyces pombe, hrq1
mutations are epistatic to NER and synergistic to PRR with re-
spect to cisplatin (37). However, our model differs from the
S. pombe one, which has HR acting downstream of PRR. In ad-
dition, hrq1 and the S. pombe SGS1 ortholog, rqh1, show synthetic
lethality, suggesting that these genes function in redundant path-
ways. In budding yeast, hrq1 and sgs1 mutants are epistatic for
cisplatin sensitivity (Fig. 3), further demonstrating pathway di-
vergence for Hrq1 function between the two yeasts.

CLIK Analysis Reveals Different Functional Responses to Rapamycin.
The first rapamycin studies in yeast used concentrations too high
(100 nM and higher) to distinguish moderately sensitive mutants
strains from wild-type strains (32). Consequently, Parsons et al.
(26) used 11 and 16 nM, Xie et al. (33) used 10 and 30 nM, and
Hillenmeyer et al. (27) used 5 and 6 nM rapamycin in their
screens. These studies reported 246, 281, and 2,036 rapamycin-
sensitive strains, respectively, with only 54 deletions commonly
identified in all three screens. To determine whether these
concentrations led to different biological responses or whether
rapamycin screens are intrinsically “noisy,” we carried out fully
controlled parallel genomic screens to compare different dose
responses.
We conducted three screens using 4, 10, and 16 nM rapamycin

and showed that the 4 nM rapamycin screen generated the stron-
gest and largest CLIK group (Fig. 4B). This result indicates that the
low dosage screen is most effective in organizing related strains.
However, we also observed that a different set of strains is sensitive
to each drug concentration and validate most effectively when
retested with the same drug concentration (Figs. S4 and S5). We
conclude that there are two effects governing the efficacy of these
screens. First, the signal-to-noise ratio may be too low to identify
mildly affected strains at a high drug concentration. For example,
the growth ratio of the 16 nM dose has the largest SD (1.6), and,
correspondingly, at this high concentration, there are fewer true
positives (Fig. 4A and Dataset S2-7). Second, different rapamycin
doses have different biological effects (Fig. S4B). For instance, we
show that disruption of the pH-sensing RIM101 pathway only
shows sensitivity to 4 nM rapamycin. In contrast, mutations in the
dynein–dynactin complex only show sensitivity at higher concen-
trations. The dynein–dynactin pathway functions in mitotic spindle
orientation in a process that is parallel to, and functionally re-
dundant with, the Kar9 pathway (38). Because the Kar9 pathway is
dependent on actin polarization, which is controlled by the TOR
complex, our results suggest that actin cytoskeleton polarization is
only affected at high rapamycin concentrations.
It is not known whether these concentration-dependent dif-

ferences in drug sensitivity are a common property of drug tox-
icity or whether rapamycin represents a special case because of
its broad range of effects. In any case, our results indicate that
for more complete genetic insight, it may be necessary to conduct
drug screens at multiple concentrations. Importantly, this con-
clusion would not have been revealed by standard statistical
analyses. For example, at 4 nM, the FDR cutoff was too stringent

Fig. 5. Concentration-specific rapamycin sensitivities of mutant strains. (A)
Sixteen replicates of each indicated strain were 10-fold serially diluted and
spotted onto plates with the indicated concentrations of rapamycin; wt
indicates wild type. (B) Line plots indicating the rank-order positions of the
RIM101 pathway mutants in the 4, 10, and 16 nM rapamycin screens. Hori-
zontal lines represent the rank order from 1 to ∼4,800 (left to right) from
each screen. Solid vertical lines indicate the rank positions of dfg16, rim8,
rim9, rim13, rim20, rim21, rim101, and ygr122w. Vertical dashed lines in-
dicate the CLIK-defined cutoff for each screen. (C) Line plots constructed as
in B showing the positions of dynein–dynactin mutants dyn1, dyn3, nap1,
ndl1, nip100, and pac1.
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to include many of the RIM101-processing genes (Fig. 4B and
Dataset S2-3). Furthermore, an FDR cutoff of 10% did not se-
lect any genes as significantly affected at 16 nM rapamycin.

CLIK Group Network Analysis. The interactions between the ORFs
within a CLIK group define biological subnetworks that are tied
to the particular screen. By definition, most of the genes within
the CLIK group are connected to the network. The unconnected
orphans may simply represent noise within the screen or, more
interestingly, may represent genes with connections to the de-
fined network that have yet to be discovered. Indeed, in three of
four screens analyzed, the orphan genes validate at a rate similar
to the connected ORFs (Fig. S5). Although CLIK networks lend
themselves to scrutiny by other metrics, such analyses are beyond
the scope of this study. For instance, graph theory metrics (e.g.,
mean clustering coefficient, mean degree, comparison with ran-
dom graphs, etc.) have proven useful in other biological appli-
cations and may provide added value to CLIK analysis (39).

Network Coverage Required for CLIK. In this work, CLIK analysis
was performed using all data within the BioGRID database. CLIK
also performs well when other interaction databases are used (Fig.
S6B). In addition, although we only applied CLIK to genome-wide
screen data from S. cerevisiae, we believe it will soon be applicable
to other organisms. Currently, the number of nonredundant in-
teractions annotated in BioGRID is over 33 interactions per gene
for S. cerevisiae. Given this large number, the database is likely
more than comprehensive enough to avoid biases toward well-
studied processes. To estimate theminimal number of interactions

sufficient to produce an informative CLIK graph, we performed
a retrospective analysis using archived versions of the BioGRID
database (Fig. S6A). This analysis shows that an average of ∼seven
interactions per gene is necessary to produce a stable CLIK graph
and accurately define a screen cutoff in budding yeast. Interaction
networks in BioGRID for S. pombe, Drosophila melanogaster, and
Homo sapiens are rapidly approaching this level of saturation. Thus,
we suspect that genome-wide screens in these systems will soon
benefit from CLIK analysis as their interaction networks grow.
In summary, CLIK is a valuable tool for assessing high-

throughput screen results. Because this method uses previously
annotated interaction data, it supplements traditional statistical
approaches. It provides a reliable cutoff determination and es-
timate of screen quality and also facilitates the comparison of
results between screens. Finally, we show from the cisplatin and
rapamycin screens that additional biological insights are gained
through CLIK analysis.

Materials and Methods
Methods related to yeast strains and screens, and drug-sensitivity assays are
described in SI Materials and Methods. This section also describes how the
CLIK algorithm determines significant density values (Fig. S7). CLIK Software
is available for download (GNU General Public License) at www.rothsteinlab.
com. A web-based CLIK application is also available at that site.
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