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Abstract
Electron microscopy (EM) is an important tool for determining the composition, arrangement and
structure of biological macromolecules. When studying structurally heterogeneous samples using
EM, classification is a critical step toward achieving higher resolution and identifying biologically
significant conformations. We have developed an interactive, web-based tool, called Maskiton, for
creating custom masks and performing 2D classifications on aligned single-particle EM images.
The Maskiton interface makes it considerably easier and faster to explore the significance of
heterogeneity in single-particle datasets. Maskiton features include: resumable uploads to facilitate
transfer of large datasets to the server, custom mask creation in the browser, continual progress
updates, and interactive viewing of classification results. To demonstrate the value of this tool, we
provide examples of its use on several experimental datasets and include analyses of the
independent terminus mobility within the Ltn1 E3 ubiquitin ligase, the in-vitro assembly of 30S
ribosomal subunits, and classification complexity reduction within Immunoglobulin M. This work
also serves as a proof-of-concept for the development of future cross-platform, interactive user
interfaces for electron microscopy data processing.
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Introduction
Transmission electron microscopy (TEM) is a useful tool for determining the composition,
arrangement and structure of biological macromolecules. A standard EM methodology is to
image samples in a mono-disperse state so that individual particles of the sample can be
distinguished and analyzed. Since TEM images of these single-particles are typically
extremely noisy, the particles are usually interpreted only after being aligned and averaged
to improve the signal-to-noise ratio(Frank, 2006; Ruprecht and Nield, 2001). In many cases,
the raw data is also heterogeneous as it can consist of different views of particles in random
orientations and structural states. This greatly complicates the task of aligning and sorting
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particles, but also provides the opportunity for creating three-dimensional reconstructions or
observing distinct conformational and compositional states. Characterizing these states, even
at relatively low resolution, has provided significant insights into functional mechanisms
and relationships. Examples include the flexibility of dynein(Burgess et al., 2003), the
assembly of the small 30S subunit of the E coli ribosome(Mulder et al., 2010), domains
movements of fatty-acid synthase(Brignole et al., 2009), and flexibility and motions of the
Ltn1 complex(Lyumkis et al., 2013).

In TEM, classification broadly refers to the act of sorting heterogeneous datasets into less-
heterogeneous subsets so that further processing and interpretation are possible.
Classification can be used to improve the resolution of a dataset by identifying and
removing ‘bad’ particles, or for distinguishing between distinct structural states present in a
dataset. It is common to attempt to exclude portions of datasets from classification if they
are known to be unimportant and possibly deleterious to a satisfactory result. The most
common example of this is excluding the background around particles using simple circular
masks. It is also possible to use customized masks that restrict classifications to specific
regions of particles(Penczek et al., 2006), though this is less common.

Examples of algorithms employed in TEM for classification include principal-component
analysis(Frank and van Heel, 1982), neural networks(Pascual-Montano, 2001), maximum-
likelihood(Scheres et al., 2005), and others. Considerable effort has been put into improving
the quality and reliability of classification algorithms so that they can be used with less a
priori knowledge or user input(Frey and Dueck, 2007; Scheres et al., 2005; Sorzano et al.,
2010). Nevertheless, classification often remains highly dependent on user feedback, since it
is an involved, iterative process that requires the investigator to simultaneously judge the
validity, and interpret the meaning, of results. Unfortunately, while tools focused on
allowing users to interact more seamlessly with their data are of great potential value, they
have received far less attention.

In this work we describe a new classification tool, Maskiton, which allows users to create
custom masks, launch 2D classifications, and examine their results interactively using a
web-based interface. Through the use of custom masks, Maskiton allows focused-
classification on specific regions of datasets and direct testing of possible dependencies
between different areas of structural heterogeneity. The benefits of Maskiton are
demonstrated by its application to three biological case studies: the flexibility of Ltn1
ubiquitin ligase, the assembly of the 30S ribosomal subunit, and the domain movements of
Immunoglobulin M.

Methods
Overall Description of Maskiton

Maskiton is a web-based tool for performing 2D classifications of aligned single-particle
TEM data. Its primary design goal was to allow custom masks to be easily created and used
for focused classification, and to provide fast feedback and results to the user. It consists of a
client-side portion that runs locally on the user’s web browser, and server-side components
that can be run on one or more machines while serving multiple clients. The client-side
portion is responsible for handling user input and displaying results, while the server-side
component stores, manages and processes data.

Maskiton User Interface
Users begin by selecting an aligned stack of particles, in IMAGIC format(van Heel and
Keegstra, 1981), on their local machine in the web-interface (Figure 1a). Users may also
select from a list of datasets that have been made publicly available for demonstration and
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testing purposes. Selecting an image stack prompts the server to check for the equivalent file
in its storage, and if the file is incomplete or missing, requests that the client send the
remaining data. This means large uploads can be resumed if stopped or interrupted, a critical
feature when the files being uploaded are gigabytes in size. Resumable uploads also obviates
the need for server-side infrastructure to annotate and browse previously uploaded data,
since the user is left to managing this themselves. While not an explicit security measure,
this implementation also has the side-benefit of obfuscating and anonymizing the content of
uploaded data, since the server is never given any identifying metadata, such as sample type,
etc.

As soon as a particle stack is uploaded/selected, the server begins calculating the stack’s
average so that it can be displayed in the user interface (Figure 1b). The displayed average is
updated in the client interface as it is being calculated on the server. Users may begin
designing custom masks, or even start classification jobs while the stack average is still
being calculated, and results from these classification jobs will be similarly updated as they
progress on the server. A variety of drawing tools (Figure 1d) are provided to create the
custom masks, and the masks can be assigned labels and colors so that results can be more
easily tracked in the interface (Figure 1c). The drawing tools include brushes for painting or
erasing portions of masks, and sliders for changing brush width and edge softness. New
classification jobs are started by setting classification parameters, described in more detail
later, and pressing the ‘Start Job’ button (Figure 1e) in the interface. The class averages
produced by classification jobs are then displayed and updated as the classification
progresses on the server (Figure 1f). Clicking on a class average in the results panel toggles
a zoomed viewer (Figure 1g) that can be moved and resized. While the zoomed viewer is
visible, passing the mouse cursor over classes creates ‘movie-like’ transitions in the zoomed
view that make it easy to compare them. URLs for the associated jobs are also provided so
that they can be saved or shared with collaborators. A video demonstration of this entire
process is available in the supplemental materials.

Infrastructure
The Maskiton user-interface is built using HTML5, CSS3 and Javascript. Drawing of
custom masks is implemented using the canvas element of HTML5. The client-side code
communicates with the server–side component through a RESTful(Fielding, 2000) interface
that is used for saving, retrieving, and manipulating masks, images, and jobs. The server-
side component of Maskiton is currently composed of three different servers that each
handles specific types of resources. An nginx(Reese, 2008) server handles the serving of
static content, such as images, a node.js(Tilkov and Vinoski, 2010) server handles file
uploads, and a python server handles job submission and progress updates. All three servers
can be run on the same machine, or split across separate machines if needed. It should also
be possible to run multiple instances from behind HTTP load-balancers if the user load
becomes too large for a single server to handle.

The server-side software consists largely of Python scripts that perform bookkeeping and
coordination of the many concurrent processes spawned while using Maskiton. These
processes make use of several programs from third-party EM software packages. The proc2d
program from EMAN(Ludtke et al., 1999) is used for converting between file formats, while
programs from the Xmipp(Marabini et al., 1996) package are used for image processing, and
classification using the self-organizing map (SOM) (Pascual-Montano, 2001) algorithm.
Many of the processing steps have been carefully structured to occur in a progressive,
incremental manner, so that intermediate results can be forwarded back to the client quickly
and regularly (Figure 2). This is largely accomplished by splitting datasets into small subsets
and processing them sequentially rather than as single entities. A further speedup is also
achieved, when necessary, by starting with pyramidally binned versions of datasets, and
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moving through progressively less-binned versions until the full, unbinned dataset has been
processed. While this does increase the total processing time somewhat, it greatly reduces
the latency between progress updates, especially on initial job submission.

To make the server-side processing as efficient as possible, processed data is cached at a
granular level to make it possible for multiple processes to share computationally expensive
steps. This is done using a file-based caching and locking strategy that allows individual
Python functions to save processed results to file paths that are uniquely hashed based on
inputs. A 128-bit MD5 function is used to generate the file system cache paths making it
extremely unlikely for random collisions to occur. File reads and writes are carefully
orchestrated using atomic file-system operations, such as linking/renaming operations. This
deterministic file-system level caching, along with careful inter-process coordination using
atomic file-system operations, allows individual scripts to remain loosely coupled at the
code level but still share and reuse a significant amount of processing results.

Availability
A publicly accessible installation of Maskiton is available at http://maskiton.scripps.edu.
The source code is available at http://github.com/nramm/maskiton and is released under the
Apache license http://www.apache.org/licenses/LICENSE-2.0.html. Development was done
under OS X 10.7, and server code has been tested on OS X 10.6, 10.7, 10.8, Fedora 16, and
Fedora 17. The client-side browser code has been tested in Safari, Chrome and Firefox.

Public Datasets
Several datasets are made publicly available through the Maskiton interface to allow
evaluation of the software without having to upload a dataset. Averages of these datasets are
shown in Figure 3, and descriptions of each are as follows:

1. Ltn1: A dataset of the Ltn1 / Listerin E3 ubiquitin ligase(Bengtson and Joazeiro,
2010) whose structure and extensive flexibility has been analyzed using single
particle EM(Lyumkis et al., 2013). This stack consists of 31,297 negatively stained
particles, with a box size of 80×80 pixels at 4.36 Å/pixel. Preliminary reference-
free alignments of the CTF-corrected particles were generated using the maximum
likelihood routine(Scheres et al., 2005) from Xmipp(Marabini et al., 1996).
Thereafter, the best classes were input to an iterative procedure consisting of a
reference-based alignment in SPIDER(Frank et al., 1996), followed by multivariate
statistical analysis and hierarchical ascendant classification in IMAGIC(van Heel
and Keegstra, 1981). An iterative procedure consisting of the above steps was used
to produce the final aligned stack (Figure 3a). Further details on the data set can be
found in Lyumkis et al. (2013).

2. 30S Ribosomes: A dataset from a time-point in the assembly of the 30S subunit of
the E coli ribosome, as described in Mulder, et al. (2010). This stack is from a time
point toward the end of the in-vitro assembly and consists of 52,718 negative-
stained particles with a box size of 224×224 pixels at 2.24Å/pixel. Particles were
picked using DoGPicker(Voss et al., 2009) and CTF estimated and corrected using
ACE2(Mallick et al., 2005). To generate the aligned stack, a coarse Xmipp
maximum-likelihood classification(Scheres et al., 2005) with 10 references was
used to remove particles that fell into uninterpretable classes, and identify a
structurally consistent core that was used as a reference for aligning the remaining
particles (Figure 3b).

3. IgM: A negatively stained dataset of the polyclonal Immunoglobulin M (IgM).
This stack contains 3,713 particles with a box size of 336×336 pixels at 2.08Å/
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pixel. An initial, crude stack of 5,989 particles was processed using a coarse,
binned by 4, maximum-likelihood alignment from Xmipp(Marabini et al., 1996),
with 5 classes requested. These classes were used to remove bad ‘particles’ from
the dataset and to create a reference to which the remaining particles were aligned
using an iterative Xmipp reference-based alignment. The initial reference structure
was similar in appearance to the final stack average (Figure 3c).

4. Synthetic: A synthetic dataset used to validate that the classification back-end was
functioning during development. This dataset is also of instructional value for
testing the effect of the various Maskiton classification parameters on resulting
classifications. The dataset was generated by replicating and combining two
distinct ‘models’ with added Gaussian noise. Each model has a pair of spots
diagonally opposite one another, and the two models are mutually exclusive
(Figure 3d).

Dataset Alignment
Classification in Maskiton currently requires that particles be aligned. For some structures
this process can be quite challenging, as it may be difficult to identify a structurally
consistent core to use as a reference. Each heterogeneous data set will exhibit unique
characteristics that present different opportunities for customized alignments. The general
strategy employed here is to identify and align to the largest homogeneous region (LHR) of
the data. Once aligned, the LHR represents a frame of reference outside of which 2D
heterogeneity can be analyzed in greater detail using Maskiton.

The general protocol used for the 2D alignment of the sample datasets was:

1. Identify the predominant orientations within a dataset (aligned 2D classes) using
any ab initio 2D alignment and classification algorithm. In order to maximize the
benefits of 2D averaging and noise reduction, while minimizing contamination
from heterogeneous particle populations within each class, a general starting point
is to create enough classes to accommodate ~100 particles within each class.
Samples with preferred orientation may tolerate higher particle numbers, while
highly heterogeneous samples with multiple orientations may require fewer particle
numbers and greater alignment and classification accuracy. A binned version of the
dataset is also often used for faster processing.

2. Align the classes to each other and identify regions of homogeneity and
heterogeneity. This step is facilitated by preferred specimen orientation and will be
more challenging without prior 3D information to discriminate heterogeneity from
orientation. Careful inspection is required.

3. Particles sharing orientation should be aligned using their LHR as a reference. This
reference can consist of using an unmodified class from step 1, if the LHR is large,
or by masking to create a reference that focuses on the LHR. Alternatively, one can
align the classes themselves and then later apply the alignment transformations to
the raw particles of each class. This is often better in cases where the LHR is not as
well defined.

4. Use Maskiton on the aligned dataset and interpret the results. These results will
indicate not only interesting observations of the heterogeneity, but also possible
misalignments or better LHRs for re-alignment.

5. If the Maskiton results from step 4 make alignment problems obvious, or provide
indication of a better LHR, steps 2 or 3 can be repeated.
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Results and Discussion
Motivation and Interface Overview

Our goal was to facilitate focused 2D classification by allowing users to create custom
masks without the use of conventional desktop painting applications or explicit file format
conversions. Another primary goal was to greatly improve the interactivity of the
classification process so that users could more quickly assess the progress of classification
jobs and adapt their strategy as required. Performing 2D classification using custom masks
is useful for examining specific areas in greater depth, especially in situations where global
variations would otherwise dominate subtle differences. Another use of custom masks is to
explicitly test if variations within masked areas relate to variations seen outside masked
areas. Such can occur, for example, in strutures that have conformational changes
propagated between distant regions. We note, however, that since masked 2D classification
uses stacks of pre-aligned particles, the user must carefully consider the effect of the global
alignment when interpreting the significance of such correlations.

It is easiest to appreciate the benefit of interactive masking and classification by using the
interface available at the publicly hosted Maskiton installation: http://maskiton.scripps.edu.
A quick video tour is provided in the supplemental materials. The viewing tools provided by
Maskiton have also proved a useful aid to gaining an intuitive understanding of variations
revealed by classifications. Maskiton thus provides for greater productivity, and by
extension, more thorough explorations and interpretations of complex datasets.

A key component of the interactive experience is the emphasis on generating frequent and
continual feedback from computational processes that would normally require a substantial
amount of time to complete. A major consideration in using the Xmipp SOM routine within
Maskiton is that it was relatively easy to integrate it in such a manner that intermediate
results were returned quickly and regularly. Another advantage of the SOM algorithm is that
it naturally arranges classes in a manner convenient for viewing and comparison by users.
We note, however, that the incremental processing strategy employed by Maskiton does
theoretically alter the behavior of the underlying classification algorithm so that it is not
equivalent to the original. Whether these changes are noticeable in practice, or even
detrimental, is highly dependent on the algorithm being used, the data being analyzed, and if
any measures have been taken to counteract these effects. For example, binning of the
datasets causes the SOM algorithm to behave like a low-resolution biased counterpart of the
origial, a side effect that is arguably beneficial. Conversely, one effect of the incremental
processing is that it can cause the SOM algorithm to converge much faster than it otherwise
would when given the full dataset all at once. We counteracted this effect by significantly
modifying some of the default parameter values from the command-line program. We
believe other classification algorithms could be similarly modified into ‘low-latency’
versions, as long as the side effects of any required changes were reasoned out carefully and
dealt with as needed.

Creating a low-latency interface for processing large datasets is a challenging task. One
major obstacle in creating the existing functionality was structuring the processing so that
data would not be duplicated while allowing multiple concurrent processes to work with it.
Unfortunately, current popular EM data formats are not well suited for this type of
environment, as they favor substantial data duplication or modification of existing data, such
as image headers, making it impossible to reliably share data between concurrent processes.
Since devising a new data format or re-implementing existing algorithms was not part of the
original Maskiton goals, we worked around these issues as best we could, but we believe
that a more suitable data format is the next step before the incorporation of future features.
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The classification parameters exposed by Maskiton map fairly directly to those used in the
underlying Xmipp SOM routine(Pascual-Montano, 2001), and readers are referred to the
original publication and Xmipp documentation for further details and quantitative
explanations of the parameters. Here, we will only describe the general effect these
parameters have on Maskiton classifications.

The SOM algorithm works by classifying particles into a two-dimensional grid of classes.
The size of this grid, and thus the number of classes, is set by changing the x dim and y dim
parameters. While larger grid sizes may reveal more subtle variations in a dataset, they also
tend to require a greater number of particles so that each potential class has a better chance
of being populated by a statistically significant number of particles. Large grid sizes may
also bias Maskiton classification toward interpolating intermediate states from noise. The
risk of generating these kinds of artifacts is strongly dependent on the quality of the
alignment and the SNR of the data, but Maskiton makes it easy for users to explore different
grid sizes to find one appropriate for their data.

The radius, alpha and iter parameters all have subtly different effects on Maskiton’s ability
to recover distinctly heterogeneous features within the data. Careful specification of these
parameters will ensure that a balance can be attained between the recovery of classes that are
overly influenced by noise(Stewart and Grigorieff, 2004) vs. those that describe true
structural variations within the data. Of the three parameters, radius has the most
pronounced effect on classifications. Larger radii may result in less biased and more linearly
distributed classes, but smaller radii allow the classification to explore less linear
separations, and hence may reveal subtler changes and result in more equally populated
classes. Alpha and iter also have a similar effect, but the default values generally work well
and do not need to be changed. Alpha controls the ‘learning rate’ of the algorithm, and a low
value, such as the default, is generally preferred since it reduces bias by allowing the
algorithm to more slowly approach convergence. A higher iter parameter allows each
particle in the classification more opportunities to find the best fitting class, and while a
higher value may theoretically improve the classification, diminishing returns quickly
become apparent.

The importance of classification parameters, their interdependence, and their dependence on
the data itself, further underscores the benefit of a highly interactive interface so that users
can quickly explore parameter-space. This benefit is not just applicable to SOM
classification, but to any data processing procedure with non-trivial effects. Faster, more
direct, feedback allows users to more quickly come to their own conclusion as to the
behavior of settings on their data, more fairly evaluate whether a method is appropriate for
their data, and more thoroughly assess the validity of their results.

Maskiton application: analysis of mobility independence in Ltn1 E3 ligase
Ltn1 is an E3 ubiquitin ligase that plays a critical role in eukaryotic translational
surveillance(Bengtson and Joazeiro, 2010). Like all E3s, Ltn1 is a bisubstrate enzyme and is
responsible for (1) substrate recognition and (2) recruitment of an E2-Ubiquitin
conjugate(Deshaies and Joazeiro, 2009). Recently, EM single particle analysis of Ltn1
revealed that the protein adopts an elongated form and exhibits continuous flexibility about
two hinge regions. Using an iterative approach for alignment and classification, Lyumkis et
al. (2013) were able to identify multiple conformational snapshots of the protein that can be
arranged according to mobility within the N- and C-termini. With a simple 2D arrangement
of the conformers, the movements within the termini appeared distinct and independent of
one another, which led to a model by which Ltn1 carries out its biological functions.
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Maskiton is capable of assessing mobility independence (or dependence) without the need to
arrange multiple conformers manually, as was necessary in the analysis in Lyumkis et al.
(2013). For example, when the Ltn1 data set is roughly aligned to its central region,
heterogeneity is apparent in both the N- (left region) and C- (right region) termini (Figure
4a–e, leftmost panel). A Maskiton classification using a mask on the full protein resolves
much of this heterogeneity, leaving only a baseline amount corresponding to the C-terminus
(Figure 4a) (this baseline remains present even with iterative sub-classifications). In
contrast, the application of a mask to Ltn1’s N-terminus elicits increased heterogeneity
within its C-terminus (Figure 4b), indicating that the mobility of Ltn1’s C-terminus does not
depend on a single conformation of its N-terminus. Similarly, application of a small mask
either to a single (Figure 4c–d) or to multiple (Figure 4e) regions of its C-terminus elicit
increased heterogeneity within the N-terminus, likewise indicating mobility independence
between the two termini. Had the regions been dependent, it would be possible to resolve all
the observed conformations using only a single mask on any one of them.

Maskiton application: analysis of 30S ribosome subunit assembly
Ribosomes are macromolecular machines that convert messenger RNA into proteins, and an
understanding of ribosome biogenesis is central to cellular physiology. The bacterial
ribosome contains two subunits (50S and 30S) that can self assemble in vitro. The 30S
ribosomal subunit is composed of a single ~1500-nucleotide 16S RNA component and 20
ribosomal proteins (“r-proteins”). Previously, we used single-particle reference-free
alignment and classification to identify subpopulations of assembly intermediates in an in-
vitro assembly time course (Mulder et al., 2010).

One of the major transitions observed in the 30S assembly pathway occurs when the RNA
region corresponding to the ‘head’ begins to fold and become visible in 2D classifications
(Figure 5a). Throughout this event, there are subtle changes that occur in parallel, whose
precise temporal order can vary (for details, see Mulder et al. (2010)). These include binding
of the ribosomal-associated proteins S3, S2, S21, S10, and S14. Maskiton is useful in
assessing the temporal dependencies of subunit assembly within the 30S ribosomal subunit.
For example, after masking on an area that is expected to cover the S2 ribosomal protein, it
is possible to recover classes with and without density in this region, (Figure 5b) as well as
classes that show the folding and unfolding of the 30S head. Careful examination of these
classes indicates that a folded 30S head may be required for S2 binding, but not vice versa.
In contrast, masking on an area covering the ribosomal proteins S11/S21 no longer shows
any strong correlation with the folding/unfolding of the 30S head, despite the clear presence
and absence of density in that region. Alongside previous work (Williamson, 2005), this
indicates that the observed density change is likely due to S21 binding and not S11, since of
the two, S21 is believed to bind only after the head is at least partially folded. Using custom
masks makes it easier to analyze the potential presence or absence of specific proteins, and
test for their interdependence (Figure 5b/c). Maskiton is an exceedingly useful tool for such
a discovery-based approach since datasets are easier to interpret, and subsequent
experiments faster to devise. As it is, further analysis of the 30S ribosomal subunit dataset
using Maskiton has provided additional insights and avenues for experimentation.

Maskiton application: reducing classification complexity in Immunoglobulin M
Immunoglobulin M (IgM), produced by B-cells on initial exposure to an antigen, is a
polymer commonly composed of five individual antibodies joined by disulfide bonds.
Though the pentameric form of IgM appears to predominate, there is also biochemical
evidence of hexameric instances (Gautam and Loh, 2011). The polymeric nature of IgM
makes it capable of polyvalent cooperative binding, and thus improved avidity. Current
structural knowledge of IgM indicates that the pentameric macromolecule is largely planar,
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but has a short central stalk, and outside edges that can likely curl toward the stalk as part of
its functional role in binding antigens (Czajkowsky and Shao, 2009; Volkov et al., 2003).

Our examination of IgM by EM reveals a star-shaped planar structure of 5 antibody subunits
with a missing gap that creates the appearance of an incomplete six-fold symmetric structure
(Figure 6a). In this average, the antibodies of IgM radiate outward from a well-defined inner
core, becoming less defined at increasing radial distance from the center. The outer
blurriness indicates that these regions are likely structurally flexible and have been blurred
by averaging. Since the structure contains ten antibody Fab ends, and each is flexible and
can likely move somewhat independently, the number of possible structural variations is
immense and would be difficult to resolve without using masked classification or the careful
analysis of segmented antibody subunits. Using Maskiton, it is straightforward to create a
custom mask to observe the range of motions adopted by a single selected Fab end (Figure
6b). The observation that the other, unmasked regions remain poorly defined supports the
hypothesis that the Fabs move independent of one another. Similar masks on the other Fab
ends have equivalent results, indicating that they all experience the same range of motion.
Maskiton also makes it possible to quickly test whether the missing gap in the average is
hiding a small population having an antibody at that position (Figure 6c). After extensive
exploration using Maskiton, it became apparent that there is no hexameric sub-population in
the dataset. Careful measurement of the spacing between the subunits shows that the gap is
~10% smaller than the space occupied by the other antibodies, thus indicating that steric
hindrance may prevent the incorporation of a sixth antibody, despite the deceptive
appearance.

Conclusions
We have developed a tool for rapid, interactive masking and classification that greatly
enhances the process of understanding highly complex and heterogene ous single-particle
datasets. Faster, incremental progress updates translate into more rapid data exploration,
more extensive interpretation of classification results, and improve a user’s ability to
manage and track multiple lines of inquiry. Interactive web-based viewing tools are also
useful for quickly sharing results and interpretations with collaborators in a way that is
superior to static images and text. These benefits extend to both novice and experienced
users, since novice users can more quickly gain an intuitive understanding of how
classification behaves, while experienced users can more rapidly explore their data.

Maskiton currently requires aligned stacks, but could be extended in the future to integrate
alignment so that classification becomes an iterative, interactive process where users can
manually tweak or correct misalignments as they become apparent. In this regard, Maskiton
is also a prototype for the incorporation of other steps in EM processing that could benefit
from low-latency interfaces. One example is particle-picking, for which there exists many
highly-capable particle picking algorithms (Sorzano et al., 2009; Voss et al., 2009; Zhu et
al., 2004) that would integrate nicely in an interactive interface. An additional benefit to the
Maskiton approach is that it can help alleviate other mundane obstacles to successful
software use such as installation, configuration, and parameter determination.

Finally, to demonstrate the utility of Maskiton for focused classification, we applied it to the
analysis of several experimental datasets that have been used in previously published results,
and compared these results to the ones obtained using Maskiton. The interpretations and
results thus obtained were broadly comparable, but the overall effort and time put into
obtaining the new Maskiton results was greatly reduced. We have also shown specific
examples of how focused classification in Maskiton may allow for a more thorough
interpretation of results that serve as a better guide for further experiments. Altogether, these
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results indicate the value of making focused classification, even in 2D, much easier and
approachable for both novice and experienced users.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.

Acknowledgments
This project was supported by a grant from National Institute of General Medical Sciences (9 P41 GM103310-11)
from the National Institutes of Health.

References
Bengtson MH, Joazeiro CAP. Role of a ribosome-associated E3 ubiquitin ligase in protein quality

control. Nature. 2010; 467:470–473. [PubMed: 20835226]

Brignole EJ, Smith S, Asturias FJ. Conformational flexibility of metazoan fatty acid synthase enables
catalysis. Nat. Struct. Mol Biol. 2009; 16:190–197. [PubMed: 19151726]

Burgess SA, Walker ML, Sakakibara H, Knight PJ, Oiwa K. Dynein structure and power stroke.
Nature. 2003; 421:715–718. [PubMed: 12610617]

Czajkowsky DM, Shao Z. The human IgM pentamer is a mushroom-shaped molecule with a flexural
bias. PNAS. 2009; 106:14960–14965. [PubMed: 19706439]

Deshaies RJ, Joazeiro CAP. RING domain E3 ubiquitin ligases. Annu. Rev Biochem. 2009; 78:399–
434. [PubMed: 19489725]

Fielding RT. Architectural styles and the design of network-based software architectures. 2000

Frank, J. Three-Dimensional Electron Microscopy Of Macromolecular Assemblies. USA: Oxford
University Press; 2006.

Frank J, Radermacher M, Penczek P, Zhu J, Li Y, et al. SPIDER and WEB: processing and
visualization of images in 3D electron microscopy and related fields. J. Struct. Biol. 1996; 116:190–
199. [PubMed: 8742743]

Frank J, van Heel M. Correspondence analysis of aligned images of biological particles. J. Mol Bio.
1982; 161:134–137. [PubMed: 7154073]

Frey BJ, Dueck D. Clustering by Passing Messages Between Data Points. Science. 2007; 315:972–
976. [PubMed: 17218491]

Gautam S, Loh KC. Immunoglobulin-M purification--challenges and perspectives. Biotechnol Adv.
2011; 29:840–849. [PubMed: 21762771]

Ludtke SJ, Baldwin PR, Chiu W. EMAN: semiautomated software for high-resolution single-particle
reconstructions. J. Struct Biol. 1999; 128:82–97. [PubMed: 10600563]

Lyumkis D, Doamekpor S, Bengston M, Lee JW, Toro T, et al. Single-Particle Electron Microscopy
Reveals Extensive Conformational Variability of the Ltn1 E3 Ligase. PNAS. 2013 2013 Jan 14
epub ahead of print.

Mallick SP, Carragher B, Potter CS, Kriegman DJ. ACE: automated CTF estimation. Ultramicroscopy.
2005; 104:8–29. [PubMed: 15935913]

MC, Marco S, Fernández JJ, et al. Xmipp: An Image Processing Package for Electron Microscopy. J.
Struct Biol. 1996; 116:237–240. [PubMed: 8812978]

Mulder AM, Yoshioka C, Beck AH, Bunner AE, Milligan RA, et al. Visualizing ribosome biogenesis:
parallel assembly pathways for the 30S subunit. Science. 2010; 330:673–677. [PubMed:
21030658]

Pascual-Montano A. A Novel Neural Network Technique for Analysis and Classification of EM
Single-Particle Images. J. Struct Biol. 2001; 133:233–245. [PubMed: 11472094]

Penczek PA, Frank J, Spahn CMT. A method of focused classification, based on the bootstrap 3D
variance analysis, and its application to EF-G-dependent translocation. J. Struct. Biol. 2006;
154:184–194. [PubMed: 16520062]

Reese W. Nginx: the high-performance web server and reverse proxy. Linux Journal. 2008:2. 2008.

Yoshioka et al. Page 10

J Struct Biol. Author manuscript; available in PMC 2014 May 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Ruprecht J, Nield J. Determining the structure of biological macromolecules by transmission electron
microscopy, single particle analysis and 3D reconstruction. Prog. Biophys. Mol Biol. 2001;
75:121–164. [PubMed: 11376797]

Scheres SHW, Valle M, Nuñez R, Sorzano COS, Marabini R, et al. Maximum-likelihood multi-
reference refinement for electron microscopy images. J. Mol Bio. 2005; 348:139–149. [PubMed:
15808859]

Sorzano COS, Bilbao-Castro JR, Shkolnisky Y, Alcorlo M, Melero R, et al. A clustering approach to
multireference alignment of single-particle projections in electron microscopy. J. Struct Biol.
2010; 171:197–206. [PubMed: 20362059]

Sorzano COS, Recarte E, Alcorlo M, Bilbao-Castro JR, San-Martín C, et al. Automatic particle
selection from electron micrographs using machine learning techniques. J. Struct Biol. 2009;
167:252–260. [PubMed: 19555764]

Stewart A, Grigorieff N. Noise bias in the refinement of structures derived from single particles.
Ultramicroscopy. 2004; 102:67–84. [PubMed: 15556702]

Tilkov S, Vinoski S. Node.js: Using JavaScript to Build High-Performance Network Programs.
Internet Computing, IEEE. 2010; 14:80–83.

van Heel M, Keegstra W. IMAGIC: A fast, flexible and friendly image analysis software system.
Ultramicroscopy. 1981; 7:113–129.

Volkov VV, Lapuk VA, Kayushina RL, Shtykova EV, Varlamova EY, et al. Low-resolution structure
of immunoglobulins IgG1, IgM and rheumatoid factor IgM-RF from solution X-ray scattering
data. J Appl Crystallogr. 2003; 36:503–508.

Voss NR, Yoshioka CK, Radermacher M, Potter CS, Carragher B. DoG Picker and TiltPicker:
software tools to facilitate particle selection in single particle electron microscopy. J. Struct. Biol.
2009; 166:205–213. [PubMed: 19374019]

Williamson JR. Assembly of the 30S ribosomal subunit. Q Rev Biophys. 2005; 38:397–403. [PubMed:
16934171]

Zhu Y, Carragher B, Glaeser RM, Fellmann D, Bajaj C, et al. Automatic particle selection: results of a
comparative study. J. Struct Biol. 2004; 145:3–14. [PubMed: 15065668]

Yoshioka et al. Page 11

J Struct Biol. Author manuscript; available in PMC 2014 May 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 1.
An overview of the Maskiton web interface. This interface allows custom masks to be drawn
so that classifications can be focused on specific areas of a dataset. (a) Users can upload new
stacks by selecting them on their local machine, or they can select one of the public datasets.
Since uploads are resumable, selecting a stack that has already been uploaded is equivalent
to selecting the same stack on the server. (b) The stack average is displayed and the mask
currently being edited is superimposed on it. The edges of the masked areas are highlighted
in green. (c) New masks are created, and can be given labels and colors to keep them
organized. The mask superimposed above the stack average is selected by clicking on its
entry in the list. (d) Simple drawing tools for editing masks are available. These include a
brush, eraser, and sliders for changing width and softness. The softness of mask edges is
reflected by the width of the green outline on the mask. (e) The classification parameters are
set and new jobs are started on the server by pressing the ‘Start Job’ button. (f) Results for
classification jobs started in the current session are displayed, and the results and progress
bar are updated as the classification progresses. (g) A zoom-in viewer can be opened by
clicking on any of the class images in the results. This viewer displays the class currently
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beneath the cursor, and allows for movie-like browsing and comparison. This zoom-in view
can be moved and resized for convenience.
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Figure 2.
A simplified overview of the client/server interactions and processes used in Maskiton. The
client uploads/selects a stack on the server by selecting it in the web browser on the local
machine. Once selected, the stack average is displayed in the browser, or if the averaging
process is still running, as a series of updates until the full dataset is averaged. This
progressive averaging occurs while incrementally splitting and converting the stack from
IMAGIC to Xmipp format. The user can submit classification jobs without having to wait
for averaging to finish, and the classification processes will reuse as much previously cached
data as possible while returning their own incremental progress updates. The server caches a
substantial amount of processing to the disk in the event that a future process can reuse a
calculation to speed up the return of information to the client.
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Figure 3.
Averages of datasets included in public Maskiton server. (a) Ltn1 (Listerin) dataset. (b) 30S
ribosome subunit assembly timepoint. (c) Immunoglobulin M. (d) Synthetic test dataset. The
two models that were combined to create the full dataset are shown in inset.
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Figure 4.
Mobility independence within Ltn1’s termini in Maskiton. (a–e) For all masking procedures,
the aligned average of the full data set is shown at left, followed by the masked region, and 8
distinct class averages resulting from the masked classification at right. Arrows indicate
heterogeneity identified within the outlined/boxed region in the class averages. The aligned
dataset was masked with (a) a circular mask to show overall global heterogeneity, (b) an N-
terminus mask (left region) to show increased heterogeneity within the C-terminus (right
region) of Ltn1, and (c–e) three different C-terminus masks to show increased heterogeneity
within the N-terminus of the protein.
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Figure 5.
Classifications of a time point from the in vitro assembly of the 30S ribosomal subunit in
Maskiton. (a) Classes resulting from using a mask covering the full subunit, showing that
the major variation in the dataset is attributable to unfolding of the 30S ‘head’, and some
further unfolding of the 30S ‘body’. Classes resulting from using a mask covering (b) the S2
ribosomal protein and (c) the S11/21 ribosomal protein. (b–c) Arrows in the expanded insets
indicate presence / absence of the density corresponding to the masked region.
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Figure 6.
Classifications of IgM in Maskiton. (a) An average of the full dataset showing the overall
structure of the IgM with an approximate six-fold symmetry broken by a missing gap. (b)
Masking only a single antibody arm shows the back-and-forth rotation of the Fab,
highlighted by the red arrow. (c) Masking on the missing wedge indicates that this dataset
does not contain a small sub-population of IgMs with a sixth antibody. Closer examination
of the spacing of this wedge shows that it is ~10% smaller than the spacing occupied by the
other antibody subunits.
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