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Abstract

Content-based image retrieval (CBIR) has been heralded as a mechanism to cope with the increasingly larger volumes of
information present in medical imaging repositories. However, generic, extensible CBIR frameworks that work natively with
Picture Archive and Communication Systems (PACS) are scarce. In this article we propose a methodology for parametric
CBIR based on similarity profiles. The architecture and implementation of a profiled CBIR system, based on query by
example, atop Dicoogle, an open-source, full-fletched PACS is also presented and discussed. In this solution, CBIR profiles
allow the specification of both a distance function to be applied and the feature set that must be present for that function
to operate. The presented framework provides the basis for a CBIR expansion mechanism and the solution developed
integrates with DICOM based PACS networks where it provides CBIR functionality in a seamless manner.
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Introduction

Radiology requires a careful interpretation of the signals present

in medical images in order to provide an accurate diagnosis. Since

its appearance, but particularly after the move of the imaging

technologies to a digital medium, radiology has become a

prevalent specialty throughout most health-care institutions. In

such imaging institutions copious amounts of digital data are being

created and stored. For instance, during 2006, around 50000

images were produced per day in large medical institutions [1].

This rapid increase in collected data, known as ‘‘data explosion’’,

is a recent phenomenon and was made possible due to both the

capacity increments of the storage devices and the technological

breakthroughs on imaging modalities. Nowadays, such modalities

can very quickly produce images of unprecedented resolution and

detail [2].

Nonetheless, the variety and quantity of the produced images

can become confusing, even for trained specialists, which are

reporting that information overload has decreased their produc-

tivity [1].

A promising approach to manage the ‘‘data explosion’’ is to

allow computer based algorithms to assist in the tagging and

sorting of data. The goal is to automatically extract semantic and

similarity information and expose that information to a practi-

tioner in a quick and seamless way.

The case for assisted interpretation is, however, motivated not

only by time and space constrains but also by the recognition that

some inter-observer variation exists due to perceptual errors or

fatigue [3,4].

Content-based Image Retrieval (CBIR) methods have shown

great promise in helping practitioners sift through the large

amounts of data present in medical institutions. These methods

rely on the automatic extraction of content from a source image to

provide the query terms for a search. In this context, content

means some property extracted from the image such as color and

intensity distribution, texture, shape, or high level features such as

the presence of nodes or objects of interest. In practical terms,

CBIR systems allow practitioners to use images from any study

they are working on as query to the image database hence

obtaining a set of results that, in some sense, are similar to the

original image. CBIR has the potential to save a significant

amount of time to practitioners, enabling them to quickly move

from a source image to a set of similar ones, potentially containing

diagnosis reports. These reports, when compared to the original

image, may strengthen the case for the diagnosis or provide the

practitioner with additional insight.

Given that radiologists often rely in second opinions in order to

validate their diagnosis and increase their confidence levels, CBIR

provides query mechanisms that are very close to the way a

practitioner operates. Typical Picture Archive and Communica-

tion Systems (PACS), however, do not easily cater to this kind of

usage. The underlying Digital Imaging and Communication in

Medicine (DICOM) protocol supports only queries based on

textual template matching over a limited number of fields present

on the DICOM file and defined by the modality [5]. So, while the

DICOM files typically store image encoding information and the

settings under which a study was performed (such as radiation

dosage), excepting for some DICOM Structured Reports, not

much information of semantic value to a practitioner’s diagnosis

can be found on those files. Furthermore, the DICOM fields

which are actually indexed and made available to query depend

on the particular PACS provider and are typically limited to the

patient name, modality and UIDs further hampering the

usefulness of the protocol query mechanisms.
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In this article we propose a methodology, and discuss a working

implementation, for a profile-based CBIR system aimed at PACS

networks. Relying in the concept of metric spaces, an approach

validated by previous works in the area [6] [7], we define similarity

as a proper distance (a metric) over a subset of a feature space. We

detail how we have expanded an open-source PACS, Dicoogle, to

support the data mining and indexing mechanisms to cope with

automatic extraction of image content information and support

query-by-example on medical images. Via support for DICOM

QR (Query/Retrieve) mechanisms our solution can be seamlessly

integrated with functional PACS networks and provide drop in

CBIR functionality. The focus of this article is placed on the

methodology, the architecture and implementation of the tool and

respective PACS integration. Further analysis is being performed

in order to access the clinical validity of the similarity functions

employed.

In the next sections we provide an overview on both PACS and

CBIR technologies. Section IV provides a brief overview of the

related works in the area. In section V we expose Dicoogle’s CBIR

software architecture. The section thereafter details the method-

ology employed, the features, and metrics currently used.

Subsequently we provide our results, point out some directions

for future development and research and present our conclusions.

Picture Archive and Communication Systems
Medical imaging has evolved to become a very valuable tool in

both health-care and research institutions. It is now considered as

a key factor in the process of providing quality diagnoses and

supporting practitioners’ decision-making [8,9]. While in its early

years radiology required some form of physical support for the

images produced, nowadays the process of image creation, storage

and consultation is mostly digital. The move towards digital

radiology gave rise to a set of challenges leading to several

implementations of what are commonly designated by the

umbrella term of PACS. The PACS concept is the embodiment

of distinct hardware and software technologies comprising medical

image and data acquisition equipment, subsequent storage

equipment, and display subsystems, all of which are integrated

by digital networks and end-user software [8] (see figure 1). Such

systems are designed to cope with the high storage needs and

transmission requirements of medical institutions. Besides radiol-

ogy, several other clinical areas have been adopting PACS in their

daily routines, such as cardiology [10], dentistry [11], and

pathology [12].

PACS rely heavily on a set of standard definitions and

communication protocols, DICOM [13]. The DICOM protocol

was, by itself, a major contribution to the exchange of structured

medical imaging data. It is estimated that over one billion

diagnostic imaging procedures will be performed in the United

States during 2014, comprising approximately 100 petabytes of

volume data [14]. Given the increasingly higher demands placed

over PACS solutions and the expected data growth, research in the

area of PACS is very active. New technologies are being actively

explored to help with data storage and management. Some

directions in which new PACS systems are being investigated

include distributed and heterogeneous computing grids [15,16],

Cloud Computing [17], Peer-to-Peer networks [18], and knowl-

edge extraction using indexing engines [19]. Our contribution in

Dicoogle focus on bringing more advanced and seamless

mechanisms for data searching.

Dicoogle PACS. Dicoogle (http://www.dicoogle.com) is an

open source PACS that distinguishes itself from other PACS by

making use of peer-to-peer technologies and document-based

indexing techniques (built atop Lucene search engine library),

rather than the more traditional approach of using relational

databases [18]. Dicoogle’s DICOM functionality allows the

application to be used as a stand-alone PACS or to access an

external PACS network and index its data with minimum

configuration and close to no disruption of both an institution’s

workflow and network (see figure 2). This proves useful when

performing data-mining operations as done in [20]. Dicoogle also

features an extensible plugin-based architecture, which we

leverage to provide CBIR functionality. Since very few PACS

natively support CBIR, an external deployment of Dicoogle can

provide drop in CBIR functionality into an institution’s PACS.

CBIR
Content Based Image Retrieval can be defined as the set of

technologies that help to organize, search and retrieve images

from digital picture repositories according to their visual content.

This is a broad scope definition of which several distinct

approaches, ranging from similarity matching techniques to

interpretation engines and image tagging, fall under [21]. Ideally,

however, CBIR engines should extract data directly from an

image’s content with little to no intervention from the user, in this

case radiologists. Due to the complexity of the task and ambiguities

arising from segmentation and image analysis this is not always

possible or even, in some cases, desirable. A fully automated

approach is, however, the one taken in Dicoogle. This is because

one of the goals is to allow image indexing and seamless

integration with external PACS which may comprise a very large

number of images.

A CBIR architecture can be streamlined into a set of distinct

components, the variations within them are what distinguish

amongst various CBIR strategies and implementations:

N Data sources - Components responsible for image acquisition.

N Feature extraction module - Extracts features from images and

creates a representation suitable to the feature database.

N Feature or image database - Stores, and possibly indexes the

features for fast searches.

N Similarity engine - Is the component in charge of defining the

similarity between images and performing comparisons

between images or features.

Conceptually, Dicoogle CBIR plugin also follows that architec-

ture (see figure 2).

Image features. The most direct approach to compare

images is to match pixel data directly. This approach however is

generally not feasible as it may not be clear which pixels from one

image correspond to which pixels in the other image. Direct pixel

comparison is overly sensible and breaks down when images have

been taken under different lighting conditions with distinct

resolutions. Furthermore, besides being a very slow operation,

there is the problem of how to properly index the image in such a

way as not to have to analyze the entire dataset for every query

made.

Since Dicoogle’s goal is to cope with large imaging datasets

where most imaging information is either redundant or irrelevant,

the analysis is preceded by a feature extraction stage that provides

a reduced representation of the original data in the form of a set of

features. That said, a feature is simply a relevant piece of

information, a synonym for an input variable or attribute of an

image, such as lines, shapes or textures [22], smaller in size than

the original data. Using a feature based approach helps reduce the

size of the data that must be stored and provides superior

generalization capabilities and much better performance than

direct pixel-to-pixel comparison. Of interest is that some features,

Profiled Content Based Image Retrieval on PACS
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being high-level representations of an image, can embody a

particular concept and allow similarity models to become both

more specific and accurate while helping bridging the semantic

gap [23].

Metrics for image similarity. How to define measures of

similarity between content, or features, and how to assess the

results is an ongoing challenge in the area [3] and a topic

garnering the interest of a large number of researchers.

Implicitly, one person has a clear notion of whether any two

objects or images are similar. A trained opinion may have a

different notion of whether two images are similar. Nonetheless,

even for trained eyes, a certain amount of subjectivity is at work

and it influences diagnoses in radiology. Misdiagnoses by

radiologists due to non-medical reasons are reported to be in the

range of 2% to 4% [4,24].

In order to provide a user with mechanisms to retrieve objects

similar to a query image, we must first consider what similarity is.

In this work, as in [6] [25] we follow the metric space approach

to similarity. Hence, in accordance to [7], we define similarity as a

distance function, S(F
 

a, F
 

b)?<, over two elements of the feature

space. Technically we use a dissimilarity function, that is, a

function that returns 0 if, and only if, F
 

a~F
 

b, and increases in

value the more distinct both images are.

A valid similarity measure, being a distance, must therefore

conform to the metric postulates.

So, if a,b are elements of the feature space F , and S(x,y)?< is

our similarity function, then:

N Va,b[F ,S(a,b)§0 non-negativity

N Va,b[F ,S(a,b)~S(b,a) symmetry

N Va,b[F ,a~buS(a,b)~0 identity

N Va,b,c[F ,S(a,c)ƒS(a,b)zS(b,c) triangle inequality

The similarity function can then be used to establish an ordering

through a set of elements So( F
 

) relative to the the original query

object.

Furthermore, relying on the triangular inequality, a property of

all proper distance functions, a wide range of metric indexing

mechanisms can be leveraged to provide increased performance

[7] [26] [27].

In order to provide medically relevant queries via a similarity

function a tight relation between the feature set and the distance

function must be established. For instance, a feature set comprising

edges and segmentations can be more useful to establish shape

similarity than an intensity histogram and entropy. Discriminative

features with semantical meaning greatly simplify the metric. In

general, the more semantic is embedded in a feature the simpler

we can make the metric. There is then a strong dependency

between the similarity function and the features extracted and

subsequently stored, and successful image retrieval depends on

both aspects. Furthermore, the discriminative capabilities of a

feature are very dependent on the context in which they are

applied. For instance, masses and nodes are unlikely to have any

meaning unless we are handling mammograms. This means that

both the extracted features and similarity functions employed can

Figure 1. PACS overview.
doi:10.1371/journal.pone.0061888.g001
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become very modality dependent. Features and functions that

efficiently represent similarity within the scope of a modality can

be entirely not applicable to any other modalities.

Related Work
Content based retrieval systems are currently being deployed for

a variety of purposes, in the form of facial or character recognition,

rhythm detection and comparison, and some forms of template

matching and nearest-neighbor classification. There is also a big

push to bring this set of technologies into the medical arena,

however, the specificities of the area make this a very challenging

task. A very good survey of some state-of-the-art approaches to

CBIR in radiology can be found in [3]. Typically, the medical

CBIR systems presented in [3] are very focused in a particular

modality and methodology. Moreover, most presented systems are

research projects which operate directly with a set of images and

do not concern themselves with integration with neither the

DICOM protocol or a PACS. In [28], however, a medical CBIR

system is presented which integrates itself with the PACS and the

Radiology Information System (RIS) from the University Hospital

in Aachen, Germany. This solution, however, lacks the profile

support and drop in functionality our system provides.

A wavelet based approach is also presented by [29]. This system

indexes images in a generic fashion, without using domain-specific

features, employing instead a signature built from an image’s

wavelet transform. A non-medical, but related CBIR project is

Lire. This project, like Dicoogle’s, also leverages Lucene’s search

engine to index imaging features and provide a framework to

perform CBIR [30]. However, it only supports sequential searches

through the dataset and its scope is very generic.

Figure 2. Dicoogle CBIR components.
doi:10.1371/journal.pone.0061888.g002
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Methodology

In this section we detail the compromises and strategies followed

to bring CBIR into Dicoogle. These choices were partly defined by

the fact that we already have a working platform, powered by Java

and using Lucene as its data backend, with a Software

Development Kit (SDK) that allows for extension of functionality.

A set of considerations have guided our approach to bring

CBIR to Dicoogle. Firstly, we desire to keep providing the user

with a turn-key solution, one that works out of the box without the

need to install third-party components or install and configure

external databases. A second consideration is that the should work

with as many medical modalities as possible, with minimum input

from the user. Our final consideration relates to the expandability

and orthogonality of the tool and respective code. It must be

simple to expand Dicoogle with new metrics and features and

those must make use of the already present indexing mechanisms.

The metric approach to similarity was employed since it is a

very general mathematical framework that still enables the

creation of indexes over the data for faster searching mechanisms.

Metric indexes have also been reported to be more robust against

the ‘‘curse of dimensionality’’ [7].

System Architecture
The Dicoogle application is a multi-platform, plugin-based open

source project developed in Java and tested in three major

operative systems (Linux, MacOS X and Windows). In figure 3 an

overview of the main components and tools are shown. The

application graphical interface is separated from the core

application through the usage of Remote Method Invocation

(RMI). Doing so makes it possible to run the core components

(indexing, storage and service provision) on one machine, and the

graphical interface on distinct machines while supporting multiple

users.

Dicoogle’s DICOM functionality (data extraction and service

provision) is built on top of the DCM4CHE2 library [31]. As for

the indexing mechanisms, they make use of Lucene, a full featured

text search engine with high performance [32].

The newly implemented CBIR functionality rests atop the

plugin system and can be loaded automatically or on demand.

Due to performance constrains it makes use of a feature extraction

program written in C++. The feature extraction program

leverages OpenCV, an image analysis library commonly used in

robotics and computer vision projects, to provide the basis for the

image analysis and feature extraction algorithms. The feature

extraction program is compiled for the three major operative

systems and architectures hence allowing Dicoogle to remain by

and large a multi-platform application.

Profile Guided Content Matching
There are several, very distinct, approaches to perform

similarity retrieval or computer aided diagnosis. Approaches

range from the usage of Support Vector Machines (SVM) [33],

clustering of micro-calcifications in mammograms [34], image

patches and bag-of-features [35] or wavelets [29]. These methods

are focused on different aspects of an image, often only working

with a specific modality, and tend to give prominence to a certain

aspect of an image in detriment of others. As mentioned, when

employing multiple features to sort by similarity, that similarity

must be defined. In the context of mammograms there is a

tendency to focus on micro-calcifications to provide the relevant

similarity rather, than, for instance, tissue type or size of breast.

Furthermore, image analysis is a very volatile field, where new

approaches are constantly tried and old methods improved. To

cope with the dynamic requirements imposed by the need to refine

both the similarity models and features extracted, we have decided

to follow a general and expansible approach. Therefore we have

separated the similarity metric from the feature extraction and

indexing processes and provided the user with the concept of

‘‘CBIR profiles’’.

A profile contains information on the metric to be used and

which features are required to successfully apply it. It also contains

information on how to extract candidate points, thereby limiting

the search space, and on which modalities its use is meaningful.

Due to the dynamic capabilities of our CBIR engine and Lucene’s

database we can make the process of defining features and

similarity functions dynamic, with no changes required to the core

engine which will store and index those features.

Using profiles, our CBIR engine allows a practitioner to specify

what is of interest to him and fine tune the query if required. In

order to simplify the interface with the user, Dicoogle analyzes the

modality of a DICOM file and it can automatically select an

adequate profile.

Currently, Dicoogle supports two profiles. A general purpose

CBIR profile, using exclusively global image features that are

always indexed and can be used to compare between any type of

image, and a profile specific for mammograms.

Features Extracted
When using a profile based methodology it is a requirement to

know in advance if there is no mismatch between the extracted

features and the features required by the profile. We have divided

features into feature sets. General image features, which can be

extracted from any type of image and can therefore be applied to

queries over any category of image, and modality specific features,

which being more specific and encoding domain-specific knowl-

edge apply only to certain modalities. This enables us to perform

CBIR in a modality independent fashion if we wish, albeit with

worst results, or use special purpose algorithms and classifiers to

extract and index particular features.

Currently, Dicoogle’s general CBIR profile makes use of the

following features:

N Intensity histogram

N Edge histogram

N Entropy

N Segmentations and respective area and center of mass

N Image momentums

As mentioned, DICOM files generally contain their modality as

part of the file meta-data. Using that information, feature

extraction algorithms can take context into account and embed

expert knowledge or a-priori conceptions about the semantics of

the modality and image into the feature extraction and compar-

ison process. When a mammogram is found, instead of extracting

only general image features, we look for micro-calcifications as

well, likewise for distinct modalities. These features are then stored

until a profiled similarity function makes use of them.

An interesting use case arises when these specific high level

features have semantic value, such as micro-calcifications. In such

cases we can expose that information to the underlying database

(Lucene) and allow for semantic textual queries directly from the

query language.

When a mammogram is detected, besides the general image

features the following features are extracted as well:

N Calcification candidates

Profiled Content Based Image Retrieval on PACS
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N Breast segmentation, and respective area, center of mass and

average edge angle to center of mass

N Texture Descriptors

Metrics and Similarity
Not unlike features, the metrics for similarity can vary

depending on the profile selected. Although currently we lack

expressiveness on the profile file to express any arbitrary function,

the following metrics are supported in profile creation:

N Euclidean Distance

N Weighted Quadratic Distance [36]

N Earth Mover’s Distance [37]

N Bhattacharyya distance [38]

The distance measures can be parametrized adjusting weights

on a predefined number of parameters on the profile. These

functions are then applied to the subset of the stored features

specified on the CBIR profile.

Feature Indexation
At the application’s core, Lucene search engine is used to create

and indexes for fast data retrieval. Dicoogle makes use of two

distinct indexes, one to index the meta-data embedded in the

DICOM file, useful to query for information such as radiation

dosage, modality or patient name among other information. The

second index is used to store the image features.

Figure 3. Dicoogle’s Components.
doi:10.1371/journal.pone.0061888.g003
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Lucene operates on a document-based paradigm [32]. This

means that, for each indexed DICOM image, a document is

created. Documents contain a number of fields which are used to

store the features in a textual format, a limitation imposed by

Lucene, but which is still apt for querying. The created Lucene

CBIR documents are then a semi-structured collection of features

with a reference to the original DICOM file. Although not strictly

needed, multi-dimensional features (either vectorial or histogram-

based) are split into several distinct document fields indexing each

of them separately. This allows us to sift and discriminate on single

dimensions of the feature and cull the search space more

effectively, whether by applying heuristics or focusing on only

the relevant elements depending on the candidate selection

algorithm. To query those features a common naming convention

was employed where the prefix is defined by the global feature

name (such as edgeHistogram) and a numeric suffix is appended

according their respective dimensional index (see figure 4).

Given that Lucene is a full-text search engine and not a

conventional database, numeric fields are converted to lexico-

graphic sortable string representations and the search mechanism

is based on a trie algorithm as presented in [39].

Furthermore, Lucene’s data aggregation mechanisms support

dynamic insertion and querying of new data fields. In practical

terms, this allows Dicoogle to evolve its feature extraction

algorithms and features employed without altering the indexing

and query mechanisms.

Query by Example in Dicoogle
Dicoogle’s CBIR functionality is exposed to the user via query-

by-example. A query by example is initiated from the Graphical

User Interface (GUI) by selecting an image and a profile. For an

overview of the process consult figure 5. Typically a profile is

selected automatically, if an adequate one exists, for the modality

in question. Otherwise, the general image CBIR profile is

automatically selected. The system performs a check to verify if

Figure 4. Overview of a Lucene’s document of features.
doi:10.1371/journal.pone.0061888.g004
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the source image already had its features indexed and extracts

them if not.

Taking into account the original features, a n-dimensional

bounding box centered on the source is created as exemplified in

figure 6. This box is allowed to encompass the entire feature space

in order to provide full sequential searches as well. These

bounding boxes are calculated taking into account the standard

deviation of the samples or based on a range specified by the

profile. Documents in the feature space contained inside the

bounding box are added to the candidate list. The candidate list is

populated by retrieving Lucene’s documents using a specifically

crafted query. This query is created by performing a binary

conjunction over the profile’s fields of relevance. For instance, a

simple shape metric using a small subset of features yields a feature

query as shown in figure 7. The final step is to sort the candidate

list according to the metric specified on the CBIR profile. This list

contains the DICOM Unique Identifiers (UID) which can then

used to push files via the standard DICOM C-Move to a

practitioner’s workstation or retrieve the files directly for viewing

in the GUI, which, since we use RMI, can be either local or

remote.

Results and Discussion

The discussion and results presented focus only on the technical

merits of the solution with no claims being made relative to the

clinical aspect. Studies are currently being conducted in order to

validate the approach in clinical terms.

The presented results were taken measuring the values five

times and averaging them. The machine where the tests were

performed is a Linux box (kernel 2.6.43) with a dual-core Intel

Xeon (cpu family 15, model 2) with hyperthreading enabled and

3 Gb of RAM. The Java virtual machine executing the application

is Oracle’s implementation, version 1.7.0. The feature extraction

applications are built using g++4.6.3 using OpenCV 2.3.1.

Figure 5. Dataflow diagram for Dicoogle’s query by example functionality.
doi:10.1371/journal.pone.0061888.g005
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The dataset used throughout the tests is provided by the Breast

Cancer Digital Repository (http://bcdr.inegi.up.pt/). This repos-

itory contains mammograms of clinical cases annotated by expert

radiologists. These annotations can become very useful when

validating the clinical side of the solution. The provided images

were not in DICOM native format, however, and were therefore

converted using a custom tool.

A screenshot of Dicoogle after performing a query by example

using a shape-based profile can be consulted on figure 8. The

image on the left corresponds to the source DICOM image, used

to initiate the query, while on the right canvas the returned images

are displayed together with their distance to the source. For

exemplifying purposes we have used a shape-based profile.

Typically, the feature extraction process takes an average of 2.1

seconds with some variation according to the complexity of the

image. The values oscillate between 0.6 seconds to 6 seconds.

Given that the feature extraction process has no dependencies with

other operations it is executed in a multi-threaded fashion roughly

decreasing indexing time by the number of physical cores. The

values for the index build up time are presented in figure 9, and in

figure 10 we show the evolution in size of the feature database,

backed by Lucene.

From the analysis of figure 10 we can observe that indexing and

storing the image features is an operation that scales linearly with

the size of the dataset. For the full dataset, composed by 3712

images occupying 8.8 Gb of storage space the indexes take up a

very small percentage of space, 21 Mb. The addition of new

features should increase the index size in a linear manner, making

this a scalable approach.

A query response time depends on which metric the profile

defines and on which candidate selection algorithm we apply. The

exemplifying shape queries typically take between under 2 to 10

seconds for a sequential transversal of the entire set. When culling

the candidates using ranges defined by the profile and source

element, we can cut down the response type to sub-second times,

but depending on the aggressiveness of the pre-selection, the

quality of the results can decrease. We also observed that

parallelizing the process of candidate transversal, while performing

the similarity sorting, does not speed up the application

significantly, suggesting a bottleneck in data retrieval.

Figure 6. Feature space division using the query values (red point) as source for a bounding box.
doi:10.1371/journal.pone.0061888.g006

Figure 7. Feature values for a sample image and respective query.
doi:10.1371/journal.pone.0061888.g007
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Future Work
In this section we show some of the shortcomings of this

approach and point some directions as to how this tool can

improve. The most obvious direction in which Dicoogle’s CBIR

can be expanded is to add the support for extra CBIR profiles and

features. Being an open source project, with a decoupled, plugin-

based architecture the task of integrating new feature extraction

mechanisms and metrics should prove to be simple to implement

by an interested party.

Figure 8. Dicoogle’s CBIR results.
doi:10.1371/journal.pone.0061888.g008

Figure 9. Plot of index time vs dataset size.
doi:10.1371/journal.pone.0061888.g009
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Regarding the n-dimensional bounding box, this is a crude

mechanism for performing candidate selection. Valid candidates

may lie on the outside of the bounding box for which the distance

similarity function yields lower values than some of the inside

candidates. On the other hand, if we pursue more aggressive

culling strategies, too few candidates may be selected for analysis.

That is, no assumptions can be made as to the number of elements

inside the bounding box. A proper metric index such as M-trees,

VP-trees [26], indexes based on clustering or Locality Sensitive

Hashing [27] should be employed. This will have the potential

advantages of providing both more accurate and faster retrieve

times. Furthermore, having indexes based on the metric, rather

than an index per feature dimension, means less indexes, more

opportunities to compress data and may allow for a large set of

features to be explored while keeping real-time performance.

Relevance feedback is an important mechanism for interaction

with practitioners and to provide more accurate retrievals which

we currently have not yet implemented. Its usage has already been

applied to CBIR systems with favorable results [40] [41].

A most promising direction to look at is to conjugate CBIR

queries with information provided in the DICOM file meta-data,

which we already index. In the same spirit we wish to adjust CBIR

profiles to semantic concepts such as tissue type, size or the

presence of micro-calcifications so that we may enrich Dicoogle’s

query language with high-level semantics.

Finally it are the researchers’ beliefs that directly extending the

DICOM protocol to support profile-based CBIR and feature

storage may help to bring this type of mechanism to a wider

audience while facilitating data sharing within an institution and

allowing for faster development and deployment of CAD

applications.

Conclusion
We have presented a non-intrusive PACS with CBIR capabil-

ities, Dicoogle. This tool can act as a stand alone PACS providing

DICOM services to small to medium institutions or as a useful

component left outside the main network, communicating using

DICOM and providing advanced query mechanisms and CBIR to

practitioners or students. The CBIR functionality is provided

according to designed profiles that may focus on a specific

modality or only generic features in a modality independent way.

The system is shown to be fast for the workload it was tested with

and is presumed scalable. We have also pointed out some

shortcomings of this approach and left directions on how this tool

can be improved. It is our believe that extending this approach to

work directly with DICOM in a standard way, negotiating CBIR

profiles between workstations and PACS can open CBIR to a

wider audience.
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