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Abstract
Longer target-to-target intervals (TTI) produce greater P300 event-related potential amplitude,
which can increase brain–computer interface (BCI) classification accuracy and decrease the
number of flashes needed for accurate character classification. However, longer TTIs requires
more time for each trial, which will decrease the information transfer rate of BCI. In this paper, a
P300 BCI using a 7 × 12 matrix explored new flash patterns (16-, 18- and 21-flash pattern) with
different TTIs to assess the effects of TTI on P300 BCI performance. The new flash patterns were
designed to minimize TTI, decrease repetition blindness, and examine the temporal relationship
between each flash of a given stimulus by placing a minimum of one (16-flash pattern), two (18-
flash pattern), or three (21-flash pattern) non-target flashes between each target flashes. Online
results showed that the 16-flash pattern yielded the lowest classification accuracy among the three
patterns. The results also showed that the 18-flash pattern provides a significantly higher
information transfer rate (ITR) than the 21-flash pattern; both patterns provide high ITR and high
accuracy for all subjects.
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1 Introduction
Brain–computer interface systems (BCIs) provide a new channel for disabled patients to
convey messages and commands. A variety of methods have enabled individuals to control
devices and convey messages through BCIs using slow cortical potentials (SCPs) [3], motor
imagery [4, 5, 7, 13, 27], steady-state visual evoked potentials (SSVEPs) [13, 35] and P300
potentials [8]. Each type of BCI device has advantages over others for specific functions.
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P300 BCIs are functionally superior to other BCIs for users attempting to convey verbal
information as they offer comparably greater information transfer rate (ITR). The ITR, given
in bits per trial, is used as an evaluation measurement in a BCI [26]. Although ITR is an
objective measure of performance, when comparing across different paradigms and the
value of the information provided at a given ITR, it can be a problematic measure if it is
used exclusively [28, 29, 32-34].

The P300 BCI was first described by Farwell and Donchin [8]. P300 BCI paradigms
typically present a matrix of characters aligned in rows and columns. Users are required to
select characters by focusing their attention to a target character that is either internally
derived (e.g., in the case of what is called free-spelling) or ‘copied’ from a set of pre-defined
characters. Although P300 BCIs offer excellent ITR relative to other BCI approaches, there
remain unexplored opportunities to further improve ITR. Improving classification accuracy
for P300 BCI remains a primary focus of many researchers [1]. Applying advanced signal
processing and machine learning algorithms to existing P300 BCIs can lead to increased
classification accuracy [10, 11, 15, 19, 21, 23, 36]. Modifying the typical P300 BCI
paradigm can lead to improvements in the signal-to-noise ratio of P300 s. Indeed, studies
have demonstrated higher classification accuracy by increasing the matrix size [2, 16, 17,
30, 33], varying the order of flash sequences [17, 34], varying the stimulus onset asynchrony
(SOA) [23, 30], and varying the stimulus rate [25, 33].

While unstudied in the context of BCIs, evidence suggests that longer target-to-target
intervals (TTI) produce higher P300 amplitude. TTI is the interval between the start of a
target event and the start of another target event. Gonsalvez and Polich [9] reported that
P300 amplitude increases with increasing TTI up to about 6–8 s. Martens et al. [24]
demonstrated that increasing TTI reduces amplitude attenuation from overlapping P300
potentials, which significantly increases the classification accuracy.

Flashing twice in succession may decrease P300 BCI performance, as the second flash
might generate a small P300 or might not even be fully processed due to the “repetition
blindness”, repetition blindness is a perceptual phenomenon that can occur when two
identical targets are presented in a stream of non-targets at intervals of less than 500 ms [31].
Moreover, short TTIs will lead to epoch “overlaps” which can have a negative impact on the
performance of the P300 BCI system [24].

In this paper, TTI was controlled by placing a minimum of one (16-flash pattern), two (18-
flash pattern) and three (21-flash pattern) non-target flashes between two target flashes. The
goal of this design was to decrease the “repetition blindness” and “overlaps” [18], and
search the efficient TTI.

2 Methods
2.1 Experiment set up and stimulus parameters

Experiments were performed according to a protocol approved by the institutional medical
ethical committee. All subjects signed an informed consent document before participating in
the experiment. Nine healthy subjects (five males and four females; age range 21–27) were
recruited from East China University of Science and Technology to participate in the study.
All subjects had not previously used a BCI. Electroencephalography (EEG) was recorded
using a g.USBamp and a g.EEGcap (Guger Technologies, Graz, Austria) with a sensitivity
of 100 μV, band-pass filtered between 0.1 and 30 Hz, and sampled at 256 Hz. EEG
electrodes positioned at Fz, Cz, Pz, Oz, C3, C4, P3, P4, P7, P8, O1, and O2 from the
extended International 10-20 system. The right mastoid electrode was used as the reference,
and the front electrode (FPz) was used as a ground.
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After EEG cap preparation, subjects were seated comfortably in front of an LCD screen and
instructed to minimize movement during EEG recordings. Instructions were to focus on a
single target character of 7 × 12 matrix of characters (see Fig. 1) and silently count each
time that character flashed.

Each subject participated in one experimental session. Sessions were divided into three
offline and three online blocks. Each block consisted of one presentation condition (16-, 18-,
and 21-flash patterns, described below) randomly ordered for each subject. Offline blocks
included 15 character selections and online blocks included 15 selections. Offline data were
used to train the signal classifier using Bayesian linear discriminant analysis (BLDA) and
obtain the classifier model (see Sect. 2.5) for use in the online blocks.

Each target character was selected from a predefined set of 15 characters. A trial is defined
as the number of flashes presented to the subject before a classification decision is made. In
offline conditions, feedback was not presented after each trial, because, a subject-specific
classifier was not yet created. At the start of each trial, a cue was presented (1 s) to inform
the subject which character to focus on. Each flash was presented for 100 ms, followed by a
75 ms delay during which the grey character matrix stayed visible on the LCD. In the online
experiment, a copy-spelling task of 15 trials per-block was conducted for each of the three
flash patterns. Time for the subjects to select the location of the character was increased to 2
s. The number flashes were adaptively selected by the system, and after the classifier model
reached criterion the character selected by the BLDA model was shown to the subject as
feedback.

During offline testing, there were 32 flashes of each character in the matrix at each trial.
Each block consisted of five trials, each of which involved a different target character.
During online testing, the number of flashes per trial was variable, because, the system
adjusted this number to optimize performance as described in part 2.5.

Three conditions were tested (“16-flash pattern”, “18-flash pattern” and “21-flash pattern”
conditions). For each condition, subjects participated in three offline blocks of 16 trials.
Subjects had 5-min rest between each condition in the offline experiment, and the order of
conditions was random. After the offline experiment, three online blocks were completed for
each condition. Presentation order of the conditions in the online experiment was the same
as the offline experiment. In the online experiment, subjects had 2-min rest between each of
the three conditions. The online and offline experiment were done within the same day for
each subject.

2.2 Laptop keyboard design
Figure 1 shows the display used in this study. We simulated a keyboard using a 7 × 12
matrix. Function keys were arranged on the four sides of the matrix. To decrease
interference from adjacent characters, the names of special keys were abbreviated. The goal
of this design is to make it easy for users to find target characters and control the laptop. The
items contained in the matrix allow for full-keyboard emulation (to be used in future
studies). In the current study, only the alphanumeric items were selected.

2.3 The flash pattern design
The flash pattern approaches presented here are based on binomial coefficients. The set of k
combinations of a set n is denoted by C(n,k) = n!/(k!(n – k)!), 0 ≤ k ≤ n. The number of
flashes per trial is n, and k is the number of flashes per trial for each character [17, 18]. In
this paper, a 7 × 12 matrix containing 81 characters were used to simulate a laptop keyboard
(See Fig. 1). To place a minimum of one (minimum TTI is 350 ms, 16-flash pattern), two
(minimum TTI is 525 ms, 18-flash pattern) and three (minimum TTI is 700 ms, 21-flash
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pattern) non-target flashes between two target flashes and make the flash pattern of each
trial random, we used the set of k combinations (k = 2) from set n (n = {16,18,21}, which is
the lower limit to achieve these settings when k = 2). C(16, 2), C(18, 2) and C(21, 2) denote
the 16-, 18- and 21-flash patterns, respectively. There are n (n = {16, 18, 21}) flash groups
which are tagged as “flash1, flash2, …, flashn”. We did not choose k > 2, since k cannot be
very high, because, the number of characters that flash at the same time depends on k;
increasing k will increase interference from characters neighboring the target when the
target is not flashing [18].

Although the order in which flashes are presented is random, the P300 speller system is
limited by the settings of minimum TTIs. It is extremely unlikely that a subject would be
able to detect the patterns of pseudo-randomized flashing due to the large number of
stimulus combinations. To realize the minimum TTIs, when one flash (flash A) occurred,
the next flash would not contain any character from flash A for 16-flash pattern, the next
two flashes for the 18-flash pattern, and the next three flashes for the 21-flash pattern. Figure
2 shows the configuration of the different flash pattern combinations. In each flash pattern,
stimuli are not grouped in rows or columns. For example, the character “F1” would be
selected if flash1 and flash4 evoked a P300 in the 16-flash pattern (see Figs. 1, 2a). However,
in the 18-flash pattern condition, “F1” would be selected if flash1 and flash6 evoked a P300
(see Figs. 1, 2b).

We did not use other patterns with less flashes in each trial and longer SOA (SOA = 350,
525, 700 ms) to realize these minimum TTIs. The reason is as follows: based on binomial
coefficients, 14-flash pattern also can identify 81 elements in 7 × 12 matrix, since C(14,2) =
91. However, the time to completed all flashes in a trial is 4.9 s (14 × 350 ms, minimum TTI
is 350 ms), 7.35 s (14 × 525 ms, minimum TTI is 525 ms), and 9.8 s (14 × 700 ms,
minimum TTI is 700 ms). In the present method, the time to complete all flashes in a trial is
2.8 s (16 × 175 ms, minimum TTI is 350 ms), 3.15 s (18 × 175 ms, minimum TTI is 525
ms), and 3.675 s (21 × 175 ms, minimum TTI is 700 ms). Thus, the present method provides
a more efficient presentation time and should improve ITR, all things being equal.

2.4 Feature extraction procedure
A third-order Butterworth band-pass filter was used to filter the EEG between 0.1 Hz and 12
Hz. Although the P300 is primarily in the band 0.1–4 Hz [14], it can also be found in higher
bands [20]. The EEG was down-sampled from 256 Hz to 36.6 Hz by selecting every seventh
sample from the filtered EEG. EEG epochs of 800 ms were extracted from the data. The size
of the feature vector was 12 × 29 (12 channels by 29 time points).

2.5 Classification scheme and adaptive settings
Bayesian linear discriminant analysis is an extension of Fisher’s linear discriminant analysis
that avoids problems such as overfitting the data [12]. Jin et al. [15] reported that BLDA
out-performed LDA when used for classification of signals in a P300 BCI paradigm. Lei et
al. [22] reported that BLDA, when they were applied to motor imagery classification,
classified more accurately than LDA and SVM. Thus, BDLA was chosen as the
classification algorithm for the present study. Depending on the condition, each trial yields
16, 18, or 21 classifier outputs, one output for one flash. The first and second maximum
classifier outputs are selected to identify the target character.

The number of trials per average was automatically selected by the system based on the
classifier output. To determine if enough evidence is present to select a given character, the
classifier was required to select the same character two times in succession. For example, in
the beginning, a character [named cha (1)] would be tagged as the likely target based on the
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first group of classifier outputs. Next, the first and second group of classifier outputs would
be averaged and a character [named cha (2)] would be tagged as the likely target based on
the averaged outputs. If cha (1) = cha (2), cha (2) trial would be completed and the selected
target would be present to the subject as feedback. If it did not meet the criterion, more
groups of classifier outputs would be averaged until cha (n) = cha (n – 1). When 16 groups
of classifier outputs were used in the average, the output would be the result obtained from
16 average trials [18].

2.6 Practical bit rate
We used two bit rate calculation methods: the practical bit rate and raw bit rate. The
analyses of this paper are based on practical bit rate; we only present raw bit rate to facilitate
comparisons with other studies. Practical bit rate can estimate the “actual” performance of
the BCI system, because, it incorporates the fact that every error results in a penalty of two
additional selections. The practical bit rate is calculated by BR × (1 – 2P), where BR is the
raw bit rate and P is the online error rate of the system [34]. If P ≥ 50%, the classification
accuracy is very low to correct mistakes and the practical bit rate is, therefore, zero.

3 Results
In this paper, TTI was controlled by placing a minimum of one (16-flash pattern), two (18-
flash pattern) and three (21-flash pattern) non-target flashes between two target flashes.

3.1 Online results
The online results were used to evaluate the performance of three flash patterns. Table 1
shows the accuracy of online feedback using adaptive strategy. A one-way ANOVA was
used to examine the differences in accuracy of feedback among 16-, 18-, and 21-flash
patterns (F = 5.58, p < 0.01). The 21-flash and 18-flash patterns yielded significantly higher
accuracy than the 16-flash pattern (F = 8.4, p < 0.05; F = 5.3, p < 0.05); however, the
difference between 18- and 21-flash pattern did not reach statistical significant (F = 0.3, p =
0.59).

From Table 1, the 16-flash pattern showed the lowest performance and was most unstable.
Statistical significance was not obtained between the 18- and 21-flash patterns in accuracy
of online feedback.

Next, the practical and raw bit rates of the 18- and 21-flash patterns were compared. Table 2
shows the online raw bit rate and practical bit rate for 18- and 21-flash pattern using
adaptive strategy. The selection time (2 s) of target characters for subjects was included in
calculating the Pbr and Br. Raw bit rate calculated with selection time was used to show the
online information transfer rate of P300 BCIs which use other error-correction methods [6]
except “Backspace”. The average raw bit rate shows the bit rate assuming error correction.
In Table 2, the average raw bit rate and average practical bit rate from subjects 1–9 for the
18-flash pattern are higher than those for the 21-flash pattern. Student’s t tests were used to
examine differences in raw bit rate and practical bit rate between 18- and 21-flash patterns.
The 18-flash pattern yielded significantly higher raw bit rate (p < 0.01) than practical bit rate
(p < 0.05). Thus, users are able to finish a task more quickly using the 18-flash pattern than
using the 21-flash pattern.

3.2 Offline performance analysis
In the offline analysis, TTI distributions of three patterns and grand waveform for electrode
locations (Fz, Cz, Pz, Oz, O1, O2, P7, P8, P3, P4, C3 and C4) are shown in Figs. 3, 4,
respectively.
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Figure 3 shows average TTI of the 16-flash pattern is shortest (1.3895 s) and average TTI of
21-flash pattern is longest (1.8235 s). Figure 4 shows the grand average P300 amplitude of
the 21-flash pattern is the greatest. However, these two patterns (16- and 21-flash pattern)
did not obtain the best performance, since an efficient TTI should be selected when
considering P300 magnitude and the time necessary to obtain the desired output.

3.3 Offline waveform analysis
A one-way ANOVA was used to examine differences in P300 waveforms ranged from 300–
450 ms among 16-, 18-, and 21-flash patterns (p < 0.01 for electrode sites: Pz, Oz, O1, O2,
P7 and P8; p < 0.05 for electrode sites: Cz). It shows that the P300 waveforms for the 16-
flash pattern is significantly lower than the 18-flash pattern (p < 0.01 for electrode sites: Oz,
P7 and P8; p < 0.05 for electrode sites: Cz). The 16-flash pattern is also significantly lower
than the 21-flash pattern (p < 0.01 for electrode sites: Cz, Oz, O1, O2, P7 and P8; p < 0.05
for electrode sites: Cz).

4 Discussion
Target-to-target interval was examined by placing a minimum of one (16-flash pattern), two
(18-flash pattern) and three (21-flash pattern) non-target flashes between two target flashes.
Hill et al. [11] reported that the traditional row/column pattern (RC pattern) has particular
spatial properties that lead to better performance than one would expect from its TTIs and
Hamming-distances alone. Jin et al. [16, 17] reported that the flash pattern based on
binomial coefficients yields better performance than RC pattern. The present method is
based on binomial coefficients and to improve the performance of P300 speller by
controlling minimum TTIs.

The 16-flash pattern, which has the shortest TTIs, resulted in the lowest classification
accuracy of the three patterns. In contrast, the 18- and 21-flash patterns obtained high
classification accuracy. These findings illustrate the deleterious effects of TTIs that are very
short (see Fig. 3). The minimum TTI of the 16-flash pattern (350 ms) is apparently not long
enough to avoid repetition blindness. This study has also demonstrated that the 18-flash
pattern with medium TTI rate obtained the highest ITR. These results illustrate the
importance of properly selecting TTI (see Fig. 3). Moreover, TTI has a significant effect on
the resulting P300 amplitude and signal to noise ratio (see Fig. 4).

Previous studies have demonstrated that the 16-flash pattern is superior to a RC flash pattern
[17]. Therefore, a RC comparison condition was not used in the present study. The goal of
this paper was to determine the most efficient TTI in terms of BCI speed and accuracy.

Currently, the literature has not agreed upon standard metrics for performance. Many
articles present bit rate based only on the amount of time that the system is flashing, what
we refer to here as “raw bit rate.” Bit rate calculated in this fashion ignores the time that is
necessary between each trial. Although in a real-world setting, these breaks are needed to
evaluate feedback, determine what the next selection should be, and then attend to the
appropriate location in the display. Therefore, many studies report unrealistically high
performance, in terms of bit rate [23, 32, 34]. Here, we have presented practical bit rates and
raw bit rates to estimate an ecologically valid representation of P300 BCI performance.

This paper examined and determined an efficient TTI for the P300 BCI. We have shown that
an SOA of 525 ms is the most efficient SOA when using the binomial coefficient methods
proposed here. User performance is better and more target flashes are detected presumably,
because, repetition blindness has been reduced or removed. As the present study relies on
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manually derived binomial coefficients, future work should examine other possible methods
to determine efficient TTI.
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Fig. 1.
The stimulus screen presented to the subject during the experiment
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Fig. 2.
These three panels depict the configuration of different flash patterns: 16-flash pattern (a),
18-flash pattern (b) and 21-flash pattern (c). The numbers indicate which of the n flashes
would illuminate the target character. For example, the top left element of panel A would be
illuminated during the first and fourth of the 16 flashes. In each panel, flash1 is illuminated
(grey part)
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Fig. 3.
Average TTI distribution of 16-, 18- and 21-flash patterns in each run for nine subjects. TTI
= flash duration × 0.175 s. The X-axis represents the number of flashes used to calculate
TTI. The Y-axis is the frequency of the TTIs in each run. avT is the average TTI of each
pattern. avT = (average number of flashes) × 0.175 s. To show the TTI distribution clearly,
the frequencies that are ≥1 are shown
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Fig. 4.
Grand averages waveforms for 16-, 18- and 19-flash patterns at electrode sites Fz, Cz, Pz,
Oz, O1, O2, P7, P8, P3, P4, C3 and C4. 16-P is 16-flash pattern, 18-P is 18-flash pattern and
21-P is 21-flash pattern
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