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Abstract
An electroencephalographic-based brain–computer interface (BCI) can provide a non-muscular
method of communication. A general model for P300-based BCI stimulus presentations is
introduced – the “m choose n” or C(m (number of flashes per sequence), n (number of flashes per
item)) paradigm, which is a universal extension of the previously reported checkerboard paradigm
(CBP). C(m,n) captures all possible (unconstrained) ways to flash target items, and then applies
constraints to enhance ERP’s produced by attended matrix items. We explore a C(36,5) instance
of C(m,n) called the “five flash paradigm” (FFP) and compare its performance to the CBP. Eight
subjects were tested in each paradigm, counter-balanced. Twelve minutes of calibration data were
used as input to a stepwise linear discriminant analysis to derive classification coefficients used
for online classification. Accuracy was consistently high for FFP (88%) and CBP (90%);
information transfer rate was significantly higher for the FFP (63 bpm) than the CBP (48 bpm).
The C(m,n) is a novel and effective general strategy for organizing stimulus groups. Appropriate
choices for “m,” “n,” and specific constraints can improve presentation paradigms by adjusting the
parameters in a subject specific manner. This may be especially important for people with
neuromuscular disabilities.
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1. Introduction
Brain–computer interfaces (BCIs) can reestablish communication for people whose motor
and communicative abilities have been compromised by neuromuscular disease [24]. In
amyotrophic lateral sclerosis (ALS) motor neuron death eventually paralyzes the patient.
BCI technology does not require neuromuscular activity and can help restore rudimentary
communication. Introduced by Farwell and Donchin [6], the P300 based BCI uses
electroencephalography (EEG) to recognize the P300 response to an attended stimulus. The
P300 is an event-related potential (ERP) consisting of a positive deflection in the EEG over
parietal cortex occurring approximately 300 ms after the presentation of a rare (‘oddball’)
meaningful stimulus [5].
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In the row/column paradigm (RCP) [6], a 6 × 6 matrix of characters appear on-screen and
subjects attend to the item they wish to select. The matrix rows and columns flash randomly
and (in theory) flashes containing the attended item will elicit a P300 [5]. Townsend et al.
[21] introduced the checkerboard paradigm (CBP) to overcome specific issues that lead to
errors in the RCP. First, incorrect selections are typically adjacent to the intended item [3,7].
To overcome this problem the CBP presents flash groups in pseudo-random order instead of
rows and columns. Second, the order in which rows and columns flash is unconstrained
allowing the same item to flash multiple times in succession. Multiple flashes of an attended
item can change the ERP in a deleterious manner. A second flash of the same item may go
unnoticed, which will not result in a P300, and the target epochs overlap temporally,
reducing P300 amplitude or changing ERP morphology [15,23]. To overcome this problem,
the CBP places a minimum of six intervening flashes between subsequent flashes of any
given matrix item.

Many different stimulus organization and presentation methods have been introduced and
shown to mitigate errors associated with the RCP [10,15,17,19,20]. The CBP has shown that
changing the organization of the stimulus presentation increases the probability of an
attended item being classified correctly. Fig. 1 shows discriminant values assigned to each
cell of the matrix. The attended item was “W.” The CBP is shown in the left column of the
figure and the RCP is shown in the right column of the figure. In both cases, a SWLDA
classifier was trained and then tested online (scores normalized). The particular character
and the subject were both chosen at random from the Townsend et al. [21] dataset.
Comparing the discriminant values for the rows and columns including the target item (W)
showed that the mean discriminant value of 14.35 in the CBP condition was significantly
lower than the mean discriminant value of 28.78 in the RCP condition (t16 = 3.81, p = .002).
These data show that the CBP is less likely to produce an incorrect response, as compared to
the RCP.

Other paradigms placing constraints on when and how matrix items flash have also
produced increases in speed and accuracy. Jin et al. [12] varied the number of items that
flash simultaneously. The goal was to use the minimum number of flashes to uniquely
identify all of the stimuli in the matrix. Results showed that optimizing stimulus group size
for each subject improved performance. Allison and Pineda [1] examined the effects of
flashing multiple rows or columns simultaneously. Martens and Leiva [16] described a
generative model-based method of stimulus presentation and classification.

1.1. C(m,n): a universal extension of the checkerboard paradigm
The “m choose n” paradigm is a universal extension of the CBP that captures all possible
ways to present stimuli [22]. It is a general approach and it is important to note that the
paradigm can generate the RCP, the CBP, or any other implementation. Here we define a
stimulus group as the number of items that flash simultaneously. Stimulus groups are
defined in mathematical sets independent of their location in the matrix. M is the number of
stimulus groups and a sequence is completed once all m have flashed once. N is the number
of times individual matrix items flash. An item pattern is the temporal presentation order of
each matrix item. For example, the Farwell and Donchin 6 × 6 paradigm conforms to a
C(12,2) implementation. There are a total of 12 flashes per sequence and each matrix item is
presented two times per sequence (i.e., each of the six rows, and each of the six columns
flash one time per sequence). The Farwell and Donchin paradigm employed the following
constraints: (1) each of the twelve stimulus groups are arranged in the rows and columns that
appear in the matrix; (2) stimuli are presented sequentially at random without replacement;
and (3) once the twelve stimulus groups have been presented, presentation order is re-
randomized and the process is repeated until a criterion is met (e.g., the desired number of
sequences has been presented).
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Jin et al. [13] proposed a paradigm similar to C(m,n), based on combinations computed with
binomial coefficients. However, the method reported in [13] was unconstrained. In a follow-
up paper, Jin et al. [11] extended their approach to constrain double item flashes and
adjacent item flashes; the same constraints we reported in [21]. The present work goes
further to introduce a formal and general approach that can derive any stimulus presentation
arrangement. After all possible unconstrained ways to flash stimuli have been identified,
constraints designed to enhance ERP discrimination are applied because of the exceedingly
large number of possible stimulus groups. The specific constraints employed here and the
choices for “m” and “n” have been selected because some have previously shown to
improve BCI performance, and all of them logically conform to the basic principles of the
Oddball paradigm [5].

1.2. Present study: the five flash paradigm (FFP)
The present study compares the CBP to a particular implementation of C(m,n) called the
five flash paradigm (FFP). The CBP conforms to C(24,2) where in a sequence of 24
stimulus groups each matrix item flashes two times. C(36,5) was chosen to exploit
improvements realized by the CBP (as compared to RCP) and further improve speed and
accuracy. The FFP adds three flashes of each matrix item with 12 additional stimulus groups
(60% more matrix items with 33% additional sequences). Thus, we hypothesize that item
selections in the FFP will be made more rapidly because fewer sequences should be
required.

Unconstrained, there are C(36,5) or 372,992 possible candidates from which a set of 72 must
be chosen:

(1)

This leads to a large number of possible candidates, on the order of 2 × 10297.

The FFP enforces three constraints to mitigate problems associated with other stimulus
presentation paradigms (e.g., RCP and CBP). Different constraints may be necessary to
accommodate different matrix sizes and SOAs. To construct each sequence, the FFP
simultaneously applies the following three constraints:

1. Ensure that once an item has been presented it will be excluded from at least four
subsequent stimulus groups. A similar constraint is used in the CBP. Subjects may
not notice sequential flashes of attended items. In this case, a P300 will not result.
In addition, excluding a given item for a minimum of four subsequent stimulus
groups ensures non-overlapping target epochs. Overlapping epochs can reduce
P300 amplitude or change ERP morphology [15,23].

2. Ensure that no two matrix items are common to more than two stimulus groups.
This allows any matrix item to be uniquely identified with three flashes, allowing
for unique identification of items even if two target items are not perceived. In the
CBP, only two flashes of each item are contained in one sequence. Thus, if either
target item flash is not perceived, the target item cannot be uniquely identify. The
problem is exacerbated in the RCP (see Fig. 1) because each matrix item is shared
with an entire row and an entire column. Thus, in the RCP it is not possible to
uniquely identify target items unless all flashes of the attended item in a sequence
generate appropriate ERP responses.
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3. Require that stimulus groups contain no more than 12 items. This constraint
provides large enough stimulus groups for faster presentation than the CBP, which
has a fixed stimulus group size of six items. Adding up to twice the number of
stimuli to each stimulus group results in shorter sequence duration.

At random an initial stimulus group is selected thereby reducing the possible number of
viable candidates. The second stimulus group is randomly selected and evaluated; if the
group conforms to the constraints it will be included. Otherwise, it is rejected and another
stimulus group is selected. This process continues until a sequence of 72 viable candidates
have been selected or all possible stimulus groups have been sampled. If all possible
candidates have been evaluated before a complete sequence has been identified, the
algorithm will restart and continue to iterate until a completed sequence (of 72 viable
candidates) is found. Fig. 2 depicts an example set of stimulus groups for the FFP. We
hypothesize that the FFP will produce superior performance than the CBP because it
presents many more target stimuli per unit of time at the expense of a small increase in
sequence length (or time taken per sequence).

2. Materials and methods
2.1. Subjects

Eight subjects participated in the study (five men, three women). Subjects were recruited
from the Algoma University community. None had uncorrected visual impairments or any
known cognitive deficit. The study was approved by the Algoma University board of ethics
and subjects gave informed consent.

2.2. Data acquisition, processing
Subjects sat in a chair approximately 1 m from a computer monitor that displayed the 8 × 9
matrix. EEG was recorded with an 8-channel electrode cap with tin electrodes (Electro-Cap
International). All channels were referenced to the right mastoid and grounded to the left
mastoid. An 8-channel monopolar g.tec (Guger Technologies) amplifier was used to acquire
the EEG (amplification to ±2 V before ADC; high-pass 0.1 Hz; digitization rate 256 Hz;
notch filter at 60 Hz). The eight electrode sites (based on the 10/20 international electrode
placement system) were Fz, Cz, P3, Pz, P4, P07, P08 and Oz [14]. BCI2000 software [18]
controlled stimulus presentation, data collection and online processing.

2.3. Experimental paradigm
Subjects completed two sessions on different days within a one-week period. Sessions were
counterbalanced; half of the subjects began with CBP and half with the FFP. Each session
consisted of a calibration phase and an online test phase. In the calibration phase, subjects
were shown a word to spell. Each letter of the word was the target or attended item in serial
order. The word was displayed at the top left corner of the screen with the current target in
parenthesis (“PHONE” (P)). Subjects were instructed to attend to each flash of the target
item and to repeat this procedure for each letter of the word, as prompted. Subjects were
given six words, totaling 30 letters, during the calibration phase. The online phase consisted
of five different words, also containing five characters.

2.4. Classification
As described in [14], independent SWLDA classifiers were derived for the CBP and FFP
[4]. In the CBP and FFP calibration phases, each item selection included the same number of
item flashes, consistent with the approach used in [21]. That is, each matrix item was
presented 10 times before the classifier chose an item. In the FFP this was achieved by
presenting two sets of 36 stimulus groups (each item flashed five times in each of two
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sequences). In the CBP this was achieved by presenting five sets of 24 stimulus groups
(each item flashed two times in each of the five sequences). Thus, both paradigms used 300
target flashes to acquire training data. We used the SWLDA algorithm to determine the
signal features that best discriminated between target and non-target flashes (MATLAB
version 7.6 R2007a, stepwise fit function).

During online classification, epochs from each stimulus item were averaged before applying
the SWLDA classification coefficients. In both paradigms, the coefficients were applied to
the specific spatiotemporal features of each of the 72 items and summed. The item with the
highest score was selected and presented to the subject as feedback.

2.5. Determining the optimal number of sequences
Due to the relatively low signal-to-noise ratio of the P300, it is necessary to flash each item
multiple times and average the resulting epochs [2]. During calibration, the number of target
flashes was constant across subjects and presentation methods. During the online testing
phase, the number of flashes used online was optimized according to each subject’s
maximum written symbol rate (WSR, or symbols/min; [8]) based on the training data.

3. Results
3.1. Online accuracy and bit rate

Table 1 contains the number of sequences, accuracy, selections/ min and bitrate for each
subject and paradigm. Ultimately, the performance of any BCI must be measured by its
performance in an online implementation. It is important to note that only online results are
reported here. In this study, online bit rate in the FFP paradigm was 63 bits per minute
(bpm), 31% higher than the 48 bpm observed in the CBP paradigm (σ = 0.04). The
difference in online accuracy (CBP 92%; FFP 88%) was not statistically significant (σ =
0.10).

3.2. Waveform morphologies
Fig. 3 shows target responses for each of the eight subjects averaged across two groups of
electrodes. The right panel shows Fz, Cz, Pz, P3, and P4. The left panel shows Oz, PO7, and
PO8. The electrodes were grouped in this way because within each group morphology is
very similar and across each electrode group morphology is notably different. As can be
seen in the figure, the waveforms for each subject are generally representative of the grand
means shown in the bottom row of Fig. 3. It is also notable that the FFP and CBP produce
very similar morphology for all subjects except for subject 2 and 8, and this is only true in
the averaged electrodes shown in the left column.

4. Discussion
The first goal of this study was to formalize the concept of flashing targets organized in a
matrix to capture all possible (unconstrained) organizations and to provide a description of
how constraints designed to enhance the performance of the interface are implemented. The
second goal of the study was to explore a particular implementation of this concept by
introducing the five flash paradigm (FFP) and compare it to the checkerboard paradigm
(CBP). Many researchers have developed different ways to flash targets in a matrix;
however, each approach is uniquely described. In this study we have generalized these
approaches with the aim of generating a better understanding of what organizations are
possible and what is required to make them viable. The C(m,n) method allows rows and
columns of the matrix to be completely disassociated, unless the constraints are chosen to
enforce a row/column stimulus presentation. Therefore, it provides a formal model of
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previous studies involving stimulus group organization as well as yet to be described
paradigms.

Both paradigms achieved high accuracy and bit rates. With either paradigm, the P300 BCI
was calibrated in approximately 12 min, similar to the results reported in [9]. As in the
earlier CBP study [21], the 9 × 8 matrix was used. The matrix emulates most functions
provided by a standard keyboard, thereby producing an ecologically valid BCI that can be
used for a variety of tasks. The FFP increased bitrate by using fewer flashes to produce an
optimal level of performance. Moreover, the improvement in bitrate was realized despite the
fact significant differences in accuracy between the two paradigms were not detected.

5. Conclusions
Brain–computer interfaces provide severely disabled people a communication option that
does not depend on neuromuscular control. Improved BCI performance should subsequently
improve quality of life for people with severe motor disabilities. Slow, inaccurate systems
can be frustrating to use and cause deleterious effect. This study shows the importance of
carefully designing presentation paradigms for P300 BCIs. The development of the CBP
was a significant step in improving the P300 interface and the C(m,n) model has expanded
upon these improvements. Additional work (to be reported elsewhere) has begun to focus on
variations of the model. Preliminary data using a C(20,3) variant has shown online
performance resulting in a mean bitrate of 133 bpm (n = 3) excluding time between
selections. The best subject was 97% accurate with a bitrate of 143 bpm excluding time
between selections (which is 48 bpm including time between selections). Thus, additional
generalizations of the model should continue to improve the speed and accuracy of BCI
systems.
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Fig. 1.
Top row: eight column × nine row plot of SWLDA scores for each cell. Blue = low scores;
red = high scores. Intersection of column seven and row three indicate the desired item (i.e.
“W”). Checkerboard shown on left; row/column shown on right. Bottom row: SWLDA
scores for plotted by each row and column for the Checkerboard paradigm (left) and
SWLDA scores for the row/column paradigm (right). Although the attended item was
correctly chosen by the classifier in both paradigms, the discriminant values are clearly
higher in the RCP for the entire row (horizontal dark green lines) and column (column 7) of
the attended character. In contrast, the CBP discriminant values are much lower overall, and
cell locations having higher values are not obviously related to the attended item.
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Fig. 2.
The constraints employed in the C(36,5) method and an example stimulus sequence. Left:
the three performance-based constraints imposed to generate a sequence of flashes. Right: an
example sequence based on the constraints. White cells represent flashing matrix items. For
each of the 36 stimulus groups (columns) no more than twelve items are included in any
stimulus group. For each item pattern (rows), item-specific flashes are separated by a
minimum of four non-flash events, and no target shares more than two flashes in common
with any other. Therefore any three of the five flashes are sufficient to uniquely identify the
target. The minimum spacing between flashes as well as the wrap-around from the end of a
sequence to the start of another sequence can also be confirmed by examining the figure.
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Fig. 3.
Waveform morphologies of each subjects target responses for the FFP (blue) and CBP
(black) are shown by electrode set. The bottom row shows grand averages.
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