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Abstract
Background—Heavy alcohol consumption is associated with severe bronchitis. This is likely
related to increased inflammation in the airways of alcohol abusers. Toll-like receptor 2 (TLR2) is
an important mediator of inflammation in the airway epithelium. TLR2 initiates an inflammatory
cascade in response to gram-positive bacteria. We have previously shown that alcohol upregulates
TLR2 in the airway epithelium. However, the mechanism of alcohol-mediated upregulation of
TLR2 has not been identified.

Methods—A human airway epithelial cell line, 16HBE14o-, was exposed to biologically
relevant concentrations of alcohol (100mM) in the presence and absence of L-NAME, a nitric
oxide synthase (NOS) inhibitor; and Rp-8-Br-cGMP-S, an antagonist analogue of cGMP. TLR2
was measured using real-time PCR and Western blots. In addition, 16HBE14o- cells were
incubated with sodium nitroprusside (SNP), an NO donor, and 8-Br-cGMP, a cGMP analogue.
TLR2 was measured using real-time PCR.

Results—L-NAME blocked the alcohol-mediated upregulation of TLR2. This indicates that NO
plays a key role in alcohol's upregulation of TLR2. SNP, a nitric oxide donor, up-regulated TLR2.
Rp-8-Br-cGMPS attenuated alcohol's upregulation of TLR2, suggesting that NO was working
through cGMP/PKG. 8-Br-cGMP upregulated TLR2, also demonstrating the importance of
cGMP/PKG.

Conclusions—Alcohol upregulates TLR2 through a NO/cGMP/PKG dependent pathway in the
airway epithelium. This is an important observation in the understanding how alcohol modulates
airway inflammation. In addition, this is the first time that cyclic nucleotides have been shown to
play a role in the regulation of TLR2.
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Introduction
Heavy alcohol use is clearly associated with lung disease. Alcohol intake is an independent
risk factor for developing acute respiratory distress syndrome (Moss and Burnham, 2003),
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pneumonia (de Roux et al., 2006; Fernandez-Sola et al., 1995; Saitz et al., 1997), and
chronic bronchitis (Jalleh et al., 1993; Oleru, 1987; Suadicani et al., 2001). Although alcohol
is associated with increased incidence and severity of lung disease, very little is known
about how alcohol affects the innate immunity of the airway epithelium. Understanding how
alcohol affects the airway epithelium is particularly important, because it is the body's first
line of defense against inhaled microorganisms. Toll-like receptor 2 (TLR2) is an important
part of the innate immunity of the airway epithelium. TLR2 recognizes peptidoglycan, a
component of the gram-positive cell wall of common respiratory pathogens such as
streptococcus pneumoniae. When peptidoglycan binds TLR2, it initiates a cascade of
intracellular signaling which includes activation of MAPK and NF-κB (Akira and Takeda,
2004). This ultimately leads to release of pro-inflammatory cytokines such as IL-8.

We have previously shown that alcohol upregulates TLR2 in airway epithelial cells (Bailey
et al., 2008). We demonstrated a concentration-dependent increase in TLR2 mRNA and
protein when cells were exposed to 100mM alcohol. The increase in surface expression of
TLR2 made the cells more responsive to peptidoglycan, a ligand for TLR2. The alcohol-
primed cells secreted twice as much IL-8 in response to stimulation with a low concentration
(40ng) of peptidoglycan. These findings are in stark contrast to how alcohol modulates
immune effector cells. Others have shown that alcohol downregulates TLR2-mediated
inflammatory signaling in macrophages (Frost et al., 2005; Goral and Kovacs, 2005; Pruett
et al., 2004). The mechanism for alcohol's alternative upregulation of TLR2 in the airway
epithelium is unknown.

We hypothesized that alcohol's novel upregulation of TLR2 in airway epithelial cells is
through the NO/cGMP/PKG pathway. We have previously shown that airway epithelial
cells produce nitric oxide in response to alcohol stimulation (Sisson, 1995). Nitric oxide in
turn, binds to soluble guanylyl cyclase and increases intracellular concentrations of cGMP
(Wyatt et al., 1998). Cyclic GMP then binds to and activates its major cellular receptor, the
cGMP-dependent protein kinase (PKG). The catalytic activation of PKG then leads to
substrate phosphorylation and a subsequent increase in TLR2 expression. We have tested
this hypothesis by stimulating airway epithelial cells with alcohol in the presence of
inhibitors of this pathway. In addition, we have reproduced the effects of alcohol using
agonists to this pathway.

Methods
Cell culture

Dr. Dieter Gruenert provided the 16HBE14o- transformed airway epithelial cell line
(Gruenert et al., 1988). We have previously published that 16HBE14o- respond to alcohol in
the same way as normal human bronchial epithelial cells (Bailey et al., 2008). 16HBE14o-
were grown in tissue culture plates coated with 27μg/ml Type I collagen (Sigma, St. Louis,
MO) and 3μg/ml Type III collagen (Sigma, St. Louis, MO). Cells were grown in submerged
culture in Dulbecco's Modified Eagle Medium (Media Tech, Manassas, VA) supplemented
with 10% fetal bovine serum (FBS; Invitrogen, Carlsbad, CA). They were maintained in a
37°C incubator with 5% carbon dioxide. The cells used for these experiments were passage
35-50. Like primary smooth muscle cells, these cells down regulate PKG with extended
passages (Browner et al., 2004). After passage 50 there was no active PKG.

Cell exposure to alcohol
16HBE14o- cells were exposed to alcohol by adding ethanol (Pharmco-AAPER,
Shelbyville, KY) to their growth media for the times and concentrations indicated for
individual experiments. Serum remained in the growth media when exposing the
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16HBE14o- to alcohol for all experiments. We chose to use 100mM ethanol in these
experiments, because we have previously published that this is the concentration that
maximally up-regulates TLR2 (Bailey et al., 2008). This concentration is biologically
relevant and is frequently seen in intoxicated individuals.

RNA extraction
16HBE14o- cells were exposed to experimental conditions for the times indicated. Cell
monolayers were washed twice with PBS, then trypsin was used to remove the cells from
the plate. The cells were stored in RNAlater (Applied Biosystems, Carlsbad CA) until RNA
extraction could be performed. RNA extraction was performed using the MagMax 96 RNA
extraction kit (Applied Biosystems, Foster City, CA) according to the manufacturer's
directions. RNA quantity and quality was evaluated using the Nanodrop spectrophotometer
(Thermo Scientific, Wilmington, DE). All RNA samples had an A260/A280 ratio of 1.8-2.0.

Synthesis of cDNA
cDNA was synthesized using the Taqman reverse transcription kit (Applied Biosystems).
Reactions were prepared using 100 ng of template RNA, 1× Taqman RT buffer, 1.25 U/μl
of Multiscribe reverse transcriptase, 500 μM of each dNTP, 5.5 mM magnesium chloride,
2.5 μM random hexamers, and 0.4 U/μl RNase inhibitor. The reactions were incubated in a
PTC 200 thermocycler (MJ Research, Waltham, MA) for 10 minutes at 25°C, 30 minutes at
48°C, and 5 minutes at 95°C.

Real-time PCR
Real-time PCR was performed on the cDNA using the following reaction: 1× Gene master
mix, and 1× human TLR2 primer and probe mix (Applied Biosystems Hs00152932_m1) in
25 μl reactions in a 96-well plate. Reactions were performed in duplicate. The plate was
then placed in an ABI Prism 7500 Sequence detection system (Applied Biosystems).
Reactions underwent 2 minutes at 50°C, 10 minutes at 95°C, then 40 cycles of 15 seconds at
95°C and 1 minute at 60°C. Ribosomal RNA (Applied Biosystems) was used as an
endogenous control. For relative comparison of TLR2 to ribosomal RNA, we analyzed the
cycle threshold value (Ct) using the ΔΔCt method (Livak and Schmittgen, 2001). Data are
then reported as a fold-change from control.

Western blotting
16HBE14o- cells were grown to 30-40% confluency in 60mm tissue culture dishes as
described above. Half the cells were pre-treated for 2 hours with the cGMP antagonist
analogue Rp-8-Br-cGMPS (10μM) (Biomol, Plymouth Meeting, PA) in the normal growth
media (DMEM with 10% FBS). The rest of the cells were treated with media alone. Ethanol
was added to the appropriate wells for a final concentration of 100 mM or the same volume
of media was added for 48 hours. The cell layers were washed twice with PBS, then lysed
on ice in a lysis buffer containing 10 mM Tris, 150 mM NaCl, 3 mM EDTA, 20 μg/ml of
soybean trypsin inhibitor, 5 mM Benzamidine, 1× protease inhibitor cocktail (Sigma). The
cells were then mechanically scraped using a cell lifter. The concentration of protein in each
sample was determined using the Bradford method (Bradford, 1976). Total protein (50 μg)
was resolved in a 10% polyacrylamide gel. It was then electroblotted onto nitrocellulose
using a semi-dry transfer at 10V for 45 minutes. The blot was blocked for at least 2 hours in
5% blotto w/v in PBS at room temperature. The blot was probed with rabbit anti-human
TLR2 (H175) antibody (SantaCruz Biotechnology, Santa Cruz, CA) at a 1:400 dilution in
5% blotto overnight at 4°C. The blot was then washed 5 times in PBS with 0.5% Tween.
The blot was then incubated in a 1:10,000 dilution of goat-anti-rabbit HRP-conjugated
antibody (Jackson ImmunoResearch, West Grove, PA) in 5% blotto for 2 hours at room
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temperature. The blot was then washed 5 times in PBS-Tween, then developed using Pierce
SuperSignal kit (ThermoScientific) The blots were then exposed to X-ray film and
developed. Beta actin was used as a loading control. Densitometry was performed using
ImageJ software (Downloaded from http://rsbweb.nih.gov/ij/).

Statistics
All data are reported as mean ± SEM. Statistics were performed using GraphPad/Prism 4
software (La Jolla, CA). Data were analyzed using the one-way analysis of variance
(ANOVA) followed by Dunnett's multiple comparison test or Tukey's multiple comparison
test as appropriate. p values < 0.05 were considered statistically significant.

Results
Alcohol upregulates TLR2 through a nitric oxide (NO) dependent mechanism

We first tested the hypothesis that nitric oxide was playing a role in the alcohol-triggered
upregulation of TLR2. We inhibited nitric oxide synthase production of NO in the airway
epithelial cells using the NOS inhibitor, Nω-Nitro-L-arginine methyl ester hydrochloride (L-
NAME) as previously reported (Wyatt et al., 2003). Cells were preincubated for 1 hour with
media alone or media containing L-NAME (1 mM). With L-NAME remaining in the media,
the cells were exposed to 100 mM alcohol for 6 hours. Cell monolayers were harvested and
real-time PCR was performed. Alcohol stimulated cells showed a 2-fold increase (p<0.001,
n=4) in TLR2 mRNA at 6 hours over control (Figure 1). This increase was completely
blocked by L-NAME (p<0.001). L-NAME did not decrease the baseline expression of TLR2
compared to control. This suggests that nitric oxide plays an integral role in alcohol's
upregulation of TLR2.

To further test the role NO plays in the regulation of TLR2, we stimulated cells with a NO
donor, sodium nitroprusside (SNP). We found that SNP produces the same effect on TLR2
as alcohol. Cells were incubated with 1 μM, 10 μM and 100 μM SNP for 24 hours. Cell
monolayers were harvested and TLR2 mRNA was measured using real-time PCR. SNP
induced a concentration-dependent increase in TLR2 of a similar magnitude as alcohol
(Figure 2). At the 10 μM and 100 μM concentrations, we observed a statistically significant
difference in alcohol treatment (p <0.05, n=5) over control.

NO signals through cGMP
NO often signals through the activation of guanylyl cyclase and the production of cGMP. To
determine if cGMP regulates alcohol-mediated upregulation of TLR2, cells were exposed to
alcohol in the presence of a cGMP antagonist analogue, Rp-8-Br-cGMP-S. Cells were pre-
incubated with 10 μM Rp-8-Br-cGMPS for one hour. Alcohol was then added to the wells
for a final concentration of 100 mM for 24 hours. Cell monolayers were harvested and real-
time PCR for TLR2 was performed. Again, alcohol produced a 2.1-fold increase in TLR2
mRNA (p< 0.001) while this increase was attenuated by Rp-8-Br-cGMPS (p<0.05, n=4)
(Figure 3). Rp-8-Br-cGMP did not cause a decrease in baseline production of TLR2 mRNA
(Figure 3).

We then used a cGMP agonist, 8-Br-cGMP, to mimic the effect of alcohol on TLR2. Cells
were exposed to 1, 10, and 100 μM 8-Br-cGMP for 6 hours. We observed a statistically
significant increase in TLR2 mRNA of 2.2 fold (p<0.01, n=4) with 100 μM cGMP (Figure
4a). At high concentrations (>0.1 M), cGMP can cross-activate airway epithelial cell PKA
(Wyatt et al., 2003). To ensure that the increase in TLR2 mRNA was due to the action of
cGMP on PKG and not the cross-activation of PKA, we also stimulated cells with a cAMP
analogue, 8-Br-cAMP. The cells were exposed to 1, 10, and 100 μM 8-Br-cAMP for 6

Bailey et al. Page 4

Alcohol Clin Exp Res. Author manuscript; available in PMC 2013 May 07.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

http://rsbweb.nih.gov/ij/


hours. Even at very high doses of cAMP, we did not see any increase in TLR2 mRNA (n=4)
(Figure 4b). This indicates that the increase in TLR2 is related to the activation of PKG, and
not due to a cGMP-mediated cross-activation of PKA.

The alcohol-triggered upregulation of TLR2 mRNA appears to be dependent on the NO/
cGMP/PKG pathway. We wanted to confirm that the changes in TLR2 mRNA correlated
with the changes in TLR2 protein. 16HBE14o- were stimulated with 100 mM alcohol for 48
hours in the presence or absence of 10 μM Rp-8-Br-cGMP-S, the cGMP antagonist analog.
Although we see an increase in TLR2 mRNA at 24 hours, it takes 48 hours for TLR2 protein
expression to increase in response to alcohol. For this reason, the cells were exposed to
alcohol for 48 hours. A representative Western blot for TLR2 (out of 5 blots showing the
same results) is shown (Figure 5A) along with a summary graph of the data (Figure 5B). We
observed that alcohol increases TLR2 protein 3.9 fold and that this increase is attenuated by
Rp-8-Br-cGMP-S.

Discussion
We have previously shown that biologically relevant concentrations of alcohol functionally
upregulate TLR2 (Bailey et al., 2008). In the current studies, we sought to define the
mechanism of the alcohol-stimulated upregulation of TLR2. We found that alcohol
upregulates TLR2 through the NO/cGMP/PKG pathway in the airway epithelium. We have
shown that NO production is an essential part of this upregulation of TLR2 by inhibiting
nitric oxide synthase using L-NAME. Likewise, we can mimic alcohol's upregulation of
TLR2 using the NO donor SNP. We have also shown that cGMP/PKG are essential in the
alcohol-triggered upregulation of TLR2. We blocked alcohol's upregulation of TLR2 by
using the cGMP antagonist analogue, Rp-8-Br-cGMPS. Likewise, we can mimic alcohol's
upregulation of TLR2 using the cGMP analogue 8-Br-cGMP.

Our findings demonstrate a novel mechanism of regulation of TLR2 in airway epithelium.
Alcohol upregulates TLR2 through a NO/cGMP/PKG pathway. Alcohol has been shown to
regulate other airway epithelial cell processes through the same pathway, such as ciliary beat
frequency (Li et al., 2000; Wyatt et al., 1998), wound repair (Spurzem et al., 2005), and
adenosine transport (Diane S.Allen-Gipson, 2008). However, the upregulation of TLR2
through this pathway has never been demonstrated in any cell type.

Most of the study of alcohol's effect on TLR's has been confined to monocytes and
macrophages. Our study is unique in that it focuses on the airway epithelium. Understanding
how alcohol influences the innate immune system in the airway epithelium is important,
because the lining of the conducting airways represent the lung's first defense against
infection by inhaled pathogens. Immune effector cells such as monocytes and macrophages
behave very differently than airway epithelial cells in response to alcohol. Alcohol is known
to decrease the downstream signaling of TLR2 in monocytes and macrophages (Goral and
Kovacs, 2005; Oak et al., 2006). This is in sharp contrast to the upregulation of TLR2 that
we see in airway epithelial cells

It is possible that a simple upregulation of TLR2 by alcohol does not necessarily translate
into increased inflammation of the airway epithelium in the absence of an additional injury.
We have previously published that cells ‘primed’ with alcohol produce twice as much IL-8
as unprimed cells in response to low concentrations of peptidoglycan, a ligand for TLR2
(Bailey et al., 2008). In this context, it appears that alcohol triggers a functional upregulation
of TLR2. This alcohol-induced “priming” of the airway epithelium could then lead to the
potentiation of a significantly enhanced inflammatory response to the inhalation of gram-
positive bacteria or organic dusts, both of which are highly enriched in peptidoglycan.
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In general, much more is known about the downstream signaling of TLRs than how TLRs
themselves are modulated. The study of nitric oxide in relation to TLRs is a good example
of this. Nitric oxide has long been known to be produced by macrophages in response to
inflammatory stimuli (Stuehr and Marletta, 1985). In macrophages, NO is produced by
iNOS (NOS2) as a consequence of a ligand binding a TLR. For example, Lipotechteic acid,
a component of the gram positive cell wall, binds to TLR2 and stimulates macrophages to
secrete NO (Ryu et al., 2009). Other organisms such as Peptostreptococcus (Marcato et al.,
2008), Mycobacterium tuberculosis (Doz et al., 2007), and enterococcus faecalis (Baik et al.,
2008) have similar effects in macrophages. Other cell types also produce NO in response to
activation of TLR2. Astrocytes (Phulwani et al., 2008), microglial cells (Kinsner et al.,
2006), pancreatic stellate cells (Masamune et al., 2008), epididymal epithelial cells (Zhao et
al., 2008)and gastric epithelial cells (Uno et al., 2007) all secrete NO after TLR2 has been
activated. Little is known about NO and TLR2 in the airway epithelium. An attempt was
made to study the effect of NO on TLR2 mRNA expression in the whole lung homogenate
of rats (Wu et al., 2005). In this study, acute hemorrhagic pancreatitis was induced and mice
were treated with intravenous L-arginine. The mice with pancreatitis that received L-
arginine had higher levels of NO and somewhat decreased levels of TLR2 mRNA. This is at
odds with our findings, but it is impossible to determine which cells within the whole lung
homogenate were responsible for this change. The upregulation of TLR2 may be specific to
the airway epithelium. This may be because the airway epithelium is the first level of
defense against inhaled pathogens.

How cyclic nucleotides modulate toll-like receptors and their signalling is largely unknown.
The few studies that have looked at the relationship between TLRs and cyclic nucleotides
have been focused on the downstream signaling of TLRs In one study, osteoblasts were
stimulated with LPS to activate TLR4. The addition of a cAMP analog enhanced production
of NO by the osteoblasts (Sosroseno et al., 2009). In contrast, two studies in monocytes
(Kaufmann et al., 2005) and dendritic cells(Harzenetter et al., 2007) show that cAMP
activation led to diminished inflammatory cytokine production in response to stimulation
with TLR2 agonists. Our findings are the first to suggest that cyclic nucleotides play a role
in the regulation of TLR2 expression.

Many questions remain to be answered in this area. We do not know how alcohol affects the
down-stream signaling of TLR2 in the airway epithelium. It is also possible that the
upregulation of TLR2 in the airway epithelium is only an acute reaction to alcohol, and that
chronic exposures may have very different effects. In addition, because we see different
trends in TLR2 regulation between the airway epithelium and immune effector cells, it is
impossible to know what the net inflammatory outcome is by in vitro studies alone. In vivo
studies will be essential to determine the overall effect of both acute and chronic alcohol
exposure on TLR2-mediated airway inflammation.

Conclusion
Alcoholics have more severe airway disease than their non-alcoholic counterparts. This is
likely due to increased inflammation in the airways of alcoholics. At least in part, this
inflammation is likely due to alcohol's upregulation of TLR2. In this paper, we have shown
that alcohol modulates its effect on TLR2 expression through the NO/cGMP/PKG pathway.
Understanding the mechanism through which alcohol upregulates TLR2 brings us closer to
developing better therapies for alcohol-related airway inflammation.
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Figure 1.
16HBE14o- cells were preincubated with and without L-NAME, an NOS inhibitor, for 1
hour. The indicated cells were then exposed to 100mM alcohol for 6 hours. TLR2 mRNA
was measured using real-time PCR. L-NAME blocked alcohol's upregulation of TLR2
(n=4).
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Figure 2.
16HBE14o- cells were exposed to 0.001-0.1 μM Sodium Nitroprusside (SNP), a nitric oxide
donor, for 6 hours. TLR2 mRNA was measured using real-time PCR. SNP upregulated the
amount of TLR2 mRNA as much as alcohol (n=5).
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Figure 3.
16HBE14o- cells were pre-incubated for 1 hour with Rp-8-Br-cGMPS, an antagonist
analogue of cGMP. Cells were then stimulated with 100 mM alcohol for 24 hours in the
presence of the antagonist. Alcohol caused a 2-fold increase in TLR2 mRNA (p< 0.001)
Rp-8-Br-cGMPS inhibited the upregulation of TLR2 mRNA by alcohol (p<0.05). The
alcohol + Rp-8-Br-cGMPSgroup is not statistically different from control (p>0.05;n=4).
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Figure 4.
16HBE14o- were exposed to 0, 1, 10, and 100 μM 8-Br-cGMP (A) and 8-Br-cAMP (B) for
6 hours. TLR2 mRNA increased with 8-Br-cGMP, as with alcohol (n=4).
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Figure 5.
16HBE14o- were stimulated with 100 mM alcohol in the presence or absence of Rp-8-Br-
cGMPS for 48 hours. Cell monolayers were harvested and a Western blot for TLR2 was
performed. A. Representative blot of 5 separate experiments. B. Densitometry of the ratio of
TLR2: Beta Actin ratio of the 5 Western blots performed. TLR2 protein is upregulated by
alcohol, and this effect is blocked by Rp-8-Br-cGMPS.
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