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Abstract
In this paper, we describe a method for segmenting fiber bundles from diffusion-weighted
magnetic resonance images using a locally-constrained region based approach. From a pre-
computed optimal path, the algorithm propagates outward capturing only those voxels which are
locally connected to the fiber bundle. Rather than attempting to find large numbers of open curves
or single fibers, which individually have questionable meaning, this method segments the full fiber
bundle region. The strengths of this approach include its ease-of-use, computational speed, and
applicability to a wide range of fiber bundles. In this work, we show results for segmenting the
cingulum bundle. Finally, we explain how this approach and extensions thereto overcome a major
problem that typical region-based flows experience when attempting to segment neural fiber
bundles.

1. Introduction
Region-based approaches to image segmentation constitute a key methodology for
numerous applications. In these approaches, the objective is to find the segmentation which
optimally separates features exterior to a closed curve or surface from features contained in
the interior. These approaches have been shown to accurately segment datasets with low
signal to noise ratio, frequently outperforming edge-based techniques.

For example, in the work by Chan and Vese, a flow is proposed which optimally separates
the first moments of the intensity distributions [4]. In more recent work, Rathi et al.
demonstrate a method based on the Bhattacharyya distance for separating entire distributions
[30]. In both of these cases, features from the entire interior of the curve are compared
against features from the entire exterior.
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In this present work, we propose a region-based algorithm for the segmentation of neural
fiber bundles from diffusion weighted magnetic resonance imagery (DW-MRI).
Specifically, we describe why classical approaches (i.e. those which compare features across
the full interior with features from the full exterior) may not be well-suited for DW-MRI
fiber bundle segmentation. Then, we explain how one can leverage the results of optimal or
geodesic path algorithms to locally constrain region-based approaches in such a manner
which will both retain the beneficial attributes of region-based methods while also handling
the challenges posed by DW-MRI data. Starting from an optimal path (or anchor tract), a
fiber bundle is segmented using a Bayesian framework. The priors are based on anatomical
knowledge of the bundle being segmented, for instance, a simple nonlinear anatomically
derived function of the distance to the anchor tract works well for the cingulum bundle. The
likelhoods are based on local measures of tensor compatibility (local uniformity), adapting a
Chan and Vese approach to active contours without edges. The Bayesian formulation is cast
as an energy minimization problem which is solved using a greedy flood fill motivated
algorithm.

We now briefly describe the remainder of this paper. First, in Section 2, we provide a
literature review and background of tractography and fiber bundle segmentation algorithms.
Second, in Section 3, we motivate our interest in applying this algorithm to the segmentation
of the cingulum bundle. Third, in Section 4, we describe the algorithm for locally
constraining the region-based method. Fourth, in Section 5, we provide initial results on the
segmentation of the cingulum bundle using a simplistic implementation. Finally, in Section
6, we provide an extensive explanation of how these ideas and results may be adapted for
use in a variety of implementations and algorithms.

2. Background
Since the advent of diffusion weighted magnetic resonance imaging, a great deal of research
has been devoted to finding and characterizing neural connections between brain structures.
Image resolution is typically high enough so that major white matter tracts, or bundles of
densely packed axons, are several voxels in cross-sectional diameter [20]. The goal of
tractography algorithms is to segment these fiber bundles from the DW-MRI datasets.

Early tractography methods were based on streamlines which employed local decision-
making based on the principal eigenvector of diffusion tensors [19, 33, 2, 5]1.

In these techniques, tracts are propagated from a starting point until the tracts reach some
termination criterion. Due to the local decision-making process, these methods have been
shown to perform poorly in noise and often stop prematurely. These techniques do not
provide a measure of connectivity for the resulting tracts. Furthermore, several of these
methods do not use the full tensor, reducing the data to the principal eigenvectors, and
subsequently are unable to handle fiber crossings, branchings, “kissings,” etc.

Despite the shortcomings of this approach, due to its ease-of-use, streamlining has quickly
become the most popular method for fiber segmentation. To infer fiber bundles from
streamline tractography results, several groups have successfully worked on methods for
fiber clustering. The goal of clustering is to capture group behavior of a population of
streamlines and to use this group behavior to drive fiber bundle segmentation. The end result
of clustering algorithms has been shown to accurately capture many neural fiber bundles,
see for example [22, 18].

1The diffusion tensor is one of the simplest diffusion models. It is estimated from a set of diffusion weighted images, each probing the
water diffusion in a different spatial direction. In the three-dimensional case the diffusion tensor is a 3 × 3 symmetric, positive definite
tensor. For details see [3].
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Recently, another line of work has emerged which seeks to avoid the use of the problematic
streamlines. Tractography advances have been made which provide full brain optimal
connectivity maps from predefined seed regions. These methods are more robust to noise
and depending upon the underlying metric, may be able to more fully use the complete DW-
MRI data. These approaches can be subdivided into stochastic and energy-minimization
approaches.

Stochastic approaches produce probability maps of connectivity between a seed region and
the rest of the brain. Parker et al. developed PICo, a probabilistic index for standard
streamline techniques [24]. Perrin et al. presented probabilistic techniques for untangling
fiber crossings using q-ball fields [26]. In other work, Friman et al. proposed a method for
probabilistically growing fibers in a large number of random directions and inferring
connectivity from the resulting percentages of connections between seed and target regions
[7]. While providing a measure of connectivity between brain regions, these stochastic
approaches do not provide an explicit segmentation of the fiber bundle itself and often do
not explicitly provide the optimal connection between regions of the brain.

Energy-minimization techniques have also been developed. Parker et al. proposed fast
marching tractography which minimizes an energy based on both the position and direction
of the normal to a propagating front [25]. O’Donnell et al. cast the tractography problem in a
geometric framework finding geodesics on a Riemannian manifold based on diffusion
tensors [23]. Similarly, Prados et al. and Lenglet et al. demonstrated a Riemannian based
technique, GCM (Geodesic Connectivity Mapping), for computing geodesics using a variant
of fast marching methods adapted for directional flows [29, 15]. Jackowski et al. find
Riemannian geodesics using Fast Sweeping methods as given by Kao et al. [8, 11, 12].
Pichon et al. and Melonakos et al. use the more general Finsler metric to find optimal
connections [27, 28, 17, 16]. Finally, Fletcher et al. propose a new Hamilton-Jacobi-Bellman
numeric solver on the graphics processing unit to find Riemannian geodesics in near real-
time speeds [6]. In each of these cases, an optimal path is found which represents the best
connection between the two regions under the given metric.

3. The Cingulum Bundle
In this section, we motivate the problem of segmenting the cingulum bundle. The cingulum
bundle is a 5–7 mm in diameter fiber bundle that interconnects all parts of the limbic system.
It originates within the white matter of the temporal pole, and runs posterior and superior
into the parietal lobe, then turns, forming a ”ring-like belt” around the corpus callosum, into
the frontal lobe, terminating anterior and inferior to the genu of the corpus callosum in the
orbital-frontal cortex [32]. Moreover, the cingulum bundle consists of long, association
fibers that directly connect temporal and frontal lobes, as well as shorter fibers radiating into
their own gyri. The cingulum bundle also includes most afferent and efferent cortical
connections of cingulate cortex, including those of prefrontal, parietal and temporal areas,
and the thalamostriatae bundle. In addition, lesion studies document a variety of
neurobehavioral deficits resulting from a lesion located in this area, including akinetic
mutism, apathy, transient motor aphasia, emotional disturbances, attentional deficits, motor
activation, and memory deficits. Because of its involvement in executive control and
emotional processing, the cingulum bundle has been investigated in several clinical
populations, including depression and schizophrenia. Previous studies, using diffusion
tensor imagery, in schizophrenia, demonstrated decrease of fractional anisotropy in the
anterior part of the cingulum bundle [13, 34], at the same time pointing to the technical
limitations restricting these investigations from following the entire fiber tract.
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4. The Algorithm
In this section, we present our method for applying local constraints to region-based flows.

4.1. Motivation for Local Constraints
An implicit assumption of classical (i.e., those which compare features across the full
interior with features from the full exterior) region-based approaches is that the entire
interior of the contour contains fairly homogeneous features, such as mean intensity. Under
this assumption, these algorithms proceed by evolving the closed curve or surface to
minimize an energy defined over these features.

However, if there are no homogeneous features across the entire interior or exterior of the
object of interest, it becomes difficult to define a region-based approach which will
accurately segment the image. For instance, in the case of the cingulum bundle which curves
around the ventricles, the tensors across the fiber bundle vary in both anisotropy and
orientation across the length of the bundle, as shown in Figure 1. In this sagittal view, we
see that it is difficult to define a feature on the space of tensors which uniquely separates the
entire interior of the cingulum bundle from the exterior. However, we also notice that the
tensor shape and anisotropy vary smoothly across the bundle. Hence, locally across the fiber
one can define tensor features which are distinguishable from the exterior.

4.2. Prior Work
Surface evolution approaches have been described for fiber bundle segmentation. Rousson
et al. [31] use a multivariate Gaussian distribution of the tensor components in a geodesic
active region model to drive a surface evolution towards the segmentation of fiber bundles.
The method is applied to the segmentation of the corpus callosum, but is unable to fully
capture its curved character as discussed by the authors. In a follow-up paper [14] a similar
segmentation framework in combination with a geodesic distance between tensors is shown
to yield superior segmentation results, in particular, when segmenting curved fiber bundles.
Jonasson et al. propose two different ways to address the segmentation of curved fiber
bundles in a surface evolution setting: (i) a local approach [9], where the surface evolution
speed is influenced by the similarity of a tensor in comparison to its interior neighbors, and
(ii) a region-based approach, where the similarity measure is based on the notion of a most
representative tensor within the segmented region [10]. In the latter case, capturing highly
curved fiber bundles will be problematic. In both cases the segmentation algorithm is
combined with a surface regularization to prevent leaking. The approach proposed in this
paper is related to Jonasson’s work [9] in as much as it uses local tensor similarities to drive
the segmentation, however, no surface evolution is used and a tensor similarity measure is
combined with prior information as given by an initially computed anchor tract (also
preventing large-scale leaking). The extension of the approach proposed in this paper (see
Section 6) can be seen as complementary to the method by Lenglet et al. [14]. Instead of
disentangling tensor shape and orientation through an appropriate tensor distance (and
statistic) the anchor tract may be used to warp the space initially, thus effectively removing
large orientation differences2. Further, due to the absence of a surface evolution, our
approach is computationally very efficient.

4.3. Bayesian Framework
In this section, we describe how the algorithm can be formulated in a Bayesian framework.
We follow the approach by Mumford [21] and cast the Bayesian estimation problem into an

2Our approach may also be combined with the method proposed in [14].
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energy minimization. The probability of observing the classification C, consisting of points
belonging to the fiber and points belonging to the background given the tensor information
T is (using Bayes’ formula):

(1)

where C is an element of the set of all possible assignments of voxels to the fiber and the
background respectively, p(T|C) is the likelihood of observing T given the classification C
and p(C) is the prior. By taking the logarithm on both sides and noting that p(T) is
independent of the classification C, Equation (1) can be written as an energy minimization
problem [21]

(2)

where Ed(T, C) denotes the data energy and Ep(C) the prior (or regularization) energy.
Instead of solving the Bayesian estimation problem (1) directly we may thus instead
minimize the energy (2). Which leaves us with defining these energies. We use a flood-fill
algorithm approach that solves the energy minimization problem (2) for an individual point
only considering its local neighborhood N. In what follows we first describe the continuous
setting, to make connections with existing approaches, and then describe the discrete
implementation in the context of the proposed Bayesian flood-fill algorithm. Given the local
neighborhood N of a point x we want to decompose it into a subregion belonging to the fiber
and a subregion belonging to the background. The goal of our algorithm is to make each of
these two subregions individually as uniform as possible, while at the same time using
anatomically meaningful prior information. The prior information is encoded based on the
distance of the pre-computed anchor tract, which is the lowest cost path connecting two
maximally spaced-out, pre-defined regions of interest of the fiber bundle of interest (in our
case the cingulum bundle). Specifically, we choose p(C) as

(3)

where d(x) is the distance of point x from the anchor tract and

where Gσ is a Gaussian with standard deviation σ and * is the convolution operator; μmin
and μmax are set to the range of expected radius values. Note, that the prior could also be
replaced by a probabilistic atlas. Equation (3) describes an initial zone of high fiber
confidence close to the anchor tract, a transitioning region (where p(C) = 1/2) where the
prior information will not be used3, and an anatomically implausible region, where the prior
probability decreases to zero. The prior energy is then defined as

3If p(C) = 1/2, the prior energy (4) is independent of assigning the candidate flood-fill point to the fiber or the background.
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(4)

where Nf is the region belonging to the fiber Nb is the region belonging to the background
and |·| denotes cardinality, i.e., |N| is the volume of the neighborhood. Given a measure of

uniformity  mapping from the space of tensors  and the space of
neighborhood sets of tensors  ∋ T(N) := {T(x) ∈ |x ∈ N} to a nonnegative real value, we
write the data energy as

(5)

where T(x) denotes a tensor at position x and T(N) denotes the set of tensors in the region N.
This is an energy similar to the one proposed by Chan and Vese [4] for the segmentation of
intensity images4. Note, however, that instead of using this energy globally to perform
tensor segmentation, we are proposing to use this energy in a local neighborhood to make a
local decision for a flood-fill algorithm, thus avoiding global tensor orientation issues for
strongly curving fiber bundles. To minimize this energy in the discrete flood-fill setting, we
simply compute the difference of the energies when adding the voxel in question to either
the fiber (resulting in energy Ef) or to the background (resulting in energy Eb). The
difference of these energies ΔE = Eb − Ef corresponds to a discretized gradient. Since our
goal is to minimize the overall energy, a voxel x will be added to the set of fiber voxels if
ΔE > 0. All integrals in Equations (4) and (5) become sums in the discretization. Many
uniformity measures are possible (see for example [10, 9, 1] for some ideas on how-to
compare tensors), we constructed a simple one based on fractional anisotropy and the major
diffusion direction:

where

measures the uniformity in fractional anisotropy and

measures the uniformity in direction. Fractional anisotropy (FA) is defined as [3]

4To favor “smooth” discrete boundaries, a local boundary length term can be added.
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where e1(T) denotes the major unit eigenvector of the tensor T, λi(T) its eigenvalues (with
λ1 ≥ λ2 ≥ λ3 ≥ 0), and the overhead bar signifies the mean5. De1 is scaled by fractional
anisotropy to discard tensors that are close to being isotropic, since in these cases
eigenvector computations become numerically problematic. The continuous approach could
alternatively be implemented using fast marching or level sets. In this work, we use a very
simple flood-fill approach which propagates away from the anchor tract. Certainly other
methods would offer a more continuous and numerically accurate approach. However, our
simple flood-fill implementation is sufficient as a proof-of-concept.

The algorithm proceeds in the following steps:

i. Declare all voxels on the anchor tract as fiber voxels.

ii. Consider all 6-connected neighbors to the fiber voxels that are not fiber voxels
themselves as candidate voxels.

iii. Decide whether a candidate voxel should belong to the fiber based on the simple
local energy minimization described above (where the neighborhoods Nf and Nb
are given by the voxels in the current neighborhood N that already belong to the
fiber or are so far classified as background respectively). If a candidate voxel
should be part of the fiber according to the local energy minimization, add it as a
fiber voxel.

iv. Repeat from step (ii) until no more new fiber voxels are found.

Using the Bayesian framework, the outward propagating front stops once the Bayesian
detection threshold is reached, i.e., once all boundary voxels are in locally minimal energy
configurations.

5. Experiments
In this section, we show results of the algorithm applied to DW-MRI datasets of 51
sampling directions. We used the Finsler tractography method proposed by Melonakos et al.
to compute the anchor tracts or optimal paths between two input seed regions [16]. The seed
regions were manually segmented, one under the anterior tip of the ventricles and the other
under the posterior tip of the ventricles.

Using precomputed anchor tracts, we were able to construct our priors using the function
shown in Figure 2, as previously described (mean radius r ̄ = 3 mm,

). Applying this function to a distance map
from the anchor tract, the prior image is as shown on the left side of Figure 3. The white
colored area is where the uniform priors are centered on the mean value of the cingulum
bundle radius, which we take to be 3 mm as described in Section 3. In the middle of Figure
3, we show the likelihood energy gradient computed from the evolution (where positive
values are likely to belong to the bundle and negative values are not likely to belong to the
bundle). Notice how the likelihood energy function captures an appropriate boundary across

5FA may be computed directly from the tensor components without computing the tensor eigenvalues first [3].
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a majority of the cingulum fiber bundle. The orientation dependent terms had the strongest
influence on the inferior edge against the corpus callosum. The anisotropy dependent terms
had the strongest influence on the superior edge. On the right side of Figure 3, we show the
posterior energy gradient, which results from the combination of likelihood energy and prior
energy terms.

In Figure 4, we show a 3D model view of the resulting segmentation. Then, in Figure 5, we
show three separate time steps in the flood-fill evolution. The first column is at 1 iteration,
the second column is at 3 iterations, and the final column is at 18 iterations-where all three
methods had converged. The top row shows the evolution using only the priors. Notice how
the result is a smooth tube exactly matching the prior that is too wide for this individual and
ends up overlapping proximal anatomy, such as the corpus callosum. The middle row shows
the evolution using only the likelihoods. While this result appropriately captures the
majority of the bundle, it is subject to a few leaks as shown. The bottom shows the evolution
using the Bayesian combination of the likelihoods and priors. This result shows an
appropriate combination of the likelihood boundary stopping and the prior leakage
constraints.

We also note that the few parameters used in this method can be chosen given anatomical
information about the mean radius of the fiber bundle. The prior energy function is only
dependent upon this parameter, as mentioned previously. Also, the neighborhood size is
chosen to be large enough so that at least 20% of the neighborhoods on the first iteration
include voxels exterior to the fiber bundle. In this case, we chose a neighborhood radius of 7
mm. No other parameters were needed in this computation.

6. Future Work and Conclusions
This paper proposed a novel segmentation method for diffusion tensor images. The approach
is based on a Bayesian region growing, where the prior depends on the distance to a pre-
computed anchor tract. The anchor tract is given by the optimal path in a Finsler metric
(though any other robust method giving a representative fiber path could be used), utilizing
the full diffusion profile. The likelihood is determined based on the consistency of a
candidate voxel with its neighbors that are already part of the segmentation. (i.e. the
likelihood is dynamically updated as the region is growing.) The Bayesian combination of
likelihood and prior allows for a balanced combination of local consistency and distance
from the optimal path, which also inhibits segmentation leakage. The approach is
computationally efficient.

Region-based segmentation algorithms have been highly successful in segmenting uniform
(in a given measure) regions. Translating this global region-based approach to diffusion
weighted imaging for the segmentation of fiber bundles is challenging, since it is not
obvious how to define a criterion to incorporate shape and directional information over an
entire region. In particular, many fiber bundles in the brain curve strongly (e.g. the cingulum
bundle, the arcuate fasciculus, the corpus callosum). Figure 6 shows some exemplary tensors
aligned along an anchor tract. Warping the anchor tract to a straight line may greatly
simplify the design of region-based statistics, by “flattening” the geometry to remove large-
scale deformation. Further, by establishing correspondences between the anchor tract and
the rest of the domain, other interesting neighborhoods may be defined. This will be the
topic of future research.

Many more extensions are conceivable, such as the use of more sophisticated distance and
similarity measures. The locally-constrained method proposed as well as global region-
based segmentation methods will benefit from similarity metrics using the complete tensor
information. In particular, more suitable tensor-based statistics may be explored in this
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framework, such as those shown by Lenglet et al. [14]. Further, a continuous formulation,
based on a variant of the Eikonal equation or as a complete surface evolution (with the easy
possibility of directly integrating smoothing terms) will be desirable, and validations with
respect to manual segmentations should be performed.
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Figure 1.
Example of the need for local constraints on region-based segmentation algorithms which
attempt to segment the cingulum bundle. Notice that tensor anisotropy and orientation vary
across the length of the cingulum bundle.
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Figure 2.
The prior profile: Blue is the initial step function, Red is the actual profile after smoothing.
Note the region of uniform priors (0.5), centered around the clinically defined mean fiber
radius.
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Figure 3.
The prior energy (left), likelihood energy (middle), and posterior energy (right).
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Figure 4.
A 3D view of the result.
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Figure 5.
Front evolution time steps: Top Row is the evolution with only the priors. Middle Row is the
evolution with only the likelihoods. Bottom Row is the evolution from the Bayesian
inclusion of both the likelihoods and priors.
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Figure 6.
Tensors aligned along the anchor tract (top) and tensors aligned along the anchor tract
warped to a straight line (bottom). Warping the tensors based on the geometry of the anchor
tract greatly simplifies the tensor segmentation problem.
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