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Abstract
Protein oxidative modifications, also known as protein oxidation, are a major class of protein
posttranslational modifications. They are caused by reactions between protein amino acid residues
and reactive oxygen species (ROS) or reactive nitrogen species (RNS) and can be classified into
two categories: irreversible modifications and reversible modifications. Protein oxidation has been
often associated with functional decline of the target proteins, which are thought to contribute to
normal aging and age-related pathogenesis. However, it has now been recognized that protein
oxidative modifications can also play beneficial roles in disease and health. This review
summarizes and highlights certain positive roles of protein oxidative modifications that have been
documented in the literature. Covered oxidatively modified protein adducts include carbonylation,
3-nitrotyrosine, s-sulfenation, s-nitrosylation, s-glutathionylation, and disulfide formation. All of
which have been widely analyzed in numerous experimental systems associated with redox stress
conditions. The authors believe that selected protein targets, when modified in a reversible manner
in prophylactic approaches such as preconditioning or ischemic tolerance, may provide potential
promise in maintaining health and fighting disease.
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1. Introduction
In order to cope with environmental challenges, cells rely on a variety of posttranslational
modification mechanisms to expand protein function [1-4]. Of all the documented
posttranslational modifications, oxidative modification of the side chains of various amino
acid residues forms a major category of protein posttranslational modifications [5-7]. Protein
oxidative modifications can be generally classified into two categories: irreversible
oxidation and reversible oxidation [8-10]; both of which can be selectively induced by
reactive oxygen species (ROS) and reactive nitrogen species (RNS) [11, 12].
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Earlier studies of protein oxidation nearly exclusively focused on the detrimental effects of
protein oxidation in aging and diseases [5, 9, 13-17]. It has now been firmly recognized,
however, that protein oxidation can also play a positive role in many cellular functions. This
gradual realization of the beneficial roles of protein oxidation may be attributed to
accumulating evidence that ROS and RNS are indispensible for cell survival [18-22] and
regeneration [23], and in many cases, they are required for recovery of cellular functions by
creating positive stress conditions whereby cell survival mechanisms are reprogrammed to
extend life span [24-27] or to withstand severe, or lethal challenges [28-31].

In this article, we review both irreversible and reversible oxidative modifications that are
beneficial in health and disease. Modification adducts to be discussed include protein
carbonyls, 3-nitrotyrosine, and cysteine oxidation products (Fig. 1). As protein cysteine
residue is the one that often undergoes reversible redox modifications by ROS or RNS
[32-34], we have inclined to devote more space on cysteine modifications including s-
sulfenation, s-nitrosylation, s-glutathionylation, and disulfide formation that are all
reversible [35-38]. It should be noted that protein oxidative modifications that have
deleterious effects in health and disease are beyond the scope of this review and will only be
sporadically mentioned.

2. Cellular sources of oxidants
There are many systems inside a cell that can generate ROS. Mitochondria are recognized as
the major site for ROS production [39-41]; and both complexes I and III have been
established to be the specific sites for mitochondrial ROS generation [42-45]. Besides
mitochondria, many enzymes are also capable of producing ROS. These include, but not
limited to, NADPH oxidase [46, 47], xanthine oxidase [48, 49], α-ketoglutarate
dehydrogenase complex [50-52], d-amino acid oxidases [53-55], and dihydrolipoamide
dehydrogenase [56-62]. On the other hand, nitric oxide production in vivo is mainly
achieved by nitric oxide synthases [63-65] though under certain conditions deoxygenated
myoglobin [66] or xanthine oxidoreductase [67] or cytochrome c oxidase [68] can be
involved in NO production; and in vitro nitric oxide donors are also frequently used either in
experimental systems [69-71] or for therapeutic purpose [72-74]. It should be noted that in
the presence of superoxide anion, nitric oxide can rapidly react with superoxide anion to
yield peroxynitrite [75-77], a reactive species that is highly reactive toward redox-sensitive
amino acid residues including tyrosine and cysteine [78, 79].

3. Irreversible protein oxidative modifications
First, we would like to discuss briefly the possible beneficial role of irreversible
modifications. These types of modifications include mainly protein carbonylation and
tyrosine nitration [11, 80-84]. Both modifications are often associated with oxidative
damage and have been used as biomarkers for assessment of oxidative stress in aging and
diseases [13, 15-17, 85]. While both carbonylation and nitration can have detrimental effects
on the target proteins, evidence has also emerged that such modifications can also play
positive roles in cellular function under stress conditions.

3.1. Protein carbonyls
Protein carbonyls formed on several amino acids residues, including arginine, histidine,
lysine, proline, threonine and cysteine, are the most widely used biomarker for measurement
of protein oxidation and oxidative stress in aging and diseases [5, 8, 11-14, 86-90]. As the
modification occurs on multiple amino acid residues on selected protein targets [15-17, 91],
its magnitude is much greater than any other modifications that occur only on a specific
amino acid residue [11, 12], and thus is more readily detectable. Many studies have
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employed protein carbonylation to evaluate the detrimental effects of protein oxidation and
oxidative stress [13-16, 87-90]; evidence for positive effects of this modification, however,
has started to accumulate. For example, protein carbonylation has been shown to be
involved in signal transduction [92-95] and is known to be involved in ischemic
preconditioning eliciting protection against reperfusion-induced tissue injuries [96, 97].

3.2. Protein nitrotyrosine
Nitrotyrosine, usually 3-nitrotyrosine, is formed between reactive nitrogen species and a
protein's tyrosine residue [78, 98, 99]. This modification is a highly selective process as not
all proteins or all tyrosine residues on a target protein can get nitrated [100]. Formation of
nitrotyrosine is often thought to be accompanied with acute or chronic inflammation disease
[101-104], whereby level of nitric oxide is elevated [102, 104-106]. While numerous studies
have investigated the deleterious effects of 3-nitrotyrosines [107, 108], concurrent with
development of methods for detection and quantitation [109, 110], this modification has
been detected under normal physiological conditions such as healthy pregnancy [111, 112],
indicating that formation of 3-nitrotyrosine has physiological function.

4. Reversible protein oxidative modifications: protein cysteine
modifications
4.1. Chemistry of protein cysteine residues

At neutral pH under physiological conditions, free cysteine residues have a pKa value that is
around 8.5, which makes oxidative modifications impossible [113]. To be susceptible to
oxidation, the pKa value of a cysteine residue needs to be lower than the physiological pH
value (pH 7.4), a condition under which, the cysteine –SH group becomes thiolated (thiolate
anion) [113-115]. It is those thiolated cysteine residues that are redox reactive [35, 116].
This thiolation process, decreasing the pKa value to 7.2 or lower, can be achieved via many
factors such as hydrogen bonding [117, 118], the effect of adjacent basic amino acid
residues [117], the microenvironment of the target cysteine residues [117], and substrate
binding [119]. For example, albumin cysteine 34 has a very low pKa value of 5 [120].
Hence under physiological condition, it exists as thiolate anion and is very reactive towards
oxidants, thiols, metals, and disulfides [121-123].

As described above, thiols with low pKa values are more reactive because they are usually
deprotonated or thiolated at physiological pH [124-126]. Therefore, oxidation of protein
cysteines that are redox reactive is also a highly selective process [127, 128]. As shown in
Fig. 2, cysteine oxidation usually starts with the formation of sulfenic acid, from which a
variety of oxidation products can be furtherly formed and many of them are reversible and
well defined chemically. These cysteine oxidation products include disulfide formation (S-
S-), S-glutathionylation (protein-SSG), S-nitrosylation (-SNO), sulfenic acid formation (-
SOH, or S-sulfenation) and have all been demonstrated in redox regulation of protein
functions by ROS and RNS [35, 129, 130]. Importantly, all of which have been implicated
to play beneficial roles in disease and health because they may protect the target proteins
from further oxidation that will otherwise permanently damage the target proteins
[131-133]. Another mechanism is that these modifications also play a role in redox signaling
cascades that boost cellular defense systems to better counteract stress insults [134-136].

4.2. Protein sulfenic acid formation (S-sulfenation)
This sulfur-hydroxylation product (P-SOH) possesses powerful redox chemistry and has
been demonstrated to play a key redox regulatory role in a growing number of proteins [34,
138-141]. Its formation is mainly induced by ROS such as hydrogen peroxide, alkyl
hydroperoxides, and RNS such as peroxynitrite [38, 129, 137, 142, 143]. Although being a
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simple chemical modification, sulfenic acid formation can have a dramatic effect on protein
function [130, 137, 144]. It was for a long time regarded as an intermediate, unstable
cysteine oxidation product, which may still be true for many proteins [137, 145, 146].
Growing evidence, however, has demonstrated that stable-SOH indeed exists, making
trapping, labeling, detecting, and quantitating possible for further evaluation of the formed –
SOH [142, 147-150]. A beneficial effect of protein SOH formation has been elegantly
demonstrated in studies whereby s-sulfenation of aldose reductase protects the heart against
ischemic/reperfusion injury [151-153]. Specifically, these studies found that cyse-298's
sulfenation of aldose reductase by peroxynitrite shows great protection against cardiac
ischemic injury; and administration of peroxynitrite scavengers not only eliminates
cys-298's sulfenation, but also abolishes cardiac protection against ischemic injury. In
unrelated studies, Michalek et al. demonstrated that protein sulfenation is indispensible for
T-cell growth and proliferation as arrest of sulfenic acids greatly impairs T cell maturation
[154]. Another example of a beneficial role of P-SOH is that of the sulfenation of nitrile
hydratase; sulfenic acid formation on this enzyme's Cys114 residue is absolutely essential
for the enzyme's catalytic activity [155].

4.3. Protein s-nitrosylation
Protein s-nitrosylation can be induced by nitric oxide, nitroxyl, and peroxynitrite [156, 157].
This modification has been regarded as functionally equivalent to protein phosphorylation
and dephosphorylation [158-160]. Besides occurring on cysteine residues other than on
tyrosine, serine, or threonine residues, s- nitrosylation is also potentially different from
phosphorylation in that nitrosylation may not involve a delicate network consisting of
kinases or enzymes that catalyze, respectively, nitrosylation and denitrosylation, though the
existence of denitrosylases, including Cu,Zn-superoxide dismutase and bilirubin, has been
reported [161-165]. Nonetheless, s-nitrosylation has been demonstrated to be a key
modification of cysteine residues under a variety of physiological and pathophysiological
conditions [157, 166, 167]. In particular, in connection with nitric oxide-based redox
regulation of protein function, s-nitrosylation has been found to be involved in protective
mechanisms in many disorders [157, 168-170]. For example, Sheng et al. have demonstrated
that chemically-enhanced s-nitrosylation can improve recovery from subarachnoid
hemorrhage [171], and Penna et al. have demonstrated that protein s-nitrosylation is
favorably produced during cardiac postconditioning [172].

4.4. Protein s-glutathionylation
Protein cysteine residues can also undergo s-glutathionylation under oxidative stress
conditions [173-175]. Glutathione (GSH) is the major cellular antioxidant, yet, it can also
modify proteins via mixed disulfide formation (P-S-S-G), leading to functional changes of
the target proteins [176]. This reversible oxidation of critical cysteine residues on proteins
has been found to be involved in oxidative signal transduction, control of gene expression,
cell proliferation, apoptosis, and cellular responses to protecting key regulatory molecules
from oxidative insults [173, 176-178]. Similar to s-sulfenation and s-nitrosylation, protein-S-
S-G is also often associated with a detrimental effect on the target protein's function
[179-182], but can also protect the target protein from irreversible and permanent damage
[183-186]. Therefore, protein glutathionylation has increasingly gained great attention as a
possible means of redox regulation of protein functions in response to oxidative stress under
physiological and pathophysiological conditions [185, 187]. For example, actin
glutathionylation regulates actin dynamics in polymorphonuclear neutrophils [188],
manipulation of uncoupling protein 2's glutathionylation may provide a strategy for cancer
treatment [189], and glutathionylation of adenine nuclear translocase induced by
preconditioning can prevent mitochondrial membrane permeabilization and apoptosis [190].
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4.5. Protein disulfides
This is different from protein s-glutathionylation, where a mixed disulfide between GSH and
a protein-linked cysteine residue is formed [191-193]. Native disulfide bond formation is
usually involved in correct protein folding and is catalyzed by disulfide isomerase in the
endoplasmic reticulum and the mitochondrial intermembrane space [194-197], and should
be considered different from those formed under oxidative stress or pathophysiological
conditions. Hence herein, disulfide formation is strictly meant to reflect inter- or intra-
protein disulfide formation that is caused by ROS or RNS [198-205]. Disulfide bonds
formed between free cysteine residues upon oxidative stress have been reported to play a
beneficial role in cellular defense systems against a variety of stress challenges [191,
206-210]. For example, intra-protein disulfide formation in Cdc25c upon hydrogen peroxide
exposure regulates the stability of the protein [211], and in the brain type creatine kinase,
disulfide formation between two cysteine residues (cys74 and cys254) can serve as a cellular
defense mechanism [212]. Additionally and importantly, it is well established that formation
of disulfide linkage within Keap1 in response to cellular stimuli by electrophiles and
oxidants [213-217] is essential for activation of the NF-E2-related factor 2 (Nrf2) that then
upregulates the expression of phase II antioxidant enzymes under a variety of physiological
and pathophysiological conditions [218-224].

5. Protein oxidative modifications and ischemic tolerance
Posttranslational protein oxidative modifications, in particular cysteine modifications, have
been implicated in ischemic tolerance or preconditioning [168, 225-231]. Ischemic tolerance
constitutes a positive stress that reporgrams cellular defense systems to prevent subsequent
lethal injuries [232-237]. The phenomenon of preconditioning seems to be universal as all
tissues in mamalian systems as well as all organisms can be preconditioned. In particular,
the heart and the brain can be preconditioned by a variety of mechanisms to prevent further
injuries caused by ischemia reperfusion [232, 238]. Therefore, preconditioning has both
prophylactic and therapeutic value. Despite intensive studies, the mechanisms of
preconditioning has not been well understood. Nonetheless, ROS are known to be the key
molecules involved in preconditioning development [239-243] as antioxidants administered
during induction of preconditioning can block the preconditioning effect [28, 30]. Moreover,
a moderately-elevated level of ROS, in particular, H2O2, has been shown to be
neuroprotective [221, 244-246]. Nevertheless, how ROS work in preconditioning induction
and tissue protection remains elusive. As ROS can impart their effects by modifying
proteins, identification of endogenous protein targets of ROS may elucidate mechanisms of
protection induced by ischemic tolerance. It is thus conceivable that identification of
oxidatively modified protein targets, especially those that can undergo reversible oxidative
modifications, may provide insights into novel therapeutic strategies for ischemic tolerance.
It is also worth mentioning that a concept of postconditioning, whereby the reperfusion
procedure can be disrupted and intervened to elicit protection against lethal injury, has been
recently established [247-250]. We think that postconditioning can also be placed under the
notion of ischemic tolerance. In fact, preconditioning and postconditioning may share
similar pathways or mechanisms [250-254].

So why could protein oxidation, in particular, reversible oxidation-induced by ischemic
tolerance be involved in protection against subsequent ischemic injury? As it is the
reperfusion stage that often incurs the injury due to a sudden burst in ROS production
concurrent with resupply of oxygen [255-259], oxidized proteins with altered protein
function could slow down the rate of ROS production during reperfusion and hence could
attenuate ischemic injury [230, 260]. In addition, as already pointed out earlier in this
review, oxidized proteins induced by ischemic tolerance could also be involved in eliciting
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cellular defense systems to protect against further severe ischemia reperfusion injury [261,
262].

6. Summary and Perspectives
While studies on the detrimental or deleterious effects of protein oxidative modifications
are, and will still be, dominating the field of protein oxidation, investigation of the beneficial
roles of protein oxidation appears to be gaining increasing interest [135, 263]. For beneficial
purposes, efforts should be focused on proteomic identification of reversibly oxidized
proteins that may exhibit protective effects. Further, studies on a comprehensive
understanding of the mechanisms or pathways that regulate the reversible nature of the
corresponding modifications should be undertaken. This should be particularly true for
reversible cysteine oxidation, which not only reflects changes in cellular redox state, but can
also protect the target proteins from further damage. Additionally, reversible cysteine
oxidation is also involved in redox signaling cascades [264-267] that can elicit positive
stress responses to prevent unpredicted disastrous events such as stroke and heart attack.
Therefore, equal efforts will also be needed to identify those protein targets that undergo
reversible cysteine modifications in preventative or protective approaches as such identified
protein targets may provide therapeutic values in fighting diseases, in particular, ischemia
associated cerebral and cardiovascular diseases.
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Fig. 1.
Irreversible and reversible protein oxidation products discussed in this review. Irreversible
oxidation includes protein carbonyls and 3-nitrotyrosine while reversible oxidation includes
cysteine modification products such as sulfenic acid, nitrosothiols, and s-glutathione.
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Fig. 2.
Chemistry of cysteine oxidative modifications. Sulfenic acid is truly an intermediate product
during cysteine oxidation. Given appropriate conditions, s-nitrosothiols can also be
discomposed to yield sulfenic acids with concurrent production of nitroxyl [137]. Sulfenic
acid can be further oxidized to form disulfide bonds, s-glutathionylation. Irreversible
oxidation products sulfinic and sulfonic acids are also shown.
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