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Abstract: In this paper, a logistic prediction model is introduced to 
characterize the ovarian tissue. A new parameter, the phase retardation rate, 
was extracted from phase images of polarization-sensitive optical coherence 
tomography (PS-OCT). Statistical significance of this parameter between 
normal and malignant ovarian tissues was demonstrated (p<0.0001). Linear 
regression analysis showed that this parameter was positively correlated (R 
= 0.74) with collagen content, which was associated with the development 
of ovarian tissue malignancy. When this parameter and the optical scattering 
coefficient and the phase retardation estimated from the 33 ovaries were 
used as input predictors to the logistic model, 100% sensitivity and 
specificity in classifying malignant and normal ovaries were achieved. Ten 
additional ovaries were imaged and used to validate the prediction model 
and 100% sensitivity and 83.3% specificity were achieved. These results 
showed that the three-parameter prediction model based on quantitative 
parameters estimated from PS-OCT images could be a powerful tool to 
detect and diagnose ovarian cancer. 

©2013 Optical Society of America 

OCIS codes: (110.4500) Optical coherence tomography; (170.4500) Optical coherence 
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1. Introduction 

Ovarian cancer has the highest mortality rate among all the gynecologic cancers because it is 
predominantly diagnosed at late stages due to the unreliable early symptoms and the poor 
screening techniques. Prophylactic oophorectomy (PO) has been accepted as the standard of 
care for high risk women and it reduces the risk of ovarian cancer by more than 50% [1,2]. 
However, there appears to be a higher mortality for premenopausal oophorectomy [3]. 
Therefore, there is an urgent need to develop effective tools to inspect ovaries, so that the 
mortality rate of ovarian cancer can be reduced and the quality of patients’ life can be 
improved. 

Optical coherence tomography (OCT) is an emerging high resolution imaging technique 
[4], which measures backscattered light generated from an infrared light source directed to the 
tissues. OCT typically achieves a resolution of several microns and a penetration depth of 
several millimeters, and has been used to image tissues in the body that can be accessed by 
endoscope or catheter. Polarization-sensitive OCT (PS-OCT) is a functional extension of OCT 
[5,6] and capable of detecting birefringence changes caused by collagen, and collagen 
changes in human ovary are indicators of malignancy [7,8]. Therefore, PS-OCT could be an 
effective tool to detect ovarian cancer. In our initial study [9], optical scattering coefficient 
and phase retardation of 33 ex vivo ovaries obtained from 18 patients were extracted from 
time domain (TD) PS-OCT intensity and phase images, respectively. While the scattering 
coefficient was significant in predicting malignancy, the phase retardation achieved low 
sensitivity of 43%. In this study, a more sensitive parameter, the phase retardation rate, was 
extracted from PS-OCT phase images and used together with the scattering coefficient and 
phase retardation to characterize ovarian tissue. In the literature, the PS-OCT phase 
retardation rate was introduced by M. C. Pierce et al. to quantify collagen denaturation in 
burned human skin [10]. In our study, these three parameters extracted from 33 ovaries were 
used as inputs to a logistic model to predict or classify the malignant and benign ovaries. In 
addition, 10 more ovaries from 5 patients were imaged with our upgraded Fourier domain 
(FD) PS-OCT system and used to test the model. To the best of our knowledge, this is the first 
study of using multiple parameters extracted from PS-OCT images as predictors for ovarian 
tissue characterization. 

2. Materials and methods 

2.1 Ovary sample and histopathology 

A total of 43 ovaries were extracted from 23 patients undergoing PO at the University of 
Connecticut Health Center (UCHC). 33 ovaries from 18 patients were imaged using TD-PS-
OCT while 10 ovaries from 5 patients were imaged using FD-PS-OCT. These patients were at 
risk for ovarian cancer or they had ovarian mass or pelvic mass suggesting malignancy. This 
study was approved by the Institutional Review Board of UCHC, and informed consent was 
obtained from all patients. The details of imaging procedures and histological processing were 
described in [9]. Sirius Red staining protocol was applied to the sectioned slides to analyze the 
collagen content. The amount of collagen was quantitatively analyzed using ImageJ software 
(National Institute of Health). The average collagen area fraction (CAF) was measured as 
“Stained collagen area/tissue area”. 

2.2 PS-OCT systems 

The TD-PS-OCT and upgraded FD-PS-OCT systems are shown in Fig. 1(a). The essential 
optical configurations of the TD-PS-OCT and upgraded FD-PS-OCT systems are the same. 
The technical details of the TD-PS-OCT system were described in our earlier study [9]. The 
main differences between the upgraded FD system and the TD system are: (1) the super 
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luminescent diode source was replaced with an 110 nm bandwidth swept source (HSL-2000, 

Santec Corp., Japan) with center wavelength of 1310 nm and scan rate of 20 kHz; (2) the 

detectors were replaced with 75MHz bandwidth photodetectors (Thorlabs PDB120C); (3) the 

reference mirror was fixed instead of moving back and forth by a stepper motor. The 

conventional OCT intensity images were obtained from calculating the summation of squares 

of two orthogonally polarized signals, and the phase retardation images were obtained by 

calculating arctangent between vertical and horizontal polarization components [11]. 

2.3 Phase retardation rate 

During imaging, similar conditions for all ovary samples were obtained by mounting the 

ovary on a three-dimensional stage and adjusting the ovarian tissue surface to the same depth 

position. The phase retardation rate was obtained by linearly fitting phase retardation depth 

profile. The region of interest (ROI) selection was consistent with that in our earlier study [9] 

when calculating scattering coefficient and phase retardation. Overall, each image was evenly 

divided into several ROIs with 1mm width. Values in all ROIs from all images of one ovary 

were averaged to obtain the phase retardation rate of this ovary. The same procedures were 

followed for all ovaries. An example of fitting phase retardation rate of a normal ovary is 

shown in Figs. 1(b) and 1(c). Figure 1(b) is the phase retardation image, where the dark blue 

represents phase retardation value of zero degree and the dark red represents 90 degrees. The 

white dashed rectangular area was selected for fitting. The depth profile of the averaged A-

lines in the selected area was shown as blue curve in Fig. 1(c), and the numerical fitting curve 

was plotted as red. The slope of the red curve was calculated as the phase retardation rate. The 

phase retardation decreases with depth after about 1.5mm. This is because the ratio of vertical 

and horizontal signals reduces as light penetrates deeper in the tissue. The fitting error of the 

phase retardation rate is estimated as the norm of the fitting residue divided by the norm of the 

original curve. 

 

Fig. 1. (a) TD/FD-PS-OCT systems configuration. QWP: quarter-wave plate; PD: 
photodetector. (b) Phase retardation image; white dashed rectangular: selected area for fitting; 

scale bar: 0.5mm; (c) averaged A-lines and numerical fitting curve. 

2.4 Optical scattering coefficient and phase retardation 

The quantification of scattering coefficient and phase retardation were described in our earlier 

publication [9]. Scattering coefficient was estimated by numerically fitting compounded 

conventional OCT depth profile to a single scattering model based on Beer’s law. 1mm tissue 

was averaged to minimize the speckle noise. The phase retardation was obtained by 

calculating the average phase values from PS-OCT phase images of the same area. 

2.5 Logistic model and receiver operating characteristic curve 

Logistic regression belongs to the class of generalized linear model (GLM) based on the 

exponential distribution family. It is a statistical model that can describe the relationship of 

several predictor variables X1, X2, …, Xk to a dichotomous response variable Y (0 or 1) [12]. 

The probability of occurrence of one of the two possible outcomes of Y can be described by 

the following equation: 
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Given the data Y, X1, X2, …, Xk, the unknown coefficients , 0,1,...,n n k   can be estimated 

using the maximum likelihood method. In this paper, we use three predictors (scattering 
coefficient, phase retardation, and phase retardation rate) to classify normal and malignant 
ovarian tissue. The MATLAB GLMFIT function was used to fit the logistic model using the 
predictors and the response (0 represents normal and 1 represents malignant). The coefficients 

, 0,1,...,n n k  of the model that best follow the actual diagnosis were estimated and used to 

calculate the estimated responses (the numbers between 0 and 1) using GLMVAL function. 
The GLMFIT function also computed the deviance, which is a generalization of the residual 
sum of squares (comparison of log-likelihood function of actual fitted values with perfectly 
fitted values). The deviance was used to compare different prediction models, in which 
different parameter-combinations were used as predictors to classify normal and malignant 
ovaries. The deviance value decreases as the model fit improves. 

The quality of the logistic prediction model was evaluated using the area under the 
receiver operating characteristic (ROC) curve (AUC). The estimated responses from different 
prediction models were used to compute the ROC curves and AUCs using R package pROC 
[13]. We also estimated the 95% confidence interval (CI) using bootstrap method with 10,000 
stratified bootstrap replicates. The optimal threshold provided by pROC was used to calculate 
the sensitivity and specificity, positive and negative predictive values (PPV, NPV). To further 
evaluate the logistic prediction model and testing results, we have also investigated the 
correlation coefficients Rtrain and Rtest between calculated responses and the actual diagnosis. 

3. Results and discussion 

3.1 Statistical results of 33 ovaries imaged by TD-PS-OCT 

A total of 33 ex vivo ovaries from 18 patients were imaged using TD-PS-OCT system. 26 
ovaries were diagnosed as normal and 7 ovaries were diagnosed as malignant. Normal ovaries 
show higher average values of scattering coefficient and phase retardation than malignant 
ones, with the normal/malignant ratio of 1.36, 1.11, respectively [9]. For phase retardation 
rate, the average fitting range of normal group is 36.7-329.8 µm from the tissue surface, and 
the malignant group is 38.4-347.3 µm. The range of average value of normal group is 28.8-
154.8 degree/mm, and malignant group is 8.4-121.6 degree/mm. The normal group has mean 
value of 79.5 degree/mm (± 19.0), which is higher than that of the malignant group with mean 
value of 45.0 degree/mm (± 19.6). The normal/malignant ratio of phase retardation rate is 
1.77. Phase retardation rate of normal and malignant ovaries shows larger difference (p < 
0.0001) than the other two parameters. The fitting error of the phase retardation rate of the 
normal and the malignant group is 5.13% (± 0.82%) and 4.69% (± 0.96%), respectively. 

The scatter plot in Fig. 2(a) shows the average phase retardation rate of each ovary for 
normal and malignant groups. By setting a threshold of phase retardation rate at the value of 
55 degree/mm, we could achieve 85.7% sensitivity and 92.3% specificity. However, by using 
phase retardation as a classifier, we could only achieve 42.9% sensitivity [9]. Linear 
regression analysis is shown in Fig. 2(b). A positive correlation was found between phase 
retardation rate and collagen content, with Pearson’s correlation coefficient R = 0.74 
(p<0.0001), which is higher than those from scattering coefficient (R = 0.57, p<0.0001) and 
phase retardation (R = 0.47, p<0.01) [9]. A multiple linear regression shows that those three 
parameters together positively correlate with collagen content with R = 0.76, which is higher 
than that using each parameter alone. Collagen is associated with the development of ovarian 
cancers; the collagen amount and structure are quite different between normal and malignant 
ovaries. The normal and malignant groups have CAF values of 46.0% (± 9.1%), and 28.4% (± 
8.3%), respectively [9]. Since CAF, measured from Sirius Red staining on ovary samples, 
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directly assesses collagen, the highly positive correlation indicates that the phase retardation 

rate may measure the complicated process of collagen development of ovarian cancer. 

 

Fig. 2. (a) Scatter plot of phase retardation rate of normal and malignant ovary groups. (b) 
Positive correlation demonstration between phase retardation rate and collagen content; the 

blue dashed lines show 95% confidence interval. 

3.2 Training results based on logistic model using the 33-ovary data 

The three parameters extracted from 33-ovary images were used to train the logistic classifier. 

As shown by the ROC curves in Fig. 3(a), the use of all three parameters shows much better 

performance than each parameter alone. The more specific prediction results, including 

sensitivity, specificity, PPV, NPV, AUC (95% CI), correlation coefficient Rtrain between 

estimated responses and actual responses (p value), and deviance, of different parameter-

combinations are summarized in Table 1. By using only one parameter as a predictor, none of 

the models could achieve perfect sensitivity and specificity. By using combinations of any 

two parameters except one set using phase retardation and phase retardation rate, or using 

three parameters as predictors, 100% sensitivity and specificity are achieved. The deviance of 

using three parameters together is smaller than that of using two parameters, which indicates 

that the three-parameter model is more reliable. 

 

Fig. 3. ROC and AUC of different prediction models. (a) Training and (b) testing results. 

3.3 Testing results of 10 ovaries imaged by FD-PS-OCT 

10 ovaries (6 normal and 4 malignant) from 5 patients were imaged using the upgraded FD 

system and were tested using logistic prediction model based on different parameters 

described above. The testing results are summarized in Table 2. The same threshold of the 

training group was used for this testing group to calculate the sensitivity, specificity, PPV, and 

NPV. The Rtest and AUC are highest (Rtest = 0.893, p<0.001, AUC = 1.0) when using the 

three-parameter prediction model. Note that the three-parameter model achieved AUC = 1, 

but the sensitivity (100%) and specificity (83.3%) are not perfect. This is because we set a 

threshold of 0.5 for the training and testing groups for classifying normal and malignant 

ovaries. If we set a threshold of 0.7, we could achieve 100% sensitivity and specificity. 

However, in the three-parameter model training, all estimated responses of  normal  cases  are  
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very close to normal response 0, and all estimated responses of malignant cases are very close 
to malignant response 1, so it makes more sense to set the middle point 0.5 as a threshold 
based on the training results. 

Table 1. Summary of Logistic Model Results by Using Different Parametersa 

Prediction model 
(Th) 

Sensitivity Specificity PPV NPV 
AUC  

(95% CI) 
Rtrain 

(p value) 
Deviance 

SC 
 (0.65) 

85.7% 100% 100% 96.3% 
0.984 

(0.934:1.0) 
0.911 

(<0.0001) 
5.94 

PR  
(0.30) 

42.9% 100% 100% 86.7% 
0.607 

(0.302:0.885) 
0.212 

(0.237) 
33.14 

PRR  
(0.38) 

85.7% 92.3% 75.0% 96.0% 
0.907 

(0.720:1.0) 
0.747 

(<0.0001) 
18.92 

SC + PR  
(0.50) 

100% 100% 100% 100% 
1.000  

(1.0:1.0) 

1.000 
(<0.0001) 

6.22e-13 

SC + PRR  
(0.50) 

100% 100% 100% 100% 
1.000 

 (1.0:1.0) 
1.000 

(<0.0001) 
1.94e-14 

PR + PRR  
(0.18) 

100% 92.3% 77.0% 100% 
0.973 

(0.912:1.0) 
0.774 

(<0.0001) 
13.30 

SC + PR + PRR 
(0.50) 

100% 100% 100% 100% 
1.000 

 (1.0:1.0) 
1.000 

(<0.0001) 
1.60e-14 

aSC: scattering coefficient, PR: phase retardation, PRR: phase retardation rate, Th: threshold. 

Table 2. Summary of Testing Results 

Prediction model 
(Th) 

Sensitivity Specificity PPV NPV 
AUC  

(95% CI) 

Rtest  
(p value) 

SC  
(0.65) 

75.0% 83.3% 75.0% 83.3% 
0.958 

(0.833:1.0) 
0.764 

(0.010) 

PR  
(0.30) 

0% 100% 0% 60.0% 
0.917 

(0.667:1.0) 
0.624 

(0.054) 

PRR  
(0.38) 

50.0% 100% 100% 75.0% 
0.958 

(0.833:1.0) 
0.751 

(0.012) 

SC + PR  
(0.50) 

75.0% 100% 100% 85.7% 
0.875 

(0.625:1.0) 
0.802 

(0.005) 

SC + PRR  
(0.50) 

100% 83.3% 80.0% 100% 
0.958 

(0.750:1.0) 
0.789 

(0.007) 

PR + PRR  
(0.18) 

75.0% 83.3% 75.0% 83.3% 
0.833 

(0.500:1.0) 
0.495 

(0.146) 

SC + PR + PRR 
(0.50) 

100% 83.3% 80.0% 100% 
1.000  

(1.0:1.0) 

0.893 
(<0.001) 

In this study, only 10 ovaries were tested using our logistic model, more ovary data are 
being collected to validate the initial results. Currently, because all parameter extraction and 
processing are offline, future work also includes automating our data processing procedures so 
that we could obtain these parameters and input them to the prediction model in real-time. For 
translating this technique from bench to bedside, a fiber-based PS-OCT system for in vivo 
evaluation of ovarian tissue needs to be developed. 

4. Summary 

The phase retardation rate quantitatively extracted from PS-OCT has significantly improved 
the ovarian cancer diagnosis when it is used together with optical scattering coefficient and 
phase retardation. By using a new three-parameter logistic prediction model, we achieve 
100% sensitivity and specificity in the training group, and 100% sensitivity and 83.3% 
specificity in the testing group. The initial results demonstrate that the three-parameter 
prediction model based on PS-OCT could be a powerful tool to evaluate ovarian tissue. 

Acknowledgments 

This research was partially supported by the National Cancer Institute (1R01CA151570). The 
authors thank Xiaohong Wang, Dr. Molly Brewer and Dr. Melinda Sanders on helping with 
ovaries and pathology evaluations. 

#187788 - $15.00 USD Received 26 Mar 2013; revised 18 Apr 2013; accepted 18 Apr 2013; published 29 Apr 2013
(C) 2013 OSA 1 May 2013 | Vol. 4,  No. 5 | DOI:10.1364/BOE.4.000772 | BIOMEDICAL OPTICS EXPRESS  777




