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In the past several years, there has been increasing interest in the roles of inflammation and
immunity in hypertension. Inflammatory cells, including macrophages and T cells are
commonly observed in the kidneys of hypertensive animals, and select immunosuppressive
agents lower blood pressure and prevent end-organ damage in experimental hypertension.1, 2

Depending on their phenotype, macrophages can release reactive oxygen species, matrix
metalloproteinases and cytokines that promote tissue damage, change gene expression,
induce vascular remodeling and lead to vasoconstriction and renal damage. Indeed, mice
with reduced monocytes and macrophages develop less vascular remodeling, endothelial
dysfunction and vascular oxidative stress as compared to wild type mice in response to
either angiotensin II or DOCA-salt challenge.3 Recently, genetic deletion of macrophages
has been shown to blunt virtually all consequences of angiotensin II infusion, including
blood pressure elevation, induction of vascular adhesion molecules, vascular dysfunction
and superoxide production.4

It is fairly easy to imagine that innate immune cells like macrophages are involved in
hypertension, but rather surprisingly, it seems that T cells of the adaptive immune system
also contribute. Almost 50 years ago, White and Grollman showed that injection of lymph
node cells from hypertensive rats could raise blood pressure in normotensive recipient rats.5

Svendsen and colleagues showed the thymus played a role in the hypertension caused by
partial renal infarction and in the sustained phase of DOCA-salt hypertension.6 When
lymphocytes from Lyon rats with genetic hypertension are transferred into Lyon Low
pressure rats sustained hypertension develops in the recipients.7 Our group found that mice
lacking lymphocytes are protected against several forms of hypertension, including
angiotensin II, norepinephrine and DOCA-salt and that adoptive transfer of T cells can
restore hypertension in these models. We have proposed that neo-antigens formed in target
tissues such as the kidney and vasculature promote T cell activation, which produce
cytokines that lead to vascular and renal dysfunction, promoting hypertension.8

In parallel with inflammation, there is unequivocal evidence that the central nervous system
plays a critical role in hypertension. Lesions of the forebrain, specifically in the AV3V
region, the subfornical organ (SFO) and organum vasculosum of the lateral terminalis
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(OVLT) prevent various forms of experimental hypertension.9–11 The SFO and OVLT are
circumventricular organs that have a poorly formed blood brain barrier, and can be activated
by circulating factors such as angiotensin II and salt. Fibers from these extend to the
hypothalamus, in particular the paraventricular nucleus (PVN),12 which in turn relays
signals to the rostral ventral lateral medulla (RVLM) and other brainstem centers. These
brainstem sites integrate input from the baroreceptors and ultimately modulate sympathetic
outflow to the kidney and splanchnic circulation.13, 14 As tangible evidence of the
importance of these pathways, percutaneous renal denervation has recently proven effective
in lowering blood pressure in humans with hypertension resistant to conventional therapy.15

A major question is how and if these two seemingly very separate systems – the immune
and nervous systems –interact to modulate blood pressure. Is there evidence that one can
affect the other in promoting blood pressure elevation or alterations of vascular or renal
function? It turns out that there is enormous interplay between the autonomic and immune
systems. Cells of the immune system possess adrenergic and cholinergic receptors that
significantly affect their function. Alpha2-adrenergic receptor stimulation enhances antigen
uptake by dendritic cells,16 while beta adrenergic stimulation inhibits dendritic cell
function.17 T cells possess both alpha and beta adrenergic receptors that have been variously
reported to modify polarization, alter proliferation and change surface markers. Monocytes
and macrophages also possess α1 and β1 adrenergic receptors that modulate pro-
inflammatory cytokine production in response to toll-like receptor (TLR) agonists.18, 19

Likewise monocyte/macrophages possess α7 nicotinic receptors which suppress cytokine
production.20, 21 Interestingly, it has recently been shown that a subset of CD4+ cells with a
memory phenotype contain choline acetyltransferase and produce acetylcholine upon
sympathetic nerve stimulation.22 Tracey and colleagues have described an inflammatory
reflex, in which “danger’ signals, such as locally released cytokines and prostaglandins
activate vagal afferent nerves that transmit information to the brainstem, the hypothalamus
and higher centers. This orchestrates behavioral changes, reduces heart rate variability,
increases vagal efferent activity and increases sympathetic outflow.23 Increased vagal and
sympathetic stimulation of secondary lymphoid organs promotes acetylcholine release from
the aforementioned T cells, which in turn decreases cytokine production by nearby
macrophages and therefore dampens the inflammatory response (Figure). Thus, this
represents a reflex circuit that is active in myriad illnesses including sepsis, myocardial
infarction and multisystem organ failure.

In this issue of Circulation Research, Harwani et al24 provide evidence that the effector limb
of this reflex is profoundly disturbed in the setting of pre-hypertension. These investigators
examined how angiotensin II and nicotine modulate TLR induced cytokine release from
isolated splenocytes of young normotensive Wistar Kyoto (WKY) and SHR prior to the
development of hypertension. As expected from the circuit shown in the Figure, nicotine
pre-exposure suppressed TLR9-mediated interleukin-6 (IL-6) secretion in splenocytes of
normal WKY rats, while angiotensin II had no effect. In contrast, pre-exposure to either
nicotine or angiotensin II paradoxically increased IL-6 release in response to TLR7/8 and
TLR9 stimulation in SHR splenocytes. Nicotine’s anti-inflammatory effect in WKY and
pro-inflammatory response in SHR were also observed in vivo. Using flow cytometry, the
investigators identified a population of activated macrophages (CD161a+) that seems
responsible for production of IL-6 in SHR.

The differential effect of nicotine on IL-6 production could have significant implications for
other aspects of inflammation in hypertension. Mice lacking IL-6 are protected against the
development of hypertension.25 IL-6 synergizes with TGFβ to promote polarization of T
cells to produce IL-17, while TGFβ promotes skewing of T cells to a regulatory phenotype
in the absence of IL-6.26 Prior studies from our group have shown that T cells producing
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IL-17 are critical in the development of hypertension.27 These cells likely infiltrate the
perivascular space and the kidney, and the secreted IL-17 promotes superoxide production
and accumulation of other inflammatory cells. Thus, the increase in IL-6 in SHR
macrophages might have a critical role in skewing responses of T cells that are pro-
hypertensive.

It is of interest that SHR demonstrate abnormal macrophage responses prior to the onset of
hypertension. This temporal relationship indicates that altered nicotinic responses might be a
cause, rather than a consequence of hypertension. There is ample evidence that early life
events in SHR affect blood pressure. Classic studies by McCarty and colleagues more than
20 years ago showed that cross fostering SHR pups to normal WKY dams led to a
permanent decline in blood pressure and sympathetic outflow as the SHR aged.28, 29 This
might be related to epigenetic events that occur early in life.30 Alterations in DNA
methylation and histone modifications have recently been identified in several relevant
genes in the SHR, including the sodium potassium chloride cotransporter 1, the angiotensin
converting enzyme and the β-1 adrenergic receptor in SHR. 31 32, 33 In their current work,
Harwani et al found that the α7 nAchR signaling is altered in the SHR, as the splenocyte
responses were not blocked by its known inhibitor α-bungarotoxin. Future studies
examining epigenetic modification of genes encoding signals downstream of the α7 nAchR
might be quite revealing in this regard.

The studies by Harwani et al largely focused on splenocytes, and one can question how
important this organ is in the genesis of hypertension. Studies often focus on the spleen,
because it is a ready source of leukocytes in small animals. Antigen presentation by
macrophages and dendritic cells occurs in secondary lymphoid organs, including the spleen
and lymph nodes, which receive both vagal and sympathetic innervation. Thus, the interplay
between T cells and macrophages shown in the Figure could also occur in lymph nodes. Of
interest, removal of the celiac ganglion, which provides splenic innervation, prevents both
angiotensin II and DOCA-salt hypertension.34, 35 This has been attributed to hemodynamic
factors, however it is conceivable that an anti-inflammatory effect of denervation might also
play a role.

Given these interactions, it is interesting to note that similarities exist between the immune
and autonomic nervous systems.36 Both have synapses, develop memory and share a variety
of signaling molecules. In both systems, signals from upstream cells (pre-ganglionic neurons
and antigen presenting cells) markedly alter function of downstream cells (post-ganglionic
neurons and T cells). Plasticity is a feature common to both, and DNA rearrangement,
needed for T cell diversification, has been reported in the central nervous system.
Chemokines, known to play critical roles in inflammatory cell homing, also contribute to
development of the central nervous system.37

In summary, the study by Harwani et al further emphasizes that perturbations of the immune
system and the resultant inflammation contribute to hypertension. It should be noted that
despite intensive study for the past century, the etiology of most cases of human
hypertension remains unknown. This study offers a new understanding of how the interplay
between neural signaling and innate immune cells contributes to hypertension, and perhaps
provides novel therapeutic directions for this common and devastating disease.
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Figure.
Abnormal cytokine release in pre-hypertension. Shown is the “inflammatory reflex” in
which local signals in tissues such as vessels and the kidney activate vagal afferent signals to
the brain. These ultimately increase vagal and sympathetic outflow. In secondary lymphoid
organs, increased norepinephrine (NE) release acts on a subset of memory (CD44high) CD4+

T cells that contain choline acetyltransferase and produce acetylcholine (Ach). The released
ach acts on a7 nicotinic receptors of adjacent splenocytes, including macrophages. In normal
circumstances, this has an inhibitory effect on pro-inflammatory cytokine release in
response to various stimuli such as toll-like receptor (TLR) activation. In the paper by
Harwani et al, this effect of nicotinic stimulation is markedly altered in SHR prior to the
development of hypertension, such that cytokine release is paradoxically increased.
(Illustration: Ben Smith)
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