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The -300 region of the interleukin 10 (IL-10) promoter contains a functional NF-KB binding site composed
of the decamer sequence 5'-GGGAAAATCC-3'. Probes representing the -300 region or the NF-KB site alone
interacted with NF-KB proteins present in phorbol myristate acetate-, lipopolysaccharide-, or Sendai
virus-induced myeloid cell extracts as well as recombinant NFKB1 (p50) and RelA (p65); furthermore, NF-KB
protein-DNA complex formation was dissociated in vitro by the addition of recombinant IKBa. Mutation of the
NF-KB site in the context of the IL-113 promoter reduced the responsiveWess of the IL-113 promoter to various
inducers, including phorbol ester, Sendai virus, poly(rI-rC), and IL-113. A 4.4-kb IL-11 promoter fragment
linked to a chloramphenicol acetyltransferase reporter gene was also preferentially inducible by coexpression
of individual NF-KB subunits compared with a mutated IL-1p promoter hgment. When multiple copies of the
IL-1, NF-KB site were linked to an enhancerless simian virus 40 promoter, this element was able to mediate
phorbol ester- or lipopolysaccharide-inducible gene expression. In cotransfection experiments, RelA (p65) and
c-Rel (p85) were identified as the main subunits responsible for the activation of the IL-11 NF-KB site; also,
combinations of NFKB1 (p50) and ReIA (p65) or c-Rel and RelA were strong transcriptional activators of
reporter gene activity. The presence of a functional NF-KB binding site in the IL-11 promoter suggests that
IL-1 positively autoregulates its own synthesis, since IL-1 is a strong inducer of NF-KB binding activity. Thus,
the IL-11 gene may be considered as an important additional member of the family of cytokine genes regulated
in part by the NF-KB/rel family of transcription factors.

Interleukin 1 (IL-1) is a member of the family of inflam-
matory cytokines that possess an essential role in respon-
siveness to infection, immunoregulation, and immunological
homeostasis (1, 17); other members of this group of polypep-
tide hormones include tumor necrosis factor, IL-6, and the
interferons (IFNs). A rapid increase in IL-1 levels in serum
in response to bacterial or viral infection produces a cascade
of biological effects detectable in many tissues. IL-1 activity
is encoded by two distinct genes (a and f) that share about
25% homology at the amino acid level. Both IL-la and -1 are
initially synthesized as 31-kDa precursor polypeptides that
are processed in the cytoplasm to secreted or cell-associated
forms of 17 kDa (2, 11, 38, 39). IL-1 is produced by multiple
cell types, including cells of the monocytic lineage, T and B
lymphocytes, fibroblasts, neutrophils, and nervous system
microglia (1, 17).
Recent studies have begun to characterize the regulatory

pathways that contribute to the activation of IL-13 transcrip-
tion in response to viruses, lipopolysaccharide (LPS), phor-
bol ester, and other inducers of IL-11 production (8, 12, 20,
30). The IL-13 gene is regulated by an inducible promoter
element containing both positive and negative regulatory
elements (20). These cis-acting DNA sequences are the
ultimate targets of numerous transcription factors activated
by distinct signal transduction pathways. A phorbol
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myristate acetate (PMA)-responsive enhancer element lo-
cated between positions -2982 and -2795 upstream from
the transcriptional start site (8) which contains DNA motifs
similar to those of the AP-1 binding site of the collagenase
gene and the PRDI region of the human IFN-,B promoter has
been identified (19, 43, 59). Additional LPS-responsive ele-
ments that overlap and extend upstream of the PMA-induc-
ible enhancer have also been localized (59). Hunninghake et
al. recently characterized a novel protein termed NFIL-1,BA
interacting with the cap site-proximal -49 to -38 promoter
region, a domain that is uniquely conserved in the human
and murine IL-1lB promoter (30).
NF-KB is a family of structurally and functionally related

peptides that regulate transcription of immunoregulatory
genes coding for cell surface receptors, cytokines, transcrip-
tion factors, and viral genes including the human immuno-
deficiency virus type 1 (HIV-1) long terminal repeat (LTR)
(for a review, see references 3 and 24). The consensus
recognition site is a decamer (5'-GGGANNYYCC-3') with
two pentameric half-sites, each of which participates in the
recognition and stabilization of binding of the NF-KB dimer
(3). NF-KB was originally characterized as two proteins of 50
and 65 kDa (3, 4). Cloning of these factors revealed signifi-
cant amino-terminal homology with the rel family of onco-
proteins and with the Drosophila developmental morphogen
dorsal (3, 23, 33). These proteins preexist in the cytoplasm
coupled to an inhibitor protein, IKB (4, 22, 63, 68). Activa-
tion of cells by a variety of agents (PMA, radical oxygen
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intermediates, LPS, viruses, and cytokines) liberates the
DNA-binding proteins from IKB, leading to translocation to
the nucleus and interaction with DNA (3, 4, 29, 32, 44, 63,
68).
The NF-KB family now consists of multiple NF-KB/rel

peptides ranging in molecular mass from -100 to 49 kDa. In
addition to the proto-oncogene c-rel (10), the gene family
consists of the p105 gene product or NFKB1, which is the
precursor of the p5O DNA-binding subunit of NF-KB (9, 23,
33, 42); a p65 DNA-binding subunit, now termed RelA (47,
54), that possesses a strong transcriptional activation domain
(5, 53, 58); a distinct gene encoding a 100-kDa precursor
(now termed NFKB2) and a p52 product that is identical to
the lyt-10 gene (46, 57); and the recently cloned gene
encoding the 68-kDa RelB (I-Rel) product (55, 56). Four
distinct forms of the ankyrin repeat containing IKB proteins
have also been identified: IKBa (MAD3 or pp4O), cloned as
an immediate-early response gene in phorbol ester-induced
macrophages (28, 32); IKBP, purified as a distinct inhibitory
activity (68); bc13, identified initially as a gene translocated
in B-cell lymphoma (48); and IKBy, a unique 70-kDa gene
product encoded by the carboxy-terminal 607 amino acids of
the p105 gene (31). The association of IKBa with NF-KB
proteins occurs via the nuclear localization sequence; in the
uninduced state IKB masks the nuclear localization sequence
to prevent nuclear translocation (7). As shown recently,
phosphorylation and rapid degradation of IKBa are the first
detectable changes in NF-KB-IKB complexes after treatment
of cells with different inducers (6); loss of IKBa results in the
translocation of NF-KB to the nucleus, where RelA (p65) has
been shown to stimulate IKBa transcription de novo by an
autoregulatory mechanism (62).

In this study we have characterized the interactions of
NF-KB proteins with a putative NF-KB site located at -297
to -288 in the IL-lp promoter. This site interacted with
recombinant and native NF-KB proteins present in extracts
from PMA-, LPS-, or Sendai virus-induced myeloid cells.
Mutation of the NF-KB site within the IL-1l3 promoter
decreased responsiveness to different inducers and to
NF-KB subunit coexpression. In transfection studies using a
reporter construct with two IL-lp NF-KB sites, activation or
repression of reporter gene activity was achieved by distinct
combinations of NF-KB subunits. These experiments dem-
onstrate the presence of a functional NF-KB binding site in
the IL-13 promoter and suggest that IL-1 positively autoreg-
ulates its own synthesis, since IL-1 itself is a strong inducer
of NF-KB binding activity.

MATERIALS AND METHODS

Cell culture and transfection. Myeloid cell lines U937 and
PLB-985, as well as Jurkat, a T-lymphoid cell line, and 293,
an adenovirus-transformed human embryonic kidney cell
line, were grown in RPMI 1640 medium (GIBCO-BRL)
supplemented with 10% fetal calf serum, glutamine, and
antibiotics. Exponentially growing U937 and Jurkat cells
were transfected by the DEAE-dextran method, as de-
scribed previously (35); 293 cells were transfected by cal-
cium phosphate coprecipitation, as described previously
(35). All transfections contained equivalent amounts (10 ,ug)
of DNA; in those assays in which less chloramphenicol
acetyltransferase (CAT) reporter plasmid was used, addi-
tional pUC8 DNA was added. At 24 h after transfection,
cells were induced with PMA (25 ng/ml; Sigma), LPS (15
,ug/ml; Sigma), IL-lp (100 U/ml; R&D Systems, Inc.),
poly(rI-rC) (50 ,ug/ml; Pharmacia), or Sendai virus (250
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FIG. 1. Schematic of the IL-1,8 promoter. The schematic illus-
trates the IL-1,8 promoter present in the IL-1,4.4 CAT plasmid (8)
and identifies the sequence of the -300 region containing the
putative NF-KB binding site located at positions -297 to -288
(underlined). The enhancer element (59) located between -3757 and
-2729 (enhancer -3000) and exon 1-all present in the IL-
1134.4CAT plasmid-are illustrated. The sequences of oligonucleo-
tides used in this study are also indicated. The dots indicate
homology between the -300 region and the Xba oligonucleotide at
the NF-KB site (upper) and between the P2 element and the IL-11
element (lower).

hemagglutinating units/ml) for 24 h prior to lysis. For indi-
vidual CAT assays, 50 to 100 ,ug of total protein extract was
assayed for 4 to 6 h at 37°C (described in each experiment).
The percentage of acetylated chloramphenicol was deter-
mined by excising the spots containing nonacetylated and
acetylated forms of chloramphenicol on the thin-layer chro-
matography plates and measuring the amount of 14C radio-
activity by liquid scintillation counting. All transfections
were performed at least three times for each cell type.

Plasmid construction and oligonucleotide synthesis. Plas-
mids SV2CAT, SV1CAT, P2(1)CAT, and P2(2)CAT have all
been previously described (35, 36) and are derivatives of
pSV2CAT (26). pIL-lxl KBCAT, pIL-1Px2-KBCAT, and
pIL-1Px3-KBCAT plasmids were obtained by subcloning
synthetic oligonucleotides containing one, two, or three
copies of the IL-1f NF-KB sequence with AccI-SphI ends
into the AccI-SphI site of SV2CAT. The IL-1,B4.4CAT
plasmid was previously described (8) and is shown diagram-
matically in Fig. 1. The IL-134.4 mutant was produced by
overlap polymerase chain reaction (PCR) mutagenesis and
contains an XbaI recognition sequence (TCTAGA) in place
of the GGGAAA nucleotides at positions -297 to -292. The
sequences and positions of other oligonucleotides used in
this study are shown in Fig. 1. The NF-KB expression
plasmids were produced by subcloning different NF-KB
genes into the SVK3 vector as follows: (i) p50-a 1,381-bp
EcoRI-RsaI fragment from KBF-1 (33) was subcloned into
the EcoRI-SmaI site of SVK3L; (ii) p65A-a 2,572-bp XbaI-
XhoI fragment from plasmid BL-SK (54) was subcloned into
the BamHI-XhoI site of SVK3; (iii) c-Rel-the 2,340-bp
EcoRI fragment of c-rel cDNA (10) was cloned into the
SVK3 EcoRI site; (iv) IKB-a 1,190-bp EcoRI fragment from
pGEX-2T (see below) was subcloned into the EcoRI site of
SVK3. The CMIN-p65 vector (53) was used to express the
p65 subunit.

Extract preparation and gel retardation assay. Whole-cell
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extracts (WCE) were prepared from exponentially growing
U937, THP-1, and 293 cells at different times after induction
(described in individual experiments). Cell extracts were
prepared essentially as described previously (34, 35). A 5- to
15-p,g sample of WCE was preincubated with 5 p,g of
poly(dI-dC) in nuclear dialysis buffer (14) for 10 min at 4°C.
[y- 2P]ATP-labelled double-stranded oligonucleotides con-
taining a duplicated NF-KB site from the IL-11 promoter
(5'-GGGAAAATCCGGGAAAATCC-3'), the -300 region
of the IL-11 promoter (5'-CT-CTAACGTGGGAAAATC
CAGTATTTT-3'), or the PRDII domain of the IFN-1 pro-
moter (5'-GGGAAATTCCGGGAAATTCC-3') were incu-
bated with the extracts at room temperature for 30 min. The
sequences of other oligonucleotides used in competition
experiments are as follows: mutant NF-KB sites 5'-act-
AAATTCCactAAATTCC-3' (the G mutant), 5'-GGGAcgTT
CCGGGAcgTTCC-3' (the A mutant), 5'-CTAACGTTCTAG
AATCCAGTA-3' (the Xba oligonucleotide), and 5'-C1TTCT
AACGTGGGAAA-3' (NF-KB oligonucleotide). In competi-
tion assays, excess unlabelled wild-type and mutant oligo-
nucleotides were added during preincubation. Samples were
analyzed on a 6% native Tris-glycine-polyacrylamide gel,
run at 150 V for 5h, dried, and exposed overnight to Dupont
Cronex film. All oligonucleotides were 5' end labelled with
[.y-32P]ATP (5,000 Ci/mmol; Amersham) by using T4 poly-
nucleotide kinase (Pharmacia). The relative intensities of the
protein-DNA complexes were measured with the LKB Ul-
troscan XL scanning laser densitometer.
Recombinant NF-KB and IKBa proteins. The gene encod-

ing the NF-KB p50 subunit (NFKB1) was a kind gift from
Alain Israel, Pasteur Institute. The NFKB1 (p105) coding
sequence was cleaved from Bluescript by StuI-EcoRI cleav-
age and religated into pGEX-3X. Cleavage of pGEX-3X with
XbaI and EcoRI liberated a fragment which left the p50
coding sequence intact and under the control of the lacZ
promoter, inducible by isopropyl-13-D-thiogalactopyrano-
side. Purified p50 was obtained by chromatography on
glutathione-agarose, and the glutathione S-transferase (GST)
moiety was removed by factor Xa cleavage (61). The N
terminus of RelA (p65) was also expressed as a GST fusion
protein in pGEX-3X. Recombinant IKBa cDNA was gener-
ated by reverse transcriptase-PCR amplification with total
myeloid cell RNA from PLB-985 (52) stimulated with PMA
for 2 h and IKBa-specific primers (28) located at positions 81
to 99 (5'-ACGTGAATTCAGCTCGTCCGCGCC-3') and
1151 to 1171 (5'-ATATAGGTGTGACGTGTGACClIlAAG-
3'). The 5' end of each oligonucleotide primer contained an
EcoRI site (underlined) used for ligation of the amplified
product into pGEX-2T. Recombinant IKBa was liberated
from the GST-IKB fusion protein by thrombin cleavage (61).

RESULTS

Mutation of a putative NF-KB site in the IL-11 promoter.
Examination of the IL-11 promoter sequence revealed a
sequence located at positions -297 to -288 (5'-GG-
GAAAATCC-3') with 90% similarity to the PRDII/NF-KB
sequence in the IFN-P promoter (5'-GGGAAATTCC-3') and
differing in a T-to-A transition at position 7 in the IL-11
sequence (Fig. 1). To evaluate the role of this putative
NF-KB site in IL-1,B promoter activity, overlap PCR muta-
genesis was used to modify the -300 region to include an
XbaI site (TCTAGA) in place of the GGGAAA nucleotides
(Fig. 2). CAT reporter constructs containing the wild-type
and mutant 4.4-kb IL-1i promoter fragments were trans-
fected into U937 cells, and the inducibility of the reporter

plasmids was measured; the enhancerless SV1CAT and HIV
LTR-CAT plasmids were used as negative and positive
controls, respectively. Figure 2 illustrates the inducibility of
the IL-1j34.4 wild-type promoter and the corresponding
IL-1p4.4 mutant. Activity of the IL-1,4.4 wild-type con-
struct was four- to fivefold higher when induced with PMA
and fourfold higher when induced with poly(rI-rC) compared
with the uninduced level of activity. The IL-134.4 promoter
was also induced by Sendai paramyxovirus infection and,
interestingly, by IL-1x. Mutation of the putative NF-KB site
in the -300 region of the IL-134.4 promoter fragment
generated a promoter that was not inducible by PMA,
poly(rI-rC), or IL-1i but retained a reduced level of Sendai
virus inducibility (Fig. 2). By comparison, the enhancerless
SV1CAT construct was neither PMA nor poly(rI-rC) induc-
ible, whereas the HIV LTR which contains two adjacent
NF-KB sites in the -100 region was induced 12-fold by PMA
and 10-fold by poly(rI-rC). This initial experiment suggested
that the -300 region of the NF-KB promoter was an impor-
tant regulatory element involved in NF-KB gene activation.

Proteins interacting with an IL-10 NF-KB site. Recent
experiments have demonstrated that rapid induction of
NF-KB binding activity occurs in response to LPS, IL-1, or
other inducers (6). By using the LPS-responsive myeloid cell
PLB-985, IL-1i transcription and NF-KB induction were
shown to be temporally related; IL-lp transcription and
NF-KB binding activity were induced within 30 min of LPS
treatment (data not shown). To examine the possibility that
NF-KB proteins are capable of interacting with the IL-1i
sequence, extracts from U937 or PLB-985 stimulated with
PMA or LPS for 6 h were analyzed for protein-DNA
complex formation by electrophoretic mobility shift assay;
as demonstrated previously (35) and shown in Fig. 3A,
PMA-induced extracts (Fig. 3A, lanes 2 and 4) contained
about 20-fold-higher levels of DNA-binding proteins than
uninduced extracts (Fig. 3A, lanes 1 and 3), and these
proteins interacted with the putative NF-KB site in the IL-1t
promoter as well as the PRDIIINF-KB (P2) site (Fig. 3A and
B, lanes 1 and 7, respectively). The IL-1,B NF-KB probe also
detected a strong protein-DNA complex of higher mobility
similar to NF-1B (45; discussed below). By using a probe
that spanned the -300 region of the IL-1i promoter, similar
induced complexes were identified by using either PMA-
induced or Sendai virus-induced extracts. In competition
analysis (Fig. 3B), binding of NF-KB proteins from PMA-
induced U937 cells was completely abolished by the addition
of a 200-fold excess of IL-13 or P2 competitor DNA (Fig.
3B, lanes 2, 4, and 5) while mutation of the first three G
residues of the P2 site or mutation of the A residues at
positions 5 and 6 (G mutant and A mutant oligonucleotides)
eliminated the ability of the P2 site to compete for IL-1i
complex formation (Fig. 3B, lanes 3 and 6). In contrast,
binding to the IFN-j P2 site (Fig. 3B, lane 7) was about 80%
inhibited by the addition of a 200-fold excess of oligonucle-
otide containing one, two, or three copies of the IL-11 site
(Fig. 3B, lanes 9 to 11). Binding to the -300 region probe
(nucleotides -307 to -280) (Fig. 4, lane 1) was inhibited by
a 200-fold excess of NF-KB oligonucleotide (Fig. 4, lane 2) or
the homologous -300 region (Fig. 4, lane 7) but not by
oligonucleotides corresponding to the Xba, NF-OB, G mu-
tant, or A mutant sequences (Fig. 4, lanes 3 to 6). The -300
region probe also interacted efficiently with recombinant
NFKB1 (p50) and RelA (p65) (Fig. 4, lanes 8 and 9), as well
as with a T-cell extract containing high levels of c-Rel (Fig.
4, lane 10) (35a). Competition EMSA analyses with increas-
ing concentrations of unlabelled competitor DNA were used
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FIG. 2. Inducibility of the IL-1i construct. The structures of the wild-type and mutant (with the inserted XbaI site) IL-114.4 CAT
construct, HIV LTR (including binding sites for AP-1, NFAT-1, NRF, and Spl) and SV1CAT (including the AT-rich region [A/T], the GC-rich
region, and the truncated 72-bp enhancer element) plasmids are also illustrated. U937 cells were transfected by the DEAE-dextran method,
and induced 24 h later with PMA (25 ng/ml), poly(rI-rC) (50 ,ug/ml), Sendai virus (250 hemagglutinating units/ml for 90 min), or IL-1i (100
U/ml). Cells were harvested 48 h after transfection, and 200 ptg of total cell lysate was assayed for CAT enzyme activity for 4 to 6 h.
Transfections were performed in triplicate, and the average results of triplicate measurements of CAT activity are shown. The uninduced
activities of the CAT plasmids were as follows: HIV LTR, 5.4%; SV1, 1.1%; IL-1,B4.4, 1.0%; and IL-104.4 mutant, 1.4%.

to examine the relative affinities of the IL-13 and the IFN-p
NF-KB binding sites; multiple experiments indicated that the
single T-to-A transition at position 7 of the IL-1,B NF-KB site
resulted in a fourfold-weaker binding site compared with that
at the PRDII/NF-KcB site (data not shown).

Dissociation of the NF-KB complex by recombinant IKB.
Recombinant IKBBa was used together with PMA-induced
U937 extracts to examine the involvement of RelA (p65) in
IL-11 NF-KB complex formation. Previous studies have
demonstrated that IicBax interacts preferentially with the
RelA (p65) subunit of the NF-cB complex to cause the
dissociation of DNA-bound RelA (p65)-NFKB1 (p50) com-
plexes and forms the basis of a functional assay for IKBa
activity and RelA (p65) DNA-binding activity (63, 68).
Addition of recombinant IKBa to protein-DNA complexes
generated with either IFN-P (Fig. 5, lanes 1 and 2) or IL-113
sites (Fig. 5, lanes 3 to 6) dissociated the NF-KB complex
(Fig. 5, lanes 2, 4, and 6); addition of IKBot to protein-DNA
complexes generated with recombinant NFKB1 (p5O) did
not decrease complex formation, indicating the specificity of
IKBBa for RelA (p65)-containing complexes (data not shown).
Furthermore, addition of anti-NF-KB subunit antibodies (a
gift from N. Rice) produced supershift complexes, indicating
the presence of NFKB1 (p5O), RelA (p65), a small amount of
c-Rel, but no NFKB2 (p52) in the complexes (data not
shown). Also, IKBta did not affect the faster-migrating NF-
1B-like complex (Fig. 5, lanes 4 and 6); the nature of this
complex, which does not form to a significant extent with the
P2 probe (Fig. 5, lanes 1 and 2) is currently under investiga-

tion (45; see Discussion). This complex is also not related to
the NFKB1 (p5O) or RelA form of NF-KB, since only the
NF-K.B protein-DNA complex formed in the presence of
recombinant proteins (Fig. 4, lanes 8 and 9).

Functional activity of IL-113 NF-KB-dependent promoters.
To examine the transcriptional activity of the IL-1i NF-KB
site, one, two, or three copies of the IL-1g site were
subcloned into AccI-SphI-cleaved SV1CAT and compared
with the activity of reporter plasmids containing two and
four copies of the PRDII/NF-KB sequences, P2(1)CAT and
P2(2)CAT (36), respectively, following transient transfection
into U937 (Fig. 6), 293, or Jurkat T cells (data not shown).
The upper panel of Fig. 6 illustrates a representative CAT
analysis of the inducibility of the IL-1-KB-dependent con-
structs in U937 cells in response to PMA or LPS; with all the
NF-KB-containing constructs, low basal level activity was
observed in U937 cells (Fig. 6, open bars). Induction with
PMA led to increases in IL-11 NF-KB-dependent CAT
activity ranging from 5- to 50-fold (Fig. 6, solid bars); the
level of PMA inducibility of the constructs was directly
dependent on the number of IL-lp NF-KB enhanson sites
present. As demonstrated previously (19, 36), multimeriza-
tion of the PRDII element in CAT-based reporter plasmids
also led to a synergistic stimulation of transcriptional activity
(Fig. 6, lower panel). In all experiments, the PRDII se-
quences were stronger transcriptional elements than the
IL-1, sequences, indicating that differences in the binding
affinities of the two sites were also reflected in distinct levels
of functional transcriptional activity. LPS treatment of trans-
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FIG. 3. Binding of NF-KB proteins to the IL-1i NF-KB sequence. (A) WCE were prepared from uninduced (lanes 1 and 3) and
PMA-induced U937 cells (lanes 2 and 4); 10 ptg of protein was assayed for NF-KB-specific binding to the IL-1i x 2-KB (lanes 1 and 2) and
IFN-1 P2 (lanes 3 and 4) sequences. (B) PMA-induced extracts were preincubated without (lanes 1 and 7) or with a 200-fold molar excess of
various competitor oligonucleotides (lanes 2 to 6 and 8 to 13, competitors described above the gel lane) and analyzed on a 6% native
Tris-glycine-polyacrylamide gel. x2, IL-1P x 2KB oligonucleotide; Gm, G mutant (actAAATTCCactAAATTCC); Am, A mutant (GGGAcgT
TCCGGGAcgTTCC); x 1, IL-13 x 1KB oligonucleotide; x3, IL-13 x 3cB oligonucleotide; P2, IFN-, PRDII x 2 oligonucleotide; ns,
nonspecific.

fected U937 cells did not significantly stimulate NF-KB-
dependent reporter constructs containing one or two copies
of either the IL-10 or the PRDII elements (Fig. 6). Multi-
merization of IL-10 or the PRDII sites- to three and four
copies, respectively-led to a 5- to 10-fold increase in CAT
activity following LPS stimulation (Fig. 6, shaded bars). The
fact that multimerization of the KB elements was necessary
to detect any LPS-inducible activity indicates that the
NF-KB site alone in a heterologous construct is not sufficient
to mediate LPS responsiveness but rather suggests that LPS
inducibility requires other elements.

Activation and repression of the IL-113 NF-KcB site by NF-KB
subunits. To determine which combinations of the NF-KB
subunits were involved in the stimulation of the IL-13
NF-KB binding site, various NF-KB expression vectors were
transfected into Jurkat cells together with the IL-lp x
2KBCAT reporter construct (Fig. 7). Expression of NFKB1
(p50) subunit alone had a twofold stimulatory effect on the
IL-1B x 2KBCAT construct (Fig. 7, lane 2); expression of
individual ReLA (p65) and c-Rel proteins produced a three-
fold and sixfold stimulation of the reporter gene, respec-
tively (Fig. 7, lanes 3 and 5). The coexpression of either the
naturally occurring splicing variant ARelA (p65A) or IKBBa
(MAD3) failed to stimulate gene activity and in fact de-
pressed basal level activity two to threefold (Fig. 7, lanes 4
and 6). In contrast, the combinations of RelA (p65) plus
NFKB1 (p50) and RelA (p65) plus c-Rel produced a strong
10- to 13-fold activation of the NF-KB site (Fig. 7, lanes 7 and

9). Strikingly, the combination of ARelA (p65A) and NFKB1
(p50) reduced trans activation to basal levels (Fig. 7, lane 8),
demonstrating the trans-dominant negative effects of the
ARelA (p65A) subunit (59); likewise, the combination of
ARelA (p65A) and c-Rel decreased reporter gene activity
about threefold compared with RelA (p65) plus c-Rel (Fig. 7,
compare lanes 9 and 10). IiBax also functioned as a trans-
dominant negative subunit to block ReLA (p65) plus NFKB1
(p5O) and RelA (p65) plus c-Rel-mediated trans activation of
the IL-1, NF-KB site (Fig. 7, lanes 11 and 12).
To examine the effect of NF-KB subunits on IL-1j trans

activation, a similar cotransfection experiment was per-
formed using the wild-type and mutant 4.4kb IL-1,B promoter
fragments (Table 1). Interestingly, expression of NFKB1 or
ReLA alone stimulated the wild-type IL-1p4.4 promoter
about 5- to 10-fold, whereas c-Rel co xpression induced the
wild-type promoter about 20-fold; mutation of the NF-KB
site in the IL-1f4.4 construct increased the basal level of
expression of the construct two- to threefold but reduced the
inducibility of the IL-11 promoter to basal levels; further-
more, c-Rel-mediated trans activation of the IL-114.4 mu-
tant was reduced to less than twofold. Coexpression of ReLA
plus NFKB1, NFKB1 plus c-Rel, and RelA plus c-Rel trans
activated the wild-type IL-114.4 construct between 5- and
10-fold, whereas again the mutant construct was not acti-
vated. These results suggest that the -300 region contributes
to both positive and negative regulation of the IL-1,B pro-
moter.
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FIG. 4. Binding of induced and recombinant NF-KcB proteins to

the -300 region probe. Sendai virus-induced WCE (10 p,g) were
assayed for NF-KB-specific binding to the -300 region probe (-307
to -280) (lanes 1 to 7); a 200-fold excess of various competitor
oligonucleotides (indicated above the lane) was preincubated with
the extract in lanes 2 to 7. Partially purified recombinant p50
(NFKB1) and p65 (RelA) (isolated as described in Materials and
Methods) were incubated with the -300 region probe (lanes 8 and
9); a WCE from MT-2 cells (10 jxg) containing high levels of c-Rel
was also incubated with the -300 probe (lane 10). ns, nonspecific.

DISCUSSION
The posttranslational release of cytoplasmic NF-KB pro-

teins via degradation of the IKB molecule provides a general
mechanism by which the convergence of different inductive
signals may result in the rapid nuclear translocation of
NF-KB and activation of NF-KB-dependent genes (6, 7, 62).
With regard to IL-1 gene regulation, the induction of
NF-KB by cytokines such as tumor necrosis factor and IL-1
also implies the existence of an autoregulatory loop whereby
IL-1 release as a consequence of virus or bacterial infection
may further upregulate IL-1 transcription. The presence of a
positive IL-1 loop may in turn provide a physiologically
important mechanism for upregulation of IL-1-mediated
inflammatory responses (1, 17, 69). In this study, we provide
three types of evidence to link the NF-KB pathway with the
activation of the IL-lp promoter. (i) Directed mutation of the
putative NF-KB binding site in the -300 region of the IL-ip
promoter (composed of the decamer sequence 5'-GG
GAAAATCC-3') reduced the responsiveness of the IL-
134.4-kb fragment to different inducers, including phorbol
ester, poly(rI-rC), Sendai virus infection, and IL-1P. (ii) By
using probes corresponding to the -307 to -280 region of
the IL-13 promoter or to the IL-1lB NF-KB site, inducer-
specific NF-KB binding activity was identified. Anti-NF-KB
subunit-specific antibodies detected the presence of NFKB1
(p50), RelA (p65), and a small amount of c-Rel in protein-
DNA complexes from PMA-induced U937 cells. Further-
more, complex formation was largely inhibited by the addi-
tion of recombinant IKBa (28), thus supporting evidence that
the extracts contained mainly p50/p65 heterodimers and
some p50 homodimers that were resistant to IKBa. Since

2 3 4 .

FIG. 5. Recombinant IKB-induced inhibition of NF-KB binding.
WCE from PMA-induced U937 cells (10 ,ug) was preincubated with
or without 5 ng of recombinant IKB (indicated above the lanes)
obtained from bacterial extracts and analyzed for binding to 0.2 ng
of [y-32P]ATP end-labelled probes. Lanes 1 and 2, IFN-p P2; lanes
3 and 4, IL-1i x 1KB probe; lanes 5 and 6, IL-1i x 2KB. ns,
nonspecific.

IKBa at high concentrations can also inhibit p50 DNA
binding, p50 homodimers may also be affected by the recom-
binant IKBa (7). (iii) In cotransfection experiments, individ-
ual NF-KB subunit expression plasmids or combinations of
NF-KB subunits differentially trans activated reporter gene
activity in constructs regulated by the IL-1(4.4 promoter or
the IL-11 NF-KB site. Interestingly, p65 (RelA) and c-Rel
were the strongest activators, possibly reflecting the binding
site preference of these subunits for the NF-KB site in the
-300 region (34, 60) or possibly elsewhere within the IL-1,
promoter (59). A fourth piece of evidence linking NF-KB
activation and IL-1 comes from the recent studies of Beg et
al. (6, 7): rapid NF-KB induction after treatment with LPS,
IL-1, and other inducers was shown to be mediated by
phosphorylation and subsequent degradation of IKBa. In-
duction of IL-11 transcription and NF-KB binding are also
temporally related; both IL-11 transcription and NF-KB
activation were induced within 30 min of LPS treatment in
the PLB-985 myeloid cell model (39a). In previous studies,
the importance of the NF-KB sequence was implied by the
observation that deletion of the -300 region containing the
IL-1lB NF-KB binding site reduced the ability of the IL-l1
promoter to direct CAT expression in transient transfection
assays (12, 20, 59). Thus, the IL-l1 promoter may be
considered as an additional member of the family of cytokine
genes regulated at least in part by the NF-KB/rel family of
transcription factors (1, 3).
These results imply that rapid induction of NF-KB is

important for cooperative interactions among transcription
factors involved in IL-13 promoter activation but do not
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FIG. 6. Induction of IL-13 and IFN-1 NF-KB hybrid promoters
in U937 cells. U937 cells were transfected by the DEAE-dextran
method and induced 24 h later with PMA (25 ng/ml) or LPS (10
Fg/ml). Cells were harvested 48 h after transfection, and 50 pg of
total cell lysate was assayed for CAT enzyme activity for 4 h.
Transfections were performed in triplicate; one representative thin-
layer chromatography plate is shown above, and the average CAT
values are plotted below. Average inducibility values are listed
below the autoradiograph; the values were calculated relative to the
percent conversion obtained for the untreated (unt) IL-1l x 1KB cell
transfections. Each transfection contained SV1CAT and SV2CAT
controls.

TABLE 1. Activation of the IL-13 promoter by NF-KB subunits

IL-1M4.4 IL-14.4mut
Subunit % CAT Relative % CAT Relative

activity' inductionb activity induction

None 4.8 1.0 11.3 1.0
NFKB1 (p50) 41.6 8.7 8.7 0.8
RelA (p65) 36.4 7.6 7.6 0.6
c-Rel 77.9 16.2 20.1 1.8
NFKB1 + RelA 25.7 5.4 4.4 0.4
NFKB1 + c-Rel 18.1 3.8 8.0 0.7
RelA + c-Rel 32.8 6.8 12.4 1.1

a Percent CAT activity is an average of triplicate experiments with average
deviations of 30%.

b Induced value/uninduced value.

in a corresponding decrease in LPS-dependent gene expres-
sion. The proteins corresponded to NF-IL6 and NF-31, an
IRF-1-like protein (59).
A DNA-binding protein complex termed NF IL-1,BA or

(NF-3A) that binds to a 12-bp highly conserved sequence
within the cap-proximal promoter region of IL-1 and binds
to the sequence ACTrCTGCITIT, located adjacent to the
IL-1,B TATA box at position -49 to -38, was characterized
recently (30). Activation of monocytic cells with PMA or
LPS rapidly and transiently affects the relative levels of
NF-PA activity, suggesting that this protein also contributes
to IL-1l induction (30). The absence of an NTF-1A site in the
IL-la promoter furthermore suggests a mechanism of differ-
ential regulation of the two genes in a cell-type-specific
fashion. Thus, at least two DNA elements, widely dispersed
within the IL-1l promoter, mediate inducibility.

1 2 3 4 5 6 7 8 9 10 11 12

_ ~~ -_ _ - _

suggest that NF-KB is the sole transcriptional protein re-
sponsible for IL-1l3 activation. The importance of NF-IL6
transcription factors in the activation of IL-1 has been
demonstrated previously (59); NF-IL6 is composed of two
C/EBP-like proteins, at least one of which is capable of
interacting with the NFKB1 (p50) subunit (37). A 180-bp
PMA-inducible enhancer element located between -2982
and -2795 upstream of the mRNA start site of IL-13 has
been identified (8); interestingly, this element contained
motifs related to the AP-1 site of the collagenase promoter
and to the PRDI/IRF-1 domain of the IFN-3 promoter (19,
43, 66). The presence of NF-KB binding sites and putative
IFN regulatory factor (IRF) binding domains have now been
observed in several cytokine promoters, including IFN-1,
IL-1, and tumor necrosis factor (8, 20, 25, 36, 59). In the case
of IFN-j, it was shown that synergistic interaction between
PRDVIRF-1 and PRDII/NF-KB motifs was required for
maximal stimulation of IFN-1 gene expression (19, 36).
Recent detailed analysis of the IL-13 upstream element has
extended the inducible region to include sequences from
-3757 to -2729 (59). This complex enhancer element con-
tained discrete cooperative regions which provide tissue-
specific expression in the context of the cap site-proximal
pro-IL-lB promoter sequences. Three essential factors were
shown to bind within this region, and mutations that de-
creased the binding efficiency of two of these factors resulted

_ _ am _ _ _ -- am _ _ d

t;Y
i-
c-e
¢

s

o0 -y
Inducer

FIG. 7. Activation of the IL-10 NF-KB site by distinct NF-KB
subunits. The IL-1,B x 2KcB CAT plasmid (5 p,g) was transfected into
Jurkat cells by the DEAE-dextran method together with different
SVK3-derived plasmids expressing the IKBa, NEKB1 (p50), ARelA
(p65A), or c-Rel proteins; the RelA (p65) subunit was expressed
from the CMIN-p65 vector; expression vectors were used at 5 ±g,
with the exception of CMIN-p65, which was used at 2 ILg. Cultures
were harvested at 48 h after transfection and assayed for CAT
activity (50 to 100 pg of protein for 4 h). The bar graph was coded to
reflect the presence of different NF-KB subunits: 1, p50 alone; *,
p65-containing transfections; *, c-Rel alone; El, p65A-containing
transfections; X, IKB-containing transfections.

L-1 P xl-KB

unt PMA LPS

IL-1 A x2-KB

unt PMA

1.0 5.6 1.0 3.0 26.7
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In addition to NF-KB binding, a novel DNA-binding
activity termed NF-,BB that overlaps significantly with the
IL-13 NF-KB site has been characterized (45). By UV
cross-linking analysis, this complex was generated by a
distinct polypeptide of 61 kDa (45). With the IL-13 NF-KB
probe, an additional, higher-mobility complex that was in-
sensitive to competition by PRDII/NF-KB and only partially
sensitive to competition by homologous IL-1lB NF-KB oligo-
nucleotides was formed. As demonstrated in Fig. 3 and 4,
this protein lacks apparent specificity for the PRDII/NF-KB
binding site and was unrelated to NFKB1 (p5O) or RelA
(p65). It has not been possible to determine with certainty if
this complex is NF-,BB or an unrelated binding activity.
The fact that multimerization of the cB elements was

necessary to detect any LPS-inducible activity indicates that
the NF-KB site alone in a heterologous construct is not
sufficient to mediate the LPS response. Shirakawa et al.
demonstrated that the LPS-responsive element maps to the
-3000 upstream enhancer region and functions in a tissue-
specific manner only in the context of a simultaneous inter-
action with the 5' cap site-proximal pro-IL-13 promoter (59).
Cooperative interactions between upstream and promoter-
proximal transcription factors other than NF-KB appear to
be necessary to mediate the LPS response.

Preliminary evidence suggests that the IL-13 promoter is
more active in HIV-infected myeloid cells treated with PMA
or LPS than in uninfected cells (39a). IL-13 production is
dramatically increased in HIV-infected myeloid cells, and
elevated levels of IL-1 have been detected in the serum of
HIV-1-infected individuals (13, 15, 16, 41, 64, 65, 67). This
phenomenon is particularly important since cytokine pro-
duction by HIV-1-infected cells may differentially activate
HIV replication and may contribute to viral pathogenesis
(18, 21, 27, 35, 40, 49-51). Since cytokines such as tumor
necrosis factor alpha, IL-1, macrophage colony-stimulating
factor, and granulocyte-macrophage colony-stimulating fac-
tor have been shown to stimulate HIV replication in mono-
cytes, T lymphocytes, and bone marrow stem cells in part by
the activation of NF-KB/rel transcription factors (21, 27, 35,
49-51), aberrant cytokine release may contribute to reacti-
vation and multiplication of HIV-1, thus increasing viral
burden (40, 51). The identification of a functional NF-KB site
in the -300 region of the IL-13 promoter suggests that
transcriptional control of IL-13 is altered in HIV-1-infected
cells partly by changes in the DNA-binding activity of
NF-KB subunits (52).
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