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Abstract

Members of the P4 subfamily of P-type ATPases are thought to help create asymmetry in lipid bilayers by flipping specific
lipids between the leaflets of a membrane. This asymmetry is believed to be central to the formation of vesicles in the
secretory and endocytic pathways. In Arabidopsis thaliana, a P4-ATPase associated with the trans-Golgi network (ALA3) was
previously reported to be important for vegetative growth and reproductive success. Here we show that multiple
phenotypes for ala3 knockouts are sensitive to growth conditions. For example, ala3 rosette size was observed to be
dependent upon both temperature and soil, and varied between 40% and 80% that of wild-type under different conditions.
We also demonstrate that ala3 mutants have reduced fecundity resulting from a combination of decreased ovule
production and pollen tube growth defects. In-vitro pollen tube growth assays showed that ala3 pollen germinated ,2 h
slower than wild-type and had approximately 2-fold reductions in both maximal growth rate and overall length. In genetic
crosses under conditions of hot days and cold nights, pollen fitness was reduced by at least 90-fold; from ,18%
transmission efficiency (unstressed) to less than 0.2% (stressed). Together, these results support a model in which ALA3
functions to modify endomembranes in multiple cell types, enabling structural changes, or signaling functions that are
critical in plants for normal development and adaptation to varied growth environments.
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Introduction

Cellular membranes are constantly changing, with the addition

and removal of lipids and proteins. Eukaryotes utilize two different

types of ATP-dependent enzymes to reorient lipids within

membranes; flippases (P4 subfamily of P-type ATPases) and

floppases (ABC transporters) [1–3]. In many situations, lipids

can also be translocated by a scramblase that functions without a

direct link to ATP hydrolysis. In the case of P-type ATPases, ATP

hydrolysis involves a phospho-aspartate intermediate, the forma-

tion and degradation of which during the catalytic cycle is coupled

to conformational changes in the transmembrane domain. Of the

five subfamilies of P-type ATPases [4–8], members of the P4

subfamily have only been identified in eukaryotes [7]. While P-

type ATPases are well studied in the context of translocating

different ions across membranes, including Na+/K+, H+, Ca2+,

and heavy metals [8], very little is known about the mechanism

and function of P4-ATPases.

Evidence indicates that P4-ATPases flip specific phospholipids

from one membrane leaflet to the other [9,10]. In yeast, there is

evidence for the transport of phosphatidylserine (PS), phosphati-

dylethanolamine (PE) and phosphatidylcholine (PC) by two P4-

ATPases that reside primarily in the post-Golgi network (Drs2p

and Dnf3p) [11] as well as two P4-ATPases located in the plasma

membrane (Dfn1p and Dnf2p) [12]. The proposed lipid asymme-

try generated by flippases plays an important role in membrane
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trafficking, either in facilitating the formation of membrane

curvature in vesicle budding, or through regulation of surface

features involved in signaling and targeting [1,3,13–17]. Defects in

vesicular trafficking have been reported for P4-ATPase mutants of

yeast [12,18–21], plants [22], and animals [1].

In Arabidopsis thaliana, twelve P4-ATPase proteins have been

identified: Aminophospholipid ATPase 1 (ALA1) to ALA12 [4–6].

Isoforms ALA2 and ALA3 have been shown to provide flippase

activity when co-expressed with a beta-subunit in a yeast mutant

deficient for its endogenous PM localized P4-ATPases (dnf1Ddnf2D)

[22–24]. In plants and yeast, P4-ATPases are known to have

different substrate specificities. For example, ALA2 specifically

transports PS [24] while ALA3 transports PE as well as PC and PS

to a lesser degree [22]. Evidence suggests that ALA1 functions at

the PM [25], and is important for cold tolerance [23]. For ALA3,

Poulsen et al. [22] provided evidence that this protein localizes to

the trans-Golgi network, and its loss results in impaired root and

shoot growth. In ala3 loss of function mutants, the length of

primary roots is reduced by ,3-fold and root caps fail to release

border cells. Root columella cells of ala3 plants appeared to lack a

type of trans-Golgi network-derived secretory vesicles loaded with

mucilage [22]. Zhang and Oppenheimer [26] also reported

aberrant trichome expansion, increased root hair length, and

pollen defects that resulted in a segregation distortion [26].

However, this study failed to confirm the small rosette phenotype

noted by Poulsen et al. [22] and suggested that this phenotype

should be re-evaluated.

In this work, we provide evidence that the root, rosette and

reproductive phenotypes for ala3 knockouts are strongly depen-

dent upon growth conditions. In addition, we show that ala3

knockouts grown under optimal conditions have a reduced

fecundity that is linked to both ovule production and pollen

fitness. In-vitro pollen growth assays and seed set patterns in ala3

siliques indicate that mutant pollen tubes grow slower and achieve

less overall length than wild-type. Furthermore, cytoplasmic

streaming appears less organized in growing ala3 pollen tubes

than in wild-type. These results support a model in which ALA3

activity modifies membranes in multiple cell types and is critical to

plants for both normal development and the ability to cope with

different growth environments.

Results

ALA3 Gene Disruptions
Three independent ala3 alleles were used in this study (Figure 1).

The ala3-1 (SAIL_422_C12) and ala3-4 (SALK_082157) alleles

were previously used by Poulsen et al. [22] and shown to have

stunted growth phenotypes for roots and rosettes. The ala3–4 allele

corresponds to the itb2–6 allele used by Zhang and Oppenheimer

[26]. Here we expanded our analyses to include a third

independent allele, ala3-2 (SAIL_748_D03). All three lines were

backcrossed multiple times to minimize the presence of second site

mutations. Lines used for ala3-1 and ala3-2 were shown to be

segregating a single basta-resistance marker, which is encoded

within the T-DNA (Table 1, female outcrosses). Expression of

ALA3 transgenes have been shown to rescue the ala3 root, rosette

[22] and trichome [26] phenotypes, providing evidence that the

phenotypes are due to a loss or low levels of ALA3 expression.

The ala3 Rosette Size Reduction Varies with both
Temperature and Soil Conditions

To further investigate the reproducibility of the reduced rosette

size phenotype [22] [26], ala3 and wild-type plants were grown in

parallel under four different combinations of soil (SMB-238 and

LB-2) and temperature (20uC and 24uC) conditions. Rosette sizes

were measured at the time of bolting as the average length of the

three longest rosette leaves. We observed a reduction in ala3

rosette size that varied independently with both temperature and

soil between 40% (20uC, LB-2 soil) and 80% (24uC, SMB-

238 soil) that of wild-type (Figure 2, Figure S1). This condition-

dependent variation in the ala3 rosette size phenotype provides a

possible explanation for the discrepancy between the results of

Zhang and Oppenheimer [26] and Poulsen et al. [22]. Neverthe-

less, the average size of ala3 rosettes was significantly smaller than

that of wild-type under all conditions tested (p,0.05, Welch’s t-

test).

The ala3 Root Length Reduction Varies with both
Temperature and Growth Media

To determine if the ala3 root growth phenotype [22,26] also

varies with growth conditions, wild-type and ala3 seedlings were

germinated and grown at different temperatures or on modified

media. The reduction in ala3 root growth was observed to be

strongly dependent upon temperature (Figure 3). The phenotype

was the least pronounced at 26uC, with ala3 roots growing 63% as

long as wild-type. However, at 30uC or 15uC, ala3 roots were 34%

and 10% as long as wild-type, respectively. Prolonged growth at

15uC was lethal to ala3 seedlings, as they did not recover after

being returned to 23uC, whereas the wild-type controls were all

viable. Conditions other than temperature were also found to

exacerbate the root growth phenotype (Figure 3). An additional

10–20% reduction in relative root length was observed for high

pH (pH 6.5), low pH (pH 5.0), and high osmolarity (4.5%

sucrose).

The Fitness of ala3 Pollen Is Further Reduced by Hot/
Cold Temperature Stress

To determine if the ala3 pollen transmission defect observed by

Zhang and Oppenheimer [26] was also dependent on growth

conditions, the transmission of the ala3 allele in heterozygous

plants was observed under standard temperature conditions (20–

22uC) and under a temperature stress that cycled between hot-

days (40uC peak) and cold-nights (21uC low) (Figure S2) (Table 1).

Figure 1. Diagram of ALA3 showing T-DNA disruptions. Filled
boxes represent exons and open boxes represent introns. T-DNA
insertions are represented with triangles and identified by ala3 allele
numbers, allele accessions and itb allele numbers where appropriate.
Arrows identify oligos used for PCR genotyping and point in the 59 to 39
direction. The primers corresponding to the T-DNA left-borders are
1343 (SALK) and 638 (SAIL). The left border junction of ala3-2 is:
CTTGTGAATTATTAACTCCTGCTTCGAcaacttaataacacattgcggacg. Capital
letters represent ALA3 DNA and lowercase letters represent T-DNA.
*Isolated in this study. aPublished by Poulsen et al. [22]. bPublished by
Zhang and Oppenheimer [26].
doi:10.1371/journal.pone.0062577.g001

Phenotypes of ALA3 Arabidopsis Are Conditional
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In agreement with Zhang and Oppenheimer [26], outcrosses

performed under standard conditions demonstrated that the

transmission of ala3 through pollen was reduced to 6.9–19%,

representing a ,3-fold decrease from the expected 50%. This

baseline segregation distortion was exacerbated by more than 90-

fold in plants that were pollinated at unstressed temperatures and

then immediately moved to the hot-day/cold-night stress regime.

In pollen outcrosses yielding 490 progeny, no transmission of the

ala3 allele was observed. Similarly, temperature stress reduced the

frequency of homozygous mutant progeny in self-fertilized ala3 (+/

2) plants from ,10% (unstressed) to ,1% (stressed).

ala3 Pollen Tubes Are Slow and Short
To quantify growth defects associated with ala3 pollen, in-vitro

growth assays were done with two independent alleles, ala3-1 and

ala3-2, over a 24 h time course (Figure 4). With the in-vitro growth

conditions used here (which included a stigma to promote

germination), the ala3 pollen began to germinate approximately

2 h after wild-type. After a 24 h growth period, the overall length

of ala3 pollen tubes was about 2-fold less than wild-type. At the

point of maximum pollen tube growth rates, ala3 tubes were 2-fold

slower than wild-type.

To evaluate the in-vivo relevance of ala3 pollen tube growth

Table 1. Segregation analysis of ala3 indicates a temperature-sensitive defect in transmission through the male gametophyte.

=6R Cross Description Stress Assay Expected (%) Observed (%) n p-Value

ala3(-1, -2, -4)(+/2) 6Same Selfed 2 ala3(2/2) 25a 9.4, 9.7, 9.2 636, 290, 195 All ,0.0001

ala3(-1, -2, -4)(+/2) 6Same Selfed + ala3(2/2) ,9.5b 0.8, 1.6, 0.8 367, 516, 133 All ,0.0001

ala3(-1, -2, -4)(+/2) 6WT Male Outcross 2 ala3(-) 50a 16.9, 6.9, 19.0 534, 245, 426 All ,0.0001

ala3(-1, -4)(+/2) 6WT Male Outcross + ala3(-) 16.9-19.0b 0, 0 236, 254 All ,0.0001

WT x ala3(-1, -2, -4)(+/2) Female Outcross 2 ala3(-) 50a 46.6, 42.7, 41.5 361, 218, 176 0.18, 0.03, 0.02

Under unstressed conditions, the observed results were compared to an expected Mendelian segregation. Results of assays performed under hot-day/cold-night
temperature stress conditions (Figure S2) were compared to the results of the same assay performed under unstressed conditions. Statistical significance was
determined by the Pearson’s Chi-Squared test.
aExpected percentages based on Mendelian segregation.
bExpected percentages based on unstressed results.
doi:10.1371/journal.pone.0062577.t001

Figure 2. The size of ala3 rosettes relative to wild-type varies
with growth conditions. Representative examples and quantitative
analysis of strong (left) and weak (right) presentations of the ala3
rosette size phenotype. The growth conditions shown in the panels on
the left are the same as those used by Poulsen et al. [22] to report the
reduced rosette size phenotype of ala3 mutants. Rosette size was
measured at the time of bolting as the average length of the three
longest rosette leaves. Rosette sizes were normalized to the wild-type
mean and are reported as mean 6 SE. Genotypes significantly different
from wild-type (p,0.05, Welch’s t-test) appear in gray. Column label
abbreviations are as follows: WT represents the wild-type controls; 3-1
and 3-4 represent ala3-1 and ala3-4 mutants, respectively; and R
represents ala3 plants rescued by the expression of full length ALA3.
Representative results are shown for three independent experiments,
n = 7–9 plants for each genotype/condition combination.
doi:10.1371/journal.pone.0062577.g002

Figure 3. The length of ala3 roots relative to wild-type varies
with growth conditions. Seedlings were grown under 24 h
fluorescent light on K6MS media until the longest roots reached the
bottom of the plate (,7 cm). The column labels represent the
conditions used in the assays. For experiments testing variations in
growth media, plants were all grown at 26uC and media was amended
with either 15 mM NH4NO3 (pH 5.7), KOH to adjust media to pH 5.0 or
6.5, or 4.5% sucrose to create an osmotic challenge. Root lengths were
normalized to the wild-type mean and average results (6SE) for three
independent experiments (n$19 for all conditions except: n = 9 for
15uC, and n = 6 for 30uC) are presented for ala3-1 (crosshatched bars)
and ala3-4 (filled bars). * Significantly different from ala3 root growth at
26u on unmodified media (p,0.05, Welch’s t-test).
doi:10.1371/journal.pone.0062577.g003

Phenotypes of ALA3 Arabidopsis Are Conditional
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defects, pollen from ala3 (+/2) plants was used to fertilize wild-

type pistils and the resulting mature siliques were divided into

three sectors of equal length (top, middle and bottom). Without

growth defects, ala3 could be expected to transmit to all three

sectors equally, with 33% of the total transmission in each sector.

However, 74%–100% of ala3 pollen transmission was observed in

the top sector, whereas no transmission of ala3 was observed in the

bottom sector (Table 2). These results indicate that the competitive

fitness of ala3 pollen relative to wild-type decreases in the distal

region of the pistil, consistent with in-vitro growth assays showing

ala3 pollen tubes to be slow and short (Figure 4).

Fecundity of ala3 Mutants is Reduced Primarily by Pollen
Defects and Reduced Ovule Abundance

In homozygous ala3 mutants, seed set in each silique was

decreased to ,59% that of wild-type (Figure 5). A high frequency

of empty seed positions were observed within ala3 siliques, the

majority of which were near the bottom of the silique (Figure 5a,

c). This uneven seed distribution was reversed by manual

fertilization of ala3 pistils with wild-type pollen (Figure S3),

consistent with the potential that homozygous plants either shed

less pollen or have defective pollen. However, an explanation

based on a pollen fitness problem is favored by in-vitro growth

(Figure 4) and in-vivo competition (Table 2) assays, both of which

indicate a pollen defect.

To evaluate whether female reproductive defects also contribute

to ala3 seed set reduction, the number of ovules in ala3 pistils were

counted and female outcrosses were performed. The number of

ovules in ala3 pistils was found to be reduced to 78–85% that of

wild-type controls (Figure 5b). In addition, a variable female-side

transmission deficiency was observed. In the case of ala3-2 and

ala3-4, the transmission was reduced from an expected 50% to

,42% (p,0.05, Pearson’s Chi-Squared test) (Table 1). However,

the third allele (ala3-1) provided ambiguous results, as it was

neither significantly different from an expected 50% transmission,

Figure 4. In-vitro assays show ala3 pollen tubes have delayed
emergence, slow growth and shorter overall length. Pollen was
placed on pistils, either from the corresponding genotype or from
surrogate ms-1 plants, and the pistils were placed on pollen tube
growth media. Pollen tubes growing out of the pistils were measured
over a 24 h time course. Arrows represent time when buds were first
observed. Lengths were reported for each time point as the average
length of the 10 longest pollen tubes. Values and error bars represent
the mean 6 SE of three independent experiments for wild-type and
ala3-1, and two independent experiments for ala3-2.
doi:10.1371/journal.pone.0062577.g004

Table 2. The transmission of ala3 through pollen is restricted
to the top 2/3 of the silique.

% Total ala3
Transmission

=6R Assay Top Middle Bottom n p-Value

Expected n/a 33 33 33 n/a n/a

ala3-1(+/2)6WT ala3(-) 93 7 0 41 ,0.0001

ala3-2(+/2)6WT ala3(-) 100 0 0 17 ,0.0001

ala3-4(+/2)6WT ala3(-) 74 26 0 39 ,0.0001

Wild-type and ms-1 pistils were fertilized with ala3 (+/2) pollen and the
resulting siliques were divided into three sectors of equal length: Top (stigma
end), Middle, and Bottom (base of the silique). The observed results are
compared to an expected equal distribution of mutant alleles across all three
sectors. Statistical significance was determined by the Pearson’s Chi-Squared
test.
doi:10.1371/journal.pone.0062577.t002

Figure 5. Loss of ALA3 results in reduced seed set with an
uneven distribution of seed. (A) Representative examples of wild-
type and ala3 siliques cleared with 70% EtOH to show seed positions.
(B) Ovule number is reduced in ala3 pistils, but not sufficiently to
account for the total reduction in seed set. Average results (6SE) are
reported for two independent experiments, n = 14–18 pistils for ala3
mutants and n = 38 pistils for Col-0. Pistils were collected from a total of
5–6 different plants for each genotype. (C) Graph of seed set by sector.
Siliques were divided into four sectors of equal length, with sector 1 at
the top (stigma end) of the silique and sector 4 at the base of the
silique. Average results (6SE) are reported for two independent
experiments, n = 30–36 siliques. Siliques were collected from a total of
6–7 different plants for each genotype. Sector numbers appear below
each column and the average total seed set for each genotype is given
above the corresponding sector data. *Significantly different from wild-
type (p,0.05, Welch’s t-test). a,b,cColumns sharing common labels
(letters) are not significantly different from each other (p.0.05).
doi:10.1371/journal.pone.0062577.g005

Phenotypes of ALA3 Arabidopsis Are Conditional
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nor significantly better than the ,42% transmission observed for

the other two alleles. The potential impact of different growth

conditions on ovule number or penetrance of a female gameto-

phytic deficiency was not evaluated. Nevertheless, under standard

growth conditions, a pollen fitness deficiency and reduced ovule

number appear to be the most significant contributions to the

reduced seed set in ala3 siliques.

Cytoplasmic Streaming is Disorganized Near the Tip of
ala3 Pollen Tubes

As a first step in evaluating ala3 pollen for cellular deficiencies,

growing pollen tubes were analyzed for changes in cytoplasmic

streaming. Using DIC microscopy, the movements of organelles

and large vesicular bodies were followed for 3–4 s time periods,

with images taken at regular intervals of ,0.75 s (Figure 6, Movie

S1, and Movie S2). A visual inspection of the supplemental movie

files suggests that streaming in mutant ala3 pollen tubes (n = 7) is

less organized than wild-type (n = 8).

To quantitatively describe vesicular behavior, we calculated the

average speed and progressiveness ratio of each vesicle for which

data was collected. Briefly, the progressiveness ratio is a measure of

the straightness of a trajectory [27,28], (see Equation 1 and

Figure 6b). The speeds and progressiveness ratios for vesicles

within wild-type and ala3 pollen tubes are shown as bagplots [29]

in Figures 6c and 6d, respectively. On average, vesicles in ala3

pollen tubes were ,2-fold slower, (WT, 0.60 mm/s; ala3,

0.35 mm/s; p,0.01 Welch’s t-test), and showed a ,20% decrease

in progressiveness ratio (WT, 0.83; ala3, 0.66; p,0.01 Welch’s t-

test) relative to wild-type.

Loss of ALA3 does not Affect the Lipid Composition of
Pollen

To evaluate whether lipid composition is altered in ala3 pollen,

the concentrations of 144 lipids were measured in wild-type and

ala3 pollen grains using tandem mass spectrometry (MS/MS)

(Figure 7, File S1). The MS/MS analysis detected polar lipids from

11 different head-groups (MGDG, PC, PE, PI, PA, DGDG, PG,

LPG, LPC, LPE and PS) and quantified the acyl carbons and

double bonds within the corresponding acyl side chain(s). We

chose to examine pollen grains because expression profiling data

suggests that ALA3 is preferentially expressed in mature pollen

grains and growing pollen tubes (Figure S4) and because the fitness

of ala3 pollen was observed to be temperature-dependent (Table 1).

Furthermore, pollen grains could be easily harvested as a pure cell

type, minimizing the complications of analyzing tissues made up of

different cell types at different developmental stages or physiolog-

ical states. No differences between ala3 and wild-type pollen were

observed in the concentrations of different head-groups (Figure 7a),

or in the amount of double bonds (i.e., unsaturation) within acyl

side chains (Figure 7b). These results provide evidence that the

concentrations of major membrane-associated lipids in ala3 pollen

are not detectably different from wild-type under standard growth

conditions.

Discussion

Our re-evaluation of ala3 phenotypes was prompted by the

inability of Zhang and Oppenheimer [26] to corroborate a

reduced rosette growth phenotype reported by Poulsen et al. [22].

Here we verify the reproducibility of the rosette growth

phenotype, and further show that both vegetative (Figures 2 and

3) and reproductive (Table 1) phenotypes are strongly dependent

upon growth conditions, including temperature and soil. This

indicates that an ALA3 flippase activity is important for growth

processes throughout the plant, enabling plants to be more

tolerant to varied growth conditions and abiotic stresses.

The Reduction in ala3 Rosette Size is Exacerbated by
Growth Conditions

A comparison of four standard growth environments revealed a

2-fold difference (40% to 80%) in the average size of the ala3

rosettes relative to wild-type (Figure 2). The relative reduction in

ala3 rosette size was observed to vary independently with both

temperature and soil (Figure S1). All four growth conditions

correspond to commonly used, stress-free, growth environments

for A. thaliana, and included two temperatures (20uC and 24uC)

Figure 6. Vesicular speeds and progressiveness ratios show
that vesicular movement is altered in ala3 pollen tubes. (A) Wild-
type pollen tube with white arrows pointing to representative vesicles
visible with DIC optics. Scale bar = 5 mM. (B) Exemplary model
trajectories with high and low progressiveness ratios. (C and D)
Bagplots [29] of vesicular speed and progressiveness ratios for vesicles
within (C) wild-type and (D) ala3 pollen tubes. The shaded region
represents an area containing 50% of the data points. The two-
dimensional median is represented by the crosshairs within the shaded
region. N = 7 for ala3 and n = 8 for wild-type.
doi:10.1371/journal.pone.0062577.g006

Phenotypes of ALA3 Arabidopsis Are Conditional
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and two commercially available nutrient-rich soils (LB-2 and

SMB-238).

It is not clear what differences between the two soils caused the

observed variation in ala3 rosette size. The relatively poor growth

of mutants on LB-2 soil was still observed when this soil was

supplemented with a ‘‘10-10-10 fertilizer’’ or 1/10 Hoagland’s

#2+5 mM Sprint138 chelated iron (data not shown), suggesting

that a deficiency in a soil nutrient was unlikely to be the cause of

the slow growth. This was further supported by an analysis of the

leaf ionome (concentrations of mineral nutrients) of wild-type and

ala3 plants grown under different conditions. No significant

differences in the concentrations of 10 elements (Ba, Ca, Fe, K,

Mg, Mn, Na, P, S and Zn) (Figure S5) were observed, nor was

there any indication of a multi-element profile change that would

be diagnostic of a nutritional deficiency for iron or phosphate [30].

ALA3 is Important for Reproductive Development
The trans-Golgi network can function in vesicle trafficking for

both secretion and endocytosis [31]. ALA3, which is localized to

the trans-Golgi network, has been implicated in vesicle budding

from this membrane system [22]. To investigate the possible role

Figure 7. The lipid composition of ala3 pollen is similar to wild-type. Lipid concentrations were measured using tandem mass spectrometry
(MS/MS) that detected 11 different head-groups and quantified the acyl carbons and double bonds within the corresponding acyl side chain(s).
Concentrations are expressed as a percentage of the total lipid detected for a specific sample and are represented as mean 6 SE. Pollen was collected
from independent groups (n = 4 for WT and n = 3 for ala3-4) of ,75 plants each, grown in separate flats, at the same time, in the same growth
chamber, under standard (SMB-238 soil, 24uC) conditions. (A) Concentrations of lipid head-groups. Higher-concentration head-groups appear on the
left and lower-concentration head-groups appear on the right. (B) Unsaturation in acyl side chain(s). Unsaturation in diacyl lipids (2 acyl chains)
appears on the left and unsaturation in lysophospholipids (1 acyl chain) appears on the right. No statistically significant differences between ala3–4
and wild-type were observed (p.0.05, Welch’s t-test) either in terms of head-group concentration or unsaturation. Abbreviations: MGDG,
monogalactosyldiacylglycerol; PC, phosphatidylcholine; PE, phosphatidylethanolamine; PI, phosphatidylinositol; PA, phosphatidic acid; DGDG,
digalactosyldiacylglycerol; PG, phosphatidylglycerol; LPG, lysophosphatidylglycerol; LPC, lysophosphatidylcholine; LPE, lysophosphatidylethanola-
mine; PS, phosphatidylserine.
doi:10.1371/journal.pone.0062577.g007
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of ALA3 in a cell type that is dependent on massive vesicle

production from the trans-Golgi network, we chose to study its

contribution to pollen tube growth. The unidirectional growth of

pollen tubes is accompanied by very high rates of targeted

exocytosis, endocytosis and recycling [32–36].

Expression profiling data indicates that ALA3 is primarily

expressed in late pollen development and in growing pollen tubes

(Figure S4), supporting a role of ALA3 at all stages of pollen

maturation and growth. However, in the previous study of ALA3

by Poulsen et al., a version of the ALA3 promoter containing

1,454 bp of the upstream intergenic region was characterized and

failed to drive expression of a GUS-reporter gene in pollen [22].

An analysis of the intergenic region (3,632 nucleotides) upstream

of the ALA3 coding sequence showed the presence of several

enhancing and regulatory motifs known to be involved in pollen-

specific expression (Figure S6). For example, a motif identical to

the tobacco LAT52/56 box (GAAXTTGTGA) is present in the

ALA3 intergenic region [37]. Similarly, 18 bp of the ALA3

intergenic region presents an 83% identity to a region of the

tobacco LAT52 promoter sufficient to activate pollen-specific

transcription [38]. Most of the putative pollen-specific transcrip-

tional enhancers are located upstream of the promoter fragment

characterized by Poulsen et al. Although not conclusive, our in-

silico analysis provides an explanation for the difference between

the results obtained in this work and those reported by Poulsen

et al.

Zhang and Oppenheimer [26] reported a segregation distortion

phenotype for heterozygous ala3 mutants and provided in-vitro

evidence of pollen tube growth defects. Our results confirm a

segregation distortion phenotype with three independent T-DNA

insertion alleles (Table 1). In addition, in-vitro growth assays

indicate that ala3 pollen tubes germinate with a ,2 h delay

compared to wild-type, and have approximately 2-fold reductions

in both maximal growth rate and overall length. These deficiencies

explain the 0% success rate of ala3 pollen in competing with wild-

type to fertilize ovules near the bottom of a pistil (Table 2).

The number of seed within individual ala3 siliques was reduced

to 59% that of wild-type (i.e., a 41% reduction). The reduced seed

set can be accounted for by a 15–22% reduction in ovule number

(Figure 5b) and a high frequency (,20%) of empty seed positions

(Figure 5a, c). While the majority of empty seed positions are

located in the bottom of the silique, a weak female transmission

deficiency may account for empty positions scattered randomly

throughout ala3 siliques (Figure 5a). Fertilization of ala3 pistils with

wild-type pollen not only reverses the uneven seed set, but also

produced siliques with seed counts comparable to the ovule

numbers observed in ala3 pistils (Figure 5b, Figure S3), indicating

that, under normal growth conditions, the majority of empty seed

positions were caused by a pollen fertilization defect.

At the cellular level, we observed disorganized cytoplasmic

streaming in ala3 pollen. It is not clear what might cause this

defect. It is possible that slower processing of vesicles involved in

endo- and/or exocytosis causes a vesicular ‘‘traffic jam’’ in pollen

tubes. Alternatively, membrane surface features might be altered

in such a way that they disrupt or interfere with the dynamic

interactions required for coordinating vesicle movement along the

cytoskeleton.

ALA3 is Essential for Hot and Cold Temperature Stress
Tolerance

For both root and reproductive development, evidence indicates

that ALA3 is important for tolerance to hot- and cold-temperature

stresses. The ala3 root growth phenotype was exacerbated by both

hot (30uC) and cold (15uC) temperatures (Figure 3). Interestingly,

the mild chilling stress of 15uC was the most harmful to ala3 root

growth, and was eventually lethal to ala3 seedlings. Similarly, the

reduced pollen transmission phenotype was exacerbated (by more

than 90-fold) by a hot-day/cold-night stress regime (Table 1). The

temperature sensitivity of ala3 phenotypes suggests a potential

parallel with previous reports of cold sensitivity associated with P4-

ATPase deficiencies in yeast and plants. For example, the yeast

Drs2p is required for cell growth at or below 23uC [39,40].

Similarly, plants with reduced expression of ALA1 showed a cold-

sensitive decrease in plant size [23].

Membrane lipid composition is regarded as being a key factor in

temperature stress-tolerance [41–48]. The relative concentrations

of unsaturated fatty acids [49–55], phospholipid head-group

classes [56–61] and cholesterol [62] have all been linked to low

temperature survival in Arabidopsis, tobacco and potato. To

address the possibility that ala3 mutants have an altered lipid

composition that might account for their temperature sensitivity,

we assayed mature pollen for differences in the concentrations of

common head-groups and the levels of unsaturation within fatty

acid side chains (Figure 7). However, our analysis failed to reveal

any significant differences, indicating that a major global change

in the glycerophospholipid composition is not the cause of the

defect in ala3 pollen fitness. A parallel lipid profiling analysis was

not done on growing pollen tubes because of the difficulties in

obtaining sufficient sample material. Thus, it is still possible that

lipid profiles are altered in ala3 pollen during germination or tube

growth. We also cannot exclude the possibility that ala3 mutants

have a more limited change in lipid composition at a specific

subcellular location, or the possibility that ala3 mutants have a

reduced ability to rapidly adjust their membrane compositions

during a stress response.

Membrane trafficking has also been shown to be linked to

multiple stress responses (Reviewed by [63]), including: temper-

ature, salt, osmotic pressure, oxidative conditions, and drought

[63–69]. It has been hypothesized that vesicular trafficking is

essential for the repair of stress-damaged membranes by providing

basic ‘‘housekeeping’’ functions, such as the biogenesis, removal

and replacement of cellular components [63]. In addition, there

are stress response pathways that are specifically linked to

membrane trafficking pathways, such as the release of membrane

bound transcription factors as part of the ER unfolded protein

response pathway [70]. Vesicular trafficking defects have been

observed for several P4-ATPase mutants in yeast [12,18–21],

animals [1], as well as for ala3 in root columella cells [22].

Models
While it is not yet clear how a loss of ALA3 can result in the

multiple growth-associated phenotypes and temperature sensitiv-

ities, two non-exclusive models warrant consideration. First, it is

possible that the loss of ALA3 limits the rate at which membrane

budding can occur in the trans-Golgi, thereby causing a general

disruption of the secretory and endocytosis pathways. These

pathways are of general importance for all cells, especially pollen

tubes that display one of the most rapid polar growth rates of any

plant cell. In a second model, the absence of a lipid asymmetry

created by ALA3 could impact functional properties, such as

membrane fluidity, ion transport, or signaling. For example, a

reduced ability to flip PE in trans-Golgi vesicles might change

lipid/protein interactions that effect enzyme activities [71], or

change the availability of PE to function as substrate for the

synthesis of other lipid related molecules, such as glycosylpho-

sphatidylinositol anchors [72].

Phenotypes of ALA3 Arabidopsis Are Conditional
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Conclusions
In summary, we demonstrate that the root, shoot and

reproductive phenotypes of ala3 mutants are strongly dependent

upon growth conditions, including soil and temperature. We

further demonstrate that ala3 mutants have decreased fecundity,

caused primarily by decreased ovule production and pollen tube

growth defects. Together, these results provide evidence that

ALA3 functions in multiple cells types and is critical to plant

development and adaptation to varied growth environments.

Materials and Methods

T-DNA Insertion Mutants and Rescue Lines
Three T-DNA insertional alleles of ALA3 (At1g59820) were

used in this study: ala3-1 (SAIL_422_C12, ss1461), ala3-2

(SAIL_748_D03, ss1565), and ala3-4 (SALK_082157, ss836)

[73,74]. All three ala3 alleles were in the Col-0 wild-type

background. The ala3-1 and ala3-4 alleles were previously

reported by Poulsen et al. [22] and ala3–4 also corresponds to

the itb2–6 allele used by Zhang and Oppenheimer [26]. Plants

harboring ala3-2 alleles were identified from the SAIL T-DNA

collection [74]. The locations of the T-DNA insertions and PCR

primers are indicated in Figure 1. PCR primer sequences can be

found in File S2. Plant lines expressing the 35s-NTAP2(G)-ALA3

(ps1019) and 35s-ALA3-TAP2(G) (ps1319) rescue constructs were

created as described in Poulsen et al. [22]. Representative

transgenic plants rescued by these constructs are ss1252, ss1860

and ss1861.

Plant Growth Conditions
Unless otherwise stated, seeds were sown on 0.56 Murashige

and Skoog (MS) medium (pH 5.7) containing 1% agar and 0.05%

MES. Following 48 h of stratification at 4uC, seedlings were grown

at room temperature (23uC) under 24 h light for 7–10 d before

being transplanted to soil. The soil was Sunshine SMB-238

supplemented with 10-10-10 fertilizer (Hummert) and Marathon

pesticide (Hummert) following the manufacturer’s instructions.

Plants were grown until maturity in growth chambers (Percival

Scientific, Inc., http://www.percival-scientific.com) under a long-

day photoperiod (16 h light at 22uC/8 h dark at 20uC, 70%

humidity, and ,125 mmol m22 s21 light intensity).

For experiments to investigate the dependence of ala3 rosette

size under different growth conditions, plants were grown in

growth chambers using different combinations of temperature

(20uC and 24uC) and soil (SMB-238 and LB-2). The LB-2 soil is a

mixture of Canadian sphagnum peat moss, coarse perlite, gypsum,

and dolomitic limestone. The SMB-238 soil is a mixture of

Canadian sphagnum peat moss, fine perlite, low nutrient charge,

gypsum, and dolomitic limestone. In total, four unique combina-

tions of growth conditions were used: (1) 20uC, SMB-238 Soil; (2)

20uC, LB-2 Soil; (3) 24uC, SMB-238 Soil; and (4) 24uC, LB-

2 Soil. Upon bolting, the three longest leaves from each plant were

collected and photographed using a scanner. Length measure-

ments were made using the ImageJ software package [75].

Plate-Based Root Growth Assays
Plates were made with 0.56MS medium, 1% agar, and 0.05%

MES and adjusted to pH 5.7 (unless otherwise specified) using

KOH. Seeds were stratified for 96 h at 4uC. Seedlings were grown

under 24 h fluorescent light (,100 mmol m22 s21 light intensity)

at 26uC unless otherwise specified. Plates were kept at lowered or

elevated temperatures using a plate chilling apparatus. Plates were

rotated 180u after 3–6 d of plant growth to establish a t = 0 time

point. Seedlings were allowed to grow until the longest roots began

to reach the bottom of the plate. Plates were photographed using a

scanner and length measurements were made using the ImageJ

software package [75].

in-vitro Pollen Tube Growth
The pollen tube germination medium (PGM) was based on the

method described by Boavida and McCormick [76] and

contained: 5 mM CaCl2, 0.01% H3BO3, 5 mM KCl, 10%

sucrose, 1 mM MgSO4, pH 7.5–7.8, and 1.5% low melting

agarose (Nusieve). Pollen from stage 13–14 flowers was applied to

its own or a surrogate ms-1 pistil. Pollinated pistils were placed on

,400 mL of germination media layered over a microscope slide.

The slides were incubated at room temperature (,23uC) in a petri

dish containing water-soaked paper towels to maintain high

humidity. Pollen tubes were grown for 2–6 h prior to analysis

unless being used for a time course. For time course analyses of

pollen tube length, tubes were photographed with a Hamamatsu

Orca ER camera attached to a Leica DM-IRE2 microscope using

bright-field illumination. Length measurements were done using

the ImageJ software package [75].

Hot-Day/Cold-Night Stress
A growth chamber was used to grow plants under hot-day/cold-

night stress conditions (Figure S2). Plants were grown under a

long-day photoperiod with temperatures ranging from a peak of

40uC during the day to 21uC at night, with periods of

intermediate temperature between the extremes for acclimation.

To measure the segregation of ala3 alleles under hot-day/cold-

night stress, plants were first grown under unstressed conditions

(see plant growth conditions above) until ,5 mature siliques were

present. The plants were then stripped of immature siliques and

open flowers, and moved to the stress chamber where they were

grown until senescence. Crosses were performed on plants grown

at unstressed temperatures (20–22uC) and manually pollinated

plants were immediately moved to hot-day/cold-night stress

between 15:00 and 17:00 h on the diurnal cycle (chamber

temperature of 10uC, Figure S2) and grown until senescence.

The progeny of ala3-1(+/2) and ala3-2(+/2) plants were

genotyped by basta resistance and root morphology. A subset of

the bastar ala3-1(+/2) and ala3-2(+/2) progeny were analyzed

with PCR to verify the efficacy of genotyping based on root

morphology. The progeny of ala3–4 plants were genotyped using

PCR based methods.

Confocal Microscopy
Images were collected using an Olympus IX81 FV1000

confocal microscope run by the Olympus FluoView 1.07.03.00

software package. A 606 objective (numerical aperture 1.42) was

used throughout.

Progressiveness Ratio
The progressiveness ratio (P) describes the straightness of a

trajectory as the ratio of the net displacement between an initial

(xi, yi) and a final (xf, yf) position, and the total distance covered by

all intermediate displacements (gDist) [27,28].

Equation 1:

P~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xf {xi

� �2
z yf {yi

� �2
q

P
Dist
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Thus, P = 1.0 for linear movement and decreases as a trajectory

becomes less linear.

Lipid Profiling
Total lipid extracts were obtained from pollen using chloro-

form/methanol extraction following the protocol provided by the

Kansas Lipidomics Research Center (KLRC) (http://www.k-state.

edu/lipid/lipidomics/leaf-extraction.html). Lipid extracts were

sent to the KLCR for the routine plant polar lipid analysis, in

which 144 polar lipids are quantified using precursor and neutral

loss electrospray ionization tandem mass spectrometry (ESI-MS/

MS).

Supporting Information

Figure S1 The size of ala3 rosettes relative to wild-type
varies with both temperature and soil. Rosette size was

measured at the time of bolting as the average length of the three

longest rosette leaves. Rosette sizes were normalized to the wild-

type mean and are reported as mean 6 SE. Genotypes

significantly different from wild-type (p,0.05, Welch’s t-test)

appear in gray. Column label abbreviations are as follows: WT

represents the wild-type controls; 3-1 and 3-4 represent ala3-1 and

ala3-4 mutants, respectively; and R represents ala3 plants rescued

by the expression of full length ALA3. Representative results are

shown for three independent experiments, n = 7–9 plants for each

genotype/condition combination. *Results appearing in Figure 1.
{In some cases, ala3 rosettes were larger than wild-type rosettes. A

Mann-Whitney test of all possible ala3/WT pairs indicates that the

assignment of genotype based on plant size would have been

inaccurate 15% of the time. Overlap of ala3 and wild-type rosette

sizes was not observed under any other growth condition.

(PDF)

Figure S2 Schematic diagram of the hot-day/cold-night
temperature stress. Temperature cycles from 40uC during the

day to 21uC at night, with periods of intermediate temperature

between the extremes for acclimation. Manually pollinated plants

were immediately moved to hot-day/cold-night stress between

15:00 and 17:00 h on the diurnal cycle (chamber temperature of

10uC), forcing the period of pollen tube growth and fertilization to

overlap with stress temperatures.

(PDF)

Figure S3 Fertilization of ala3 pistils with wild-type
pollen resulted in siliques with an even seed distribu-
tion. (A) Representative example of an ala3 silique fertilized with

wild-type pollen. (B) Graph of seed set by quadrant. Siliques were

divided into four sectors of equal length, with sector 1 at the top

(stigma end) of the silique and sector 4 at the base of the silique.

Average results (6SE) are reported for three independent

experiments, n = 4–5 siliques. Siliques were collected from three

different plants for each ala3 allele. Sector numbers appear below

each column and the average total seed set for each genotype is

given above the corresponding sector data.

(PDF)

Figure S4 Expression profiling data shows preferential
expression of ALA3 in mature pollen and growing tubes.
Expression data was obtained from the Arabidopsis eFP Browser

(http://bar.utoronto.ca/efp/cgi-bin/efpWeb.cgi) [77] and was

normalized against: EF1-alpha (AT5G60390), CBP20

(At5g44200), Actin-2 (At3g18780), and UBC (At5g25760). The

lowest normalized expression value (rosette tissue) was arbitrarily

set to 1, and the rest of the data adjusted accordingly. Columns

representing pollen expression data appear in gray. Expression

data for pollen grain maturation [78] and pollen tube growth [79]

were collected in independent experiments.

(PDF)

Figure S5 Elemental concentrations in leaf tissue are
not significantly different in ala3 and wild-type. Average

results (6SE) for 3–6 independent experiments (n$20 plants for

each genotype) are presented for wild-type (open bars), ala3-1

(checkered bars), ala3-4 (gray bars), and ala3 plants rescued by the

expression of full length ALA3 (crosshatched bars). No statistically

significant differences between wild-type and any other genotype

were observed (p.0.05, Welch’s t-test).

(PDF)

Figure S6 Several pollen-specific motifs are present in
the intergenic region immediately upstream of ALA3.
Sequence data was obtained from The Arabidopsis Information

Resource (www.arabidopsis.org) and reads in the 59 R 39

direction. Putative conserved regulatory elements were found

using the PLACE (A Database of Plant Cis-Acting Regulatory

DNA Elements) website (http://www.dna.affrc.go.jp/PLACE/

signalscan.html) [80] and the motifs corresponding to the

LAT56/59 and the LAT52/56 boxes [37] were searched

manually. The sequence used by Poulsen et al. for the ALA3p-

GUS analysis [22] appears in bold, underlined text. ORFs for

ALA3 (39 end of sequence) and the immediate upstream gene (59

end of sequence) appear in gray, uppercase text. Putative

regulatory elements are highlighted as follows: Red: sequence

similar to the AGAAATAATAGCTCCACCATA domain of

tomato LAT52, where the two underlined motifs are known to

form a minimal unit required for pollen-specific expression of the

LAT52 promoter. Yellow: enhancing element corresponding to

the tobacco LAT52/LAT56 box (GAAXTTGTGA). Green:

sequence similar to the tobacco transcriptional enhancer

LAT56/LAT59 box element (TGTGGTTATATA). Blue: GTGA

motif corresponding to an enhancing element found in the tobacco

late pollen gene g10 and the tomato LAT56 gene expressed during

pollen tube growth.

(PDF)

File S1 Concentrations of 144 lipids in ala3 and wild-
type pollen. This data is summarized in Figure 7. Lipid

concentrations were measured using tandem mass spectrometry

(MS/MS) that detected 11 different head-groups and quantified

the acyl carbons and double bonds within the corresponding acyl

side chain(s). Concentrations are expressed as a percentage of the

total lipid detected for a specific sample and were calculated using

the formula: % total signal = 100 * nmol individual lipid/total

nmol for that sample. Pollen was collected from independent

groups (n = 4 for WT and n = 3 for ala3-4) of ,75 plants each,

grown in separate flats, at the same time, in the same growth

chamber, under standard (SMB-238 soil, 24uC) conditions.

(XLSX)

File S2 PCR primers used to genotype ala3 T-DNA
insertion lines. Sequences read in the 59 R 39 direction.

Lowercase letters in 684a represent introduced restriction sites

used for subcloning.

(XLSX)

Movie S1 Cytoplasmic streaming in wild-type pollen
tubes. Images for this example were taken using DIC microscopy

at regular intervals of ,0.6 s over a 1 m time period. Movie plays

at ,106 speed.

(M4V)
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Movie S2 Cytoplasmic streaming is disorganized in
ala3 pollen tubes. Images for this example were taken using

DIC microscopy at regular intervals of ,0.6 s over a 1 m time

period. Movie plays at ,106 speed.

(M4V)

Acknowledgments

We thank Taylor Cohen, Nick Saini, Caitlin Gallagher, Elizabeth Brown,

and Alexa Rosenberg for technical assistance. The lipid analyses described

in this work were performed at the Kansas Lipidomics Research Center

Analytical Laboratory.

Author Contributions

Conceived and designed the experiments: SCM JFH. Performed the

experiments: SCM. Analyzed the data: SCM JFH. Contributed reagents/

materials/analysis tools: SCM. Wrote the paper: SCM LRP RLLM MGP

JFH.

References

1. Sebastian TT, Baldridge RD, Xu P, Graham TR (2012) Phospholipid flippases:

building asymmetric membranes and transport vesicles. Biochim Biophys Acta
1821: 1068–1077.

2. Van Meer G (2011) Dynamic transbilayer lipid asymmetry. Cold Spring Harb
Perspect Biol.

3. Tanaka K, Fujimura-Kamada K, Yamamoto T (2011) Functions of phospho-
lipid flippases. J Biochem 149: 131–143.

4. Pedersen CNS, Axelsen KB, Harper JF, Palmgren MG (2012) Evolution of plant
P-Type ATPases. Front Plant Sci 3: 31.

5. Baxter I, Tchieu J, Sussman MR, Boutry M, Palmgren MG, et al. (2003)
Genomic comparison of P-Type ATPase ion pumps in Arabidopsis and Rice.

Plant Physiol 132: 618–628.

6. Axelsen KB, Palmgren MG (2001) Inventory of the superfamily of P-Type ion

pumps in Arabidopsis. Plant Physiol 126: 696–706.

7. Palmgren MG, Axelsen KB (1998) Evolution of P-type ATPases. Biochim

Biophys Acta 1365: 37–45.

8. Axelsen KB, Palmgren MG (1998) Evolution of substrate specificities in the P-

Type ATPase superfamily. J Mol Evol 46: 84–101.

9. Coleman JA, Kwok MCM, Molday RS (2009) Localization, purification, and

functional reconstitution of the P4-ATPase Atp8a2, a phosphatidylserine flippase
in photoreceptor disc membranes. J Biol Chem 284: 32670–32679.

10. Zhou X, Graham TR (2009) Reconstitution of phospholipid translocase activity
with purified Drs2p, a type-IV P-type ATPase from budding yeast. Proc Natl

Acad Sci U S A 106: 16586–16591.

11. Alder-Baerens N, Lisman Q, Luong L, Pomorski T, Holthuis JCM (2006) Loss

of P4 ATPases Drs2p and Dnf3p disrupts aminophospholipid transport and
asymmetry in yeast post-Golgi secretory vesicles. Mol Biol Cell 17: 1632–1642.

12. Pomorski T, Lombardi R, Riezman H, Devaux PF, Meer G Van, et al. (2003)
Drs2p-related P-type ATPases Dnf1p and Dnf2p are required for phospholipid

translocation across the Yeast plasma membrane and serve a role in endocytosis.
Mol Biol Cell 14: 1240–1254.

13. Paulusma CC, Elferink RPJO (2010) P4 ATPases - The physiological relevance
of lipid flipping transporters. FEBS Lett 584: 2708–2716.

14. Pomorski T, Menon AK (2006) Lipid flippases and their biological functions.
Cell Mol Life Sci 63: 2908–2921.

15. Pomorski T, Holthuis JCM, Herrmann A, Van Meer G (2004) Tracking down
lipid flippases and their biological functions. J Cell Sci 117: 805–813.
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22. Poulsen LR, López-Marqués RL, McDowell SC, Okkeri J, Licht D, et al. (2008)

The Arabidopsis P4-ATPase ALA3 localizes to the Golgi and requires a beta-

subunit to function in lipid translocation and secretory vesicle formation. Plant
Cell 20: 658–676.

23. Gomès E, Jakobsen MK, Axelsen KB, Geisler M, Palmgren MG (2000) Chilling
tolerance in Arabidopsis involves ALA1, a member of a new family of putative

aminophospholipid translocases. Plant Cell 12: 2441–2454.

24. López-Marqués RL, Poulsen LR, Hanisch S, Meffert K, Buch-Pedersen MJ, et

al. (2010) Intracellular targeting signals and lipid specificity determinants of the
ALA/ALIS P4-ATPase complex reside in the catalytic ALA alpha-subunit. Mol

Biol Cell 21: 791–801.
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