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Introduction

A series of highly regulated and coordinated processes ensures 
that chromosomes are reproduced and equally distributed to 
daughter cells in each cell division cycle. The mitotic spindle 
checkpoint guarantees the fidelity of mitotic segregation dur-
ing mitosis, preventing chromosomal instability and aneuploidy, 
events that contribute to malignant transformation.1-3 This 
checkpoint is active during each cell cycle, until all the chromo-
somes are well aligned on the metaphase plate, and the kineto-
chores are attached to mitotic spindle. During activation of the 
mitotic spindle checkpoint, its main components (Mad2, BubR1, 
Mad1) form an inhibitory ternary complex with an E3 ligase, the 
anaphase-promoting complex (APC) and its substrate-specific 
activator, Cdc20.4,5 After the bipolar attachments of all the chro-
mosomes to the mitotic spindle at metaphase, the multi-protein 
mitotic checkpoint complex is extinguished, leading to activation 
of Cdc20, which, in turn, influences a series of molecular events 
ending with chromosomes separation.6,7

Chk1 is a conserved protein kinase, originally identified in fis-
sion yeast, required to delay entry of cells with damaged or unrep-
licated DNA into mitosis.8,9 The requirement of Chk1 for both 
S and G

2
/M checkpoints has been clarified in the last few years, 

and its role in sustaining activation of the spindle checkpoint 

Chk1 is implicated in several checkpoints of the cell cycle acting as a key player in the signal transduction pathway 
activated in response to DNA damage and crucial for the maintenance of genomic stability. Chk1 also plays a role in the 
mitotic spindle checkpoint, which ensures the fidelity of mitotic segregation during mitosis, preventing chromosomal 
instability and aneuploidy. Mad2 is one of the main mitotic checkpoint components and also exerts a role in the cellular 
response to DNA damage. to investigate a possible crosslink existing between Chk1 and Mad2, we studied Mad2 protein 
levels after Chk1 inhibition either by specific siRNAs or by a specific and selective Chk1 inhibitor (pF-00477736), and 
we found that after Chk1 inhibition, Mad2 protein levels decrease only in tumor cells sensitive to Chk1 depletion. We 
then mapped six Chk1’s phosphorylatable sites on Mad2 protein, and found that Chk1 is able to phosphorylate Mad2 in 
vitro on more than one site, while it is incapable of phoshorylating the Mad2 form mutated on all six phosphorylatable 
sites. Moreover our studies demonstrate that Chk1 co-localizes and physically associates with Mad2 in cells both under 
unstressed conditions and after DNA damage, thus providing new and interesting evidence on Chk1 and Mad2 crosstalk 
in the DNA damage checkpoint and in the mitotic spindle checkpoint.
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whenever cells with damaged DNA enter mitosis has been 
described in fission and budding yeast.10,11 Chk1-deficient human 
cells fail to sustain mitotic arrest after treatment with spindle 
poisons. Chk1-dependent BubR1 phosphorylation through 
Aurora B was found after taxol treatment in lymphoma DT40 
cells and after Nocodazole (Noc) in U2OS cells.12,13 Haploid loss 
of Chk1 impaired the spindle checkpoint activated by Noc in 
mouse mammary epithelial cells and in mammary cancer cells, 
providing further evidence of its role in this checkpoint.14 Chk1 
downregulation in U2OS cells also led to lower protein levels 
of Mad2.13 The lack of Mad2 in human cells leads to mitotic 
checkpoint inactivation and chromosomal instability.15 Mad2, 
like Chk1, is essential for mouse embryogenesis, as Mad2−/− KO 
mice die at E6.5 as a consequence of chromosome missegregation 
and apoptosis.16 These data suggest that Chk1 and Mad2 may be 
involved in the same pathway regulating the accurate progres-
sion of mitosis, and Mad2 may be important for Chk1 function 
in the spindle checkpoint. Experimental evidence supports this 
relationship in fission yeast, where the Chk1-dependent delay 
of metaphase-anaphase transition in mitotic cells with dam-
aged DNA was Mad2-dependent.10 A link has been suggested 
between mitotic checkpoint and DNA damage response in yeast 
and mammals17,18 and Mad2 is a key factor not only in maintain-
ing genomic stability, but also in regulating cellular sensitivity to 
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Results and Discussion

Chk1 inhibition lowers protein levels of Mad2 
in cells sensitive to Chk1 depletion. Our pre-
vious data demonstrated that Chk1 downregu-
lation by siRNA in U2OS cells induced cell 
death as a consequence of aberrant mitosis and 
defects in the activation of the mitotic spindle 
checkpoint. In these conditions, decreased lev-
els of the mitotic checkpoint protein Mad2 were 
observed.13 To further investigate the Chk1-
dependent regulation of Mad2 protein, we inves-
tigated a wider panel of cancer cell lines. The 
ovarian cancer cell lines OVCAR-8, OVCA432, 
A2780 and OVCAR-5 were transiently trans-
fected with either scramble or Chk1 siRNAs. 
The U2OS osteosarcoma cell line was included as 
positive control. Chk1 and Mad2 protein levels 
(Fig. 1A and B) and cell survival (Fig. 1C) were 
evaluated 72 h after transfection. The decrease in 
Mad2 protein levels after Chk1 depletion corre-
lates with the extent of the effect of Chk1 down-
regulation on cell survival. In fact, in the cell 
lines with approximately 60% compromised sur-
vival after Chk1 depletion (U2OS, OVCAR-8 
and OVCA-432), the decrease in Mad2 protein 
levels ranged from 40 to 60%, while in cell lines 
whose survival was not affected (OVCAR-5 and 
A2780) Mad2 protein levels were unchanged. To 
see whether in U2OS, OVCAR-8 and OVCA-
432, the drop in Mad2 protein was related to a 
decrease in mRNA, Mad2 mRNA levels were 
measured 72 h after siRNAs transfection. Mad2 
mRNA levels did not fall (Fig. 1D). These data 
fit well with our previous observation in U2OS 
cells, and partially with recent data, that the 
haploid loss of Chk1 in tumor lines derived from 
mice mammary glands and susceptible to Chk1 
loss correlated not only with low levels of protein, 
but also with low mRNA levels of the mitotic 
checkpoint component Mad2.14 This differ-
ence may be due to the different experimental 
systems used (Chk1+/− cell lines) and possibly 
to the extent of Chk1 downregulation and/or 
inhibition. Studies on Mad2 protein stability in 
U2OS cells transfected with Chk1 siRNA after 
treatment with cycloheximide (CHX) further 
suggested that Mad2 downregulation is occur-
ring at protein level in this experimental con-
dition (Fig. 1E). In fact, after treatment with 
CHX, Mad2 protein was more unstable in Chk1 

siRNA-transfected sample starting from 3 h after treatment with 
CHX as compared with scramble siRNA-transfected cells. In 
addition, the effect of Mad2 depletion on cell survival was stud-
ied in U2OS cells, and, as shown in Figure S1A, Mad2 protein 
levels were downregulated at 72 and 144 h after transfection with 

certain anticancer drugs (such as cis-platinum).19,20 It is still not 
clear how Chk1 and Mad2 are functionally connected. We herein 
report new evidence that corroborates a relationship between 
Chk1 and Mad2, providing an additional crosslink between the 
mitotic spindle and DNA damage checkpoints.

Figure 1A–C. (A) Western blot analysis of Chk1, Mad2 and Actin in U2oS, oVCAR8, 
oVCA432, A2780 and oVCAR-5 cells 72 h after either scramble or Chk1 siRNA transfection. 
(B) Densitometric analysis of Mad2 protein levels in the cell lines 72 h after siRNA Chk1 
transfection, compared with the siRNA scramble transfected cells. Data are percentages of 
siRNA scramble controls, representing the ratio of Mad2 to actin. (C) Schematic representa-
tion of the percentage of cells surviving at 72 h after transfection with siRNA Chk1. Data are 
expressed as the percentages of scramble transfected cells and are the mean ± SD of two 
independent experiments.
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S114A, S120A, S185A and T187A, were phosphorylated in vitro 
by Chk1 (Fig. 3C and data not shown). Finally the Mad2-GST 
recombinant protein mutated in all the six phosphorylatable 
sites could not be phosphorylated in vitro by Chk1, while the 
mutated form in four phosphorylatable sites (S114A, S120A, 
T136 and S195) is still phosphorylated (Fig. 3D). The discov-
ery of the kinases involved in phosphorylation of Mad2 may be 
important for a better understanding of the mitotic checkpoint 

a specific siRNA against Mad2, and, interestingly, at a 144 h time 
point a concurrent decrease in Chk1 protein levels was observed. 
Mad2 downregulation caused an inhibition of cell growth evi-
dent at 144 h after transfection (Fig. S1B), a time point at which 
Chk1 protein was also found at very low levels, rendering difficult 
to discriminate the effect of each protein. However, these data 
strongly suggest that the two proteins may be physically interact-
ing in this experimental system.

The OVCA-432 cell line is more sensitive to a selective and 
specific Chk1 inhibitor, PF-00477736, than other cancer cell 
lines (e.g., A2780).21 Figure 1F shows that Mad2 protein levels 
decrease in OVCA-432 cells treated with 35 nM PF-00477736 
but did not change in A2780 cells, which are more resistant to 
Chk1 inhibition, after 150 nM PF-00477736. In both cell lines, 
Chk1 kinase activity was inhibited, as shown by increased phos-
phorylation in S317 of Chk1 after treatment with PF-00477736, 
bona fide for Chk1 inhibition.22 Recent data suggest that Chk1 
inhibitors could also be used as single agents in a subset of can-
cers, so the decrease in Mad2 protein levels only in the presence 
of a cytotoxic effect could be considered a pharmacodynamic 
read-out of the susceptibility of tumor cells to Chk1 inhibitors. 
These data are in agreement with those obtained with siRNA 
Chk1 and further indicate that the Chk1 kinase activity per se 
is sufficient to cause this effect; therefore, Chk1 kinase might 
induce post-translational modifications of Mad2 important for 
its stability. A previous study found that Mad2 is subjected to 
post-translational modification by phosphorylation, though little 
is known about its biological significance. Mad2 phosphorylation 
mostly occurs in the C-terminal region of the protein in mitotic 
cells and regulates its checkpoint activity by modulating its asso-
ciation with Mad1 and the APC.23

Chk1 protein kinase phosphorylates Mad2 in vitro. To fur-
ther investigate a possible relationship between Chk1 and Mad2, 
the Mad2 protein sequence was investigated to check for putative 
Chk1 phosphorylatable sites. The minimal Chk1 phosphorylat-
able consensus site consists of the following motif: β-X-X-(S/T), 
where X can be any aminoacid residue, and β should be a basic 
aminoacid, especially either R or K.24,25 The full consensus site 
consists of the extended motif Φ-X-β-X-X-(S/T)-Φ, where addi-
tionally Φ in position −5 and +1 has to be a hydrophobic residue 
[i.e., MFLVI(A)], which has an important anchoring function to 
the kinase catalytic pocket according to the crystal Chk1 struc-
ture.24,26 Analyzing the Mad2 protein sequence, we detected 
two sites, T136 and S195, contained in a full consensus site and 
four other sites included in the minimal Chk1 phosphorylat-
able consensus site: S114, S120, S185 and T187 (Fig. 2A). An 
in vitro kinase assay with purified recombinant Chk1 and Mad2 
human proteins showed that Chk1 phosphorylates Mad2 in 
vitro (Fig. 2B). To better define the regions and sites of Mad2 
phosphorylatable by Chk1, Mad2-site specific point mutations 
and deleted regions were produced as recombinant proteins 
(Fig. 3A). The C-terminally truncated Mad2 protein 1–110 lack-
ing all the Chk1 phosphorylatable sites was not phosphorylated 
in vitro by Chk1 (Fig. 3B), while the Mad2-GST recombinant 
protein double-point-mutated in S195 and T136 sites was phos-
phorylated. Similarly, the single-point-mutated Mad2 proteins, 

Figure 1D–F. (D) Chk1 and Mad2 mRNA expression in U2oS (black bars), 
oVCAR-8 (gray bars) and oVCA-432 (white bars) by real-time pCR 72 h 
after transfection with siRNA Chk1. Chk1 and Mad2 expression levels 
are normalized to the internal mRNA levels of actin and are represented 
as the fold change from scramble transfected samples. (E) Western 
blot analysis of Chk1, Mad2 and β-tubulin in U2oS cells transfected 
with either scramble or Chk1 siRNA and 72 h post-transfection either 
untreated or treated with CHX 30 μg/ml for 3 and 24 h. (F) Western blot 
analysis of Mad2, pS317-Chk1, Chk1 and β-tubulin in oVCA-432 and 
A2780 cells 72 h after treatment with 35 or 150 nM of the Chk1 inhibitor 
pF-00477736 compared with untreated cells.
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to induce Chk1 activation). Mad2 and Chk1 have both 
been recently described as involved in the DNA damage 
response besides their role in the mitotic spindle check-
point.20 U2OS treatment with DDP induced Chk1 activa-
tion (increased phosphorylation at sites S345 and S317) 
with no detectable changes in Mad2 levels (Fig. 4A) and a 
clear G

2
 block of the cell cycle (Fig. 4B). Mad2 and Chk1 

co-localized mostly in the nucleus in interphase cells under 
unstressed conditions, as already described (Fig.4C).28,29 
After DDP treatment, the co-localization of the two pro-
teins slightly increased, and there was clear redistribution 
in the perinuclear region (Fig. 4C; and white arrows in 
merge blow ups in Fig. S2). With DNA damage, the phos-
phorylated and activated form of Chk1 is released from 
chromatin into the soluble nucleus and later to the cyto-
plasm.28 The scanty data on Mad2 localization after DNA 
damage suggests that it localizes in the nucleopore com-
plex and in the cytoplasm, with a role in the intracellular 
redistribution of repair proteins in response to DNA dam-
age, as for NER proteins.20 To determine the potential 
physical association between Mad2 and Chk1, endoge-
nous and exogenous Chk1 were immunoprecipitated from 
cellular extracts of U2OS cells overexpressing both Flag-
Chk1 and Mad2, either untreated or treated with DDP 
and then immunoblotted for Mad2. Mad2 co-immuno-
precipitated with Chk1 from cellular extracts of untreated 
cells, and this association slightly increased after treatment 
with DDP (Fig. 4D). Chk1 also co-immunoprecipitated 
with anti-Flag in U2OS cells overexpressing Flag-Mad2 
(Fig. 4E). We have herein showed that Chk1 and Mad2 
not only co-localize, but also physically associate and the 
co-localization and interaction slightly increase after DNA 

damage. The co-localization, mostly occurring in the perinuclear 
area in the cytoplasm, suggests that the two proteins may cooper-
ate in regulating the DNA damage response. However, the re-
distribution of the two proteins in the perinuclear area may also 
be a consequence of the accumulation of cells in G

2
 phase (see 

Fig. 4B). In U2OS cells enriched in G
2
 phase after treatment 

with aphidicolin, there was a clear co-localization of Chk1 and 
Mad2 in the perinuclear area (Fig. S3). Before cells enter mitosis 
at the G

2
-M transition, the increased activity of CDK1/CyclinB 

leads to Chk1 phosphorylation and subsequent accumulation in 
the cytoplasm.30 The co-localization in the cytoplasm of Chk1 
and Mad2 may be essential for Mad2 to exert its checkpoint 
function during the metaphase-anaphase transition, but further 
studies are needed to elucidate the significance of Chk1-Mad2 
association and co-localization after DDP treatment. In conclu-
sion, these findings point to the existence of cross-talk between 
Chk1 and Mad2. In addition, a decrease in Mad2 protein levels 
was found to be a possible biomarker of cellular sensitivity to 
Chk1 inhibition/depletion. We show for the first time that Chk1 
can phosphorylate Mad2 in vitro and can associate and co-local-
ize with Mad2 in cells in unstressed conditions and after DNA 
damage. The meaning of this interaction remains to be defined. 
Chk1/Mad2 cross-talk might have a key role in both the DNA 
damage and the mitotic spindle checkpoints.

pathway. Mad2 can be phosphorylated in vitro by Nek2, and 
this phosphorylation is important for its dimeric conformation. 
The Mad2 N-terminal region seems to be involved in this trans-
lational modification (presumably T136), while the C-terminal 
region (which is associated with other checkpoint proteins such 
as Mad1 and Cdc20) is not required. The authors showed that 
Nek2 cooperates with Mad2 in negatively regulating the APC.27 
Our data indicate that Chk1 can phosphorylate Mad2 in vitro 
in more than one site, as it could still phosphorylate all the spe-
cific single-point mutations and the double mutant S195A and 
T136A. The fact that the mutant form in the four phosphory-
latable sites (S114A, S120A, T136 and S195) is still phosphory-
lated, while Mad2 mutated form in all the phosphorylatable sites 
could not, further suggests that S185 and/or T187 are the main 
candidates for the phosphorylation by Chk1. The functional sig-
nificance of the phosphorylated-Chk1-induced form of Mad2 in 
vivo is far to be elucidated, and the lack of commercially available 
specific phospho Mad2 antibodies, at least at present, is a limit-
ing factor.

Mad2 co-localization and association with Chk1 increase 
after DDP treatment. To further investigate the Chk1/Mad2 
interaction in cells, we co-stained Chk1 and Mad2 in U2OS cells 
under unstressed conditions and 24 h after treatment with DDP 
30 μM (a concentration close to the IC

50
 for U2OS cells and able 

Figure 2. (A) Schematic representation of the Chk1 phosphorylatable sites on 
the Mad2 protein sequence. Specific S/t sites are evidenced in bold type. the 
boxes illustrate the two complete Chk1 phosphorylatable sites of Mad2. (B) In 
vitro kinase assay using wt recombinant GSt-Chk1 in the presence of 32γ Atp 
and the positive recombinant substrate GSt-Cdc25C, the putative recombinant 
substrate GSt-Mad2 and the negative control GSt. Left: SDS-pAGe stained with 
comassie blue. Right: autoradiography.
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actin (C-11) were purchased from Santa Cruz Biotechnology. 
The mouse monoclonal anti-Ran (clone 20) was from BD 
Transduction Laboratories. Primary anti-pS317- and pS345-Chk1 
were purchased from Cell Signaling Technology. Densitometric 
Analysis was done with ImageJ.

RNA isolation, cDNA preparation and real-time PCR. 
Total RNA was purified using the SV-Total RNA isola-
tion system (Promega). One microgram of total RNA was 

Materials and Methods

Cell lines, transfections and drugs. Information on cell 
lines, transfection procedures and drugs are available in the 
Supplemental Materials packet.

Western blotting analysis. Proteins were extracted and visu-
alized using standard techniques, and as already described.13 
Primary anti-Chk1 (G4), Mad2 (FL-205), β-tubulin (H-235), 

Figure 3A–C. A Schematic representation of the Mad2 protein region with Chk1 phosphorylatable sites and the C-terminally truncated part with no 
phosphorylatable sites (1–110). (B–D) In vitro kinase assay using wt recombinant GSt-Chk1 in the presence of 32γ Atp and the positive recombinant 
substrate GSt-Cdc25C, the putative recombinant substrate GSt-Mad2 wt, the mutated proteins S195A/t136A and the DeL1–110 (B), the mutated 
proteins S114A, S120A and S185A (C) and the mutated form in 4 and 6 phosphorylatable sites (D). GSt, negative control. Left: SDS-pAGe stained with 
comassie blue. Right: autoradiography.
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Figure 4. (A) Western blot analysis of pS345-Chk1, pS317-Chk1, Chk1, Mad2 and Ran in U2oS cells 24 h after treatment with 30 μM of DDp and in 
untreated cells. (B) Analysis of DNA content by FACS 24 h after the end of treatment with 30 μM of DDp and in untreated samples. (C) Chk1, Mad2 and 
DApI staining in U2oS cells. Merge 1: Mad2 and Chk1 overlay. Merge 2: Chk1, Mad2 and DApI overlay. (D) exogenous (Flag-Chk1) and endogenous Chk1 
immunoprecipitation from cell extracts of U2oS overexpressing Flag-Chk1 and Mad2, either untreated or 24 h after treatment with 30 μM DDp using 
a rabbit polyclonal Chk1 antibody. Immunoprecipitation with Rabbit IgG: negative control of the experiment. Immunoprecipitates probed by western 
blot analysis for Chk1 and Mad2 protein levels. Inputs: total cell extracts, either untreated or treated with DDp (the experiment showed is representa-
tive of two independent experiments). (E) exogenous Flag-Mad2 immunoprecipitation from cell extracts of U2oS overexpressing Flag-Mad2 and 
HA-Chk1, using a mouse monoclonal Flag antibody. Immunoprecipitation with Mouse IgG: negative control of the experiment. Immunoprecipitates 
probed by western blot analysis for Chk1 and Mad2 protein levels. Inputs: total cell extracts.
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