

NIH Public Access

Author Manuscript

Autoimmun. Author manuscript; available in PMC 2014 May 01.

Published in final edited form as:

JAutoimmun. 2013 May ; 42: 130–135. doi:10.1016/j.jaut.2012.12.009.

Cancer risk in systemic lupus: An updated international multicentre cohort study

Sasha Bernatsky, MD^{1,3}, Rosalind Ramsey-Goldman, MD^{2,*}, Jeremy Labrecque, MSc¹, Lawrence Joseph, PhD^{1,3}, Jean-Francois Boivin, MD³, Michelle Petri, MD⁴, Asad Zoma, MB, ChB⁵, Susan Manzi, MD⁶, Murray B. Urowitz, MD⁷, Dafna Gladman, MD⁷, Paul R. Fortin, MD⁸, Ellen Ginzler, MD⁹, Edward Yelin, PhD¹⁰, Sang-Cheol Bae, MD¹¹, Daniel J. Wallace, MD¹², Steven Edworthy, MD¹³, Soren Jacobsen, MD¹⁴, Caroline Gordon, MD¹⁵, Mary Anne Dooley, MD¹⁶, Christine A. Peschken, MD¹⁷, John G. Hanly, MD¹⁸, Graciela S. Alarcón, MD¹⁹, Ola Nived, MD²⁰, Guillermo Ruiz-Irastorza, MD²¹, David Isenberg, MD²², Anisur Rahman, PhD²², Torsten Witte, MD²³, Cynthia Aranow, MD²⁴, Diane L. Kamen, MD²⁵, Kristjan Steinsson, MD²⁶, Anca Askanase, MD²⁷, Susan Barr, MD¹³, Lindsey A. Criswell, MD¹⁰, Gunnar Sturfelt, MD²⁰, Neha M. Patel, MD⁹, Jean-Luc Senécal, MD²⁸, Michel Zummer, MD²⁸, Janet E. Pope, MD²⁹, Stephanie Ensworth, MD³⁰, Hani El-Gabalawy, MD¹⁷, Timothy McCarthy, MD¹⁷, Lene Dreyer, MD³¹, John Sibley, MD³², Yvan St. Pierre, MSc¹, and Ann E. Clarke, MD^{1,*}

Sasha Bernatsky: sasha.bernatsky@mail.mcgill.ca; Rosalind Ramsey-Goldman: rgramsey@northwestern.edu; Jeremy Labrecque: jeremy.labrecque@mail.mcgill.ca; Lawrence Joseph: lawrence.joseph@mcgill.ca; Jean-Francois Boivin: jeanf.boivin@mcgill.ca; Michelle Petri: mpetri@jhmi.edu; Asad Zoma: a.zoma@ntlworld.com; Susan Manzi: smanzi@wpahs.org; Murray B. Urowitz: m.urowitz@utoronto.ca; Dafna Gladman: dafna.gladman@utoronto.ca; Paul R. Fortin: paul.fortin@mail.chuq.qc.ca; Ellen Ginzler: eginzler@downstate.edu; Edward Yelin: ed.yelin@ucsf.edu; Sang-Cheol Bae: scbae@hanyang.ac.kr; Daniel J. Wallace: dwallace@ucla.edu; Steven Edworthy: sedworth@ucalgary.ca; Soren Jacobsen: sj@dadInet.dk; Caroline Gordon: p.c.gordon@bham.ac.uk; Mary Anne Dooley: Mary_Dooley@med.unc.edu; Christine A. Peschken: cpeschken@hsc.mb.ca; John G. Hanly: john.hanly@cdha.nshealth.ca; Graciela S. Alarcón: graciela.alarcon@ccc.uab.edu; Ola Nived: Ola.Nived@med.lu.se; Guillermo Ruiz-Irastorza: r.irastorza@euskaltel.net; David Isenberg: d.isenberg@ucl.ac.uk; Anisur Rahman: anisur.rahman@ucl.ac.uk; Torsten Witte: witte.torsten@m-hannover.de; Cynthia Aranow: aranow@pol.net; Diane L. Kamen: kamend@musc.edu; Kristjan Steinsson: krstein@landspitali.is; Anca Askanase: Askanase@nyumc.org; Lindsey A. Criswell: Lindsey.criswell@ucsf.edu; Gunnar Sturfelt: gunnar.sturfelt@med.lu.se; Neha M. Patel: neha.patel@downstate.edu; Jean-Luc Senécal: jl.senecal@umontreal.ca; Michel Zummer: zummer@sympatico.ca; Janet E. Pope: janet.pope@sjhc.london.on.ca; Stephanie Ensworth: ensworth@shaw.ca; Hani El-Gabalawy: elGabalh@cc.unmanitoba.ca; Timothy McCarthy: tmccarthy@manitobaclinic.com; Lene Dreyer: lene.dreyer@dadInet.dk; Yvan St. Pierre: ystpierre@epimgh.mcgill.ca; Ann E. Clarke: ann.clarke@mcgill.ca

¹McGill University Health Centre, 687 Pine Avenue, V Building, Montreal, Quebec H3A 1A1 Canada ²Northwestern University Feinberg School of Medicine, McGaw Pavilion, 240 E. Huron Street, Suite M-300, Chicago, IL 60611 USA ³McGill University, 1020 Pine Avenue West, Montreal, Quebec H3A 1A2 Canada ⁴Johns Hopkins University School of Medicine, 1830 E. Monument Street, Suite 7500, Baltimore, MD 21205, USA ⁵Hairmyres Hospital, East Kilbride G75

^{© 2013} Elsevier Ltd. All rights reserved.

Corresponding author and request for reprints address: Dr. Sasha Bernatsky, Division of Clinical Epidemiology, Research Institute of the McGill University Health Centre, 687 Pine Avenue West, V-Building, Room V2.09, Montreal, Quebec, H3A 1A1, Canada. sasha.bernatsky@mail.mcgill.ca Telephone: 514-934-1934 ext. 44710. *Equal contributions as senior authors.

Potential Conflicts of Interest: None

note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

Publisher's Disclaimer: This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final citable form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

8RG, Scotland, UK ⁶West Penn Allegheny Health System, Allegheny General Hospital, Suite 295, 2nd Floor, South Tower, 320 East North Avenue, Pittsburg, PA 15212 USA ⁷Toronto Western Hospital, 399 Bathurst Street, IE-410B, Toronto, Ontario M5T 2S8 Canada ⁸Université de Laval, Service de rheumatologie, 2705, boulevard Laurier, Local S-763, Quebec, Quebec G1V 4G2 Canada ⁹State University of New York–Downstate Medical Center, 450 Clarkson Avenue, Box 42, Brooklyn, NY 11203, USA ¹⁰University of California, Department of Medicine, Suite 270, Laurel Heights Campus, San Francisco, California, 9413-0920 USA ¹¹Department of Rheumatology, Hanyang University Hospital for Rheumatic Diseases, Seoul, South Korea 133-792 ¹²Cedars-Sinai Medical Center/David Geffen School of Medicine at UCLA. 8737 Beverly Blvd, Suite 302, West Hollywood, CA 90048, USA ¹³University of Calgary, 3330 Hospital Drive, NW, Calgary, Alberta, T2N 1N4 Canada ¹⁴Rigshospitalet, Copenhagen University Hospital, Blegdamsvej 9, 2100 Copenhagen, Denmark ¹⁵University of Birmingham, College of Medical and Dental Sciences, Edgbaston, University of Birmingham, B15 2TT, UK ¹⁶University of North Carolina at Chapel Hill, CB #7280 3330 Thurston Building, Chapel Hill North Carolina 27599-7280 USA ¹⁷University of Manitoba, RR149 800 Sherbrook Street, Winnipeg, MB R3A 1M4 Canada ¹⁸Dalhousie University and Capital Health, Second Floor, 1341 Summer Street, Halifax, Nova Scotia, Canada B3H 4K4 ¹⁹The University of Alabama, Birmingham, 1520 3rd Avenue South MT 512 Alabama, 529433408, USA ²⁰Lund University Hospital, S-22185 Lund, Sweden ²¹Rheumatic Diseases Research Unit, Department of Medicine, Hospital Universitario Cruces, University of the Basque Country, Bizkaia, Spain ²²University College, Faculty of Medicine, Department of Rheumatology, 5 University Street, London WCIE 6JF, UK ²³Hannover Medical School, Medicine, Carl-Neuberg-Str. 1, 30625 Hannover, Germany ²⁴The Feinstein Institute for Medical Research, 350 Community Drive, Manhasset, NY 11030 USA ²⁵Medical University of South Carolina, 36 Jonathan Lucas Street, Suite 912, Charleston, SC 29425 USA ²⁶Landspitali, University Hospital, Department of Rheumatology and Center for Rheumatology Research, Fossvogur, 108 Reykjavik, Iceland ²⁷Department of Rheumatology, NYU School of Medicine, New York, New York 10016, USA ²⁸Université de Montréal, 2900 boul. Edouard-Montpetit, Montreal, Quebec, H3T 1J4 Canada ²⁹University of Western Ontario, Medicine, Division of Rheumatology, 268 Grosvenor Street, London, Ontario, N6A 4V2 Canada ³⁰University of British Columbia, 317-2194 Vancouver, British Columbia, V6T 1Z3 Canada ³¹Copenhagen University Hospital, Department of Rheumatology, 4242, Rigshospitalet, 9 Blegdamsvej, DK-2100 Copenhagen, DenmarkNovo Nordisk Foundation ³²Royal University Hospital, Saskatoon, Saskatchewan, Canada [deceased]

Abstract

OBJECTIVE—To update estimates of cancer risk in SLE relative to the general population.

METHODS—A multisite international SLE cohort was linked with regional tumor registries. Standardized incidence ratios (SIRs) were calculated as the ratio of observed to expected cancers.

RESULTS—Across 30 centres, 16,409 patients were observed for 121,283 (average 7.4) personyears. In total, 644 cancers occurred. Some cancers, notably hematologic malignancies, were substantially *increased* (SIR 3.02, 95% confidence interval, CI, 2.48, 3.63), particularly non-Hodgkin's lymphoma, NHL (SIR 4.39, 95% CI 3.46, 5.49) and leukemia. In addition, increased risks of cancer of the vulva (SIR 3.78, 95% CI 1.52, 7.78), lung (SIR 1.30, 95% CI 1.04, 1.60), thyroid (SIR 1.76, 95% CI 1.13, 2.61) and possibly liver (SIR 1.87, 95% CI 0.97, 3.27) were suggested. However, a *decreased* risk was estimated for breast (SIR 0.73, 95% CI 0.61–0.88), endometrial (SIR 0.44, 95% CI 0.23–0.77), and possibly ovarian cancers (0.64, 95% CI 0.34– 1.10). The variability of comparative rates across different cancers meant that only a small increased risk was estimated across all cancers (SIR 1.14, 95% CI 1.05, 1.23). **CONCLUSION**—These data estimate only a small increased risk in SLE (versus the general population) for cancer over-all. However, there is clearly an increased risk of NHL, and cancers of the vulva, lung, thyroid, and possibly liver. It remains unclear to what extent the association with NHL is mediated by innate versus exogenous factors. Similarly, the etiology of the decreased breast, endometrial, and possibly ovarian cancer risk is uncertain, though investigations are ongoing.

Keywords

Systemic Lupus Erythematosus; Epidemiology; Treatment; Disease Activity

INTRODUCTION

Systemic lupus erythematosus (SLE) is one of the most common systemic autoimmune rheumatic diseases, often affecting young and middle-aged people. Females are particularly affected (female:male ratio of 9:1). Although survival in SLE has improved, morbidity related to the disease and its treatment remains considerable. One important consideration is cancer risk.

The immune system's role in cancer risk is a topic of increasing interest, and accordingly, the association between autoimmunity and cancer has been under study for over a decade[1]. Suggested pathways linking SLE and cancer include possible links with medication exposures, or even interactions between medications and viral exposures. Also potentially pertinent are clinical characteristics, such as co-existing Sjogren's syndrome or other overlap syndromes that may occur in SLE[2]. Some have hypothesized that an increased prevalence of traditional "lifestyle" cancer risk factors may influence malignancy incidence in SLE[3]. Additionally, inherent immune system abnormalities have been suggested as mediators of a potentially increased cancer risk in SLE[4].

To date, varying estimates of cancer risk in SLE have been generated, most with fairly wide confidence intervals (CIs). The standardized incidence ratio (SIR) estimates for over-all cancer in these studies ranged from 1.1 (95% CI 0.7–1.6)[5] to 2.6 (95% CI 1.5–4.4)[6]. These studies do not represent optimal estimates of cancer risk in SLE, due to small sample sizes and possibly non-representative sampling. In 2005 we published a large multi-centre study (23 centres, 9, 547 SLE patients) that clarified cancer risk in SLE, particularly with respect to a nearly 4 fold increase of non-Hodgkin lymphoma (NHL)[7]. Our current goal was to conduct in-depth, updated analyses of cancer risk in SLE, compared to the general population.

MATERIALS AND METHODS

We assembled a multisite (30 centers) international cohort of patients diagnosed with SLE. These consisted of clinically confirmed SLE patients in follow up, the vast majority of who fulfill American College of Rheumatology (ACR) criteria (one cohort, in Scotland, was assembled using administrative data). Patients were linked to regional tumor registries to determine cancer occurrence. Information was available on birth-date, sex, lupus diagnosis and cohort entry dates, and date of death, if applicable. The person-years of follow-up were calculated from the date of SLE cohort entry to the last date seen in clinic, end of the cancer registry information, or death (whichever occurred earliest). All new-onset observed cancers during the person-years of follow-up were included.

Standardized incidence ratios, SIRs, were calculated as the ratio of observed to expected cancers. Cancers expected were determined by multiplying person-years in the cohort by the geographically matched age, sex, and calendar year–specific cancer rates, and summing over

all person-years. We calculated 95% CIs, assuming that the observed number of malignancies followed a Poisson distribution. As well, we present analyses evaluating stratified rates of over-all cancers, and hematological cancers specifically, for groups characterized by demographics and SLE duration.

RESULTS

In total 16,409 patients were studied (Table 1); 7,700 of these originated from the United States, 3,689 from Canada, 4,250 from Europe and 770 from Asia (Korea). Ninety percent were female. The patients provided a total of 121,283 person-years of follow-up (mean 7.4 years) spanning the calendar period 1958–2009, although most of the person-years came from the 1970's onward.

Within the observation interval, 644 cancers occurred (Table 2). The data confirmed an increased risk of cancer among patients with SLE, particularly for specific cancer subtypes. For all cancers combined, the SIR estimate was 1.14 (95% CI 1.05–1.23). For all hematologic malignancies, it was 3.02 (95% CI 2.48–3.63). Regarding specific types of hematological malignancies, increased risk was demonstrated for all lymphomas (SIR 4.07, 95% CI 3.24–5.04) as well as for non-Hodgkin lymphoma (NHL) specifically, and leukemia. We also demonstrated an increased risk of cancers of the vulva, lung, and thyroid, and a suggestion of possible increased risk for hepatic cancer. Meanwhile, a substantial decreased risk was seen for breast and endometrial cancer, and possibly ovarian cancer.

When SIR estimates were stratified by age, SLE patients in the youngest age group (<40 years) appeared to have a particularly high relative cancer risk (compared to sex and age-appropriate general population rates). In contrast, an increase in over-all cancer risk, compared to the sex and age-matched general population, was not apparent for SLE patients aged 60 years (although the increased risk of hematological malignancies remained). Regarding trends over SLE duration, our stratified results previously suggested that an increased risk of cancer detection early in SLE, was followed by trends for somewhat lower SIRs, although the confidence intervals for some of the SLE duration-specific estimates overlapped.

DISCUSSION

Our study results more precisely define cancer risk in SLE versus the general population, highlighting a dichotomy. On one hand, there is an increased risk of NHL, leukemia and cancers of the vulva, lung, thyroid, and possibly liver. Conversely, there is a decreased risk of breast, endometrial, and possibly ovarian cancer. Hence, the over-all cancer risk in SLE is only slightly increased, compared to the general population.

This is in fact quite similar to the profile seen in another autoimmune rheumatic disease, rheumatoid arthritis (RA). A meta-analysis has demonstrated that in RA, the SIR for overall malignancy is 1.05 (95% CI 1.01,1.09), with an increase in lymphoma risk (SIR 2.08, 95% CI 1.80, 2.39) and lung cancer (SIR 1.63, 95% CI 1.43, 1.87) but a decreased risk of breast cancer (SIR 0.84, 95% CI 0.79, 0.90)[8].

There are various possible explanations for a link between lymphoma and SLE. It is known that translocations involving the juxtaposition of an oncogene beside a gene important for immune cell function[9] may favor the emergence of a lymphoma. Since the chances of a translocation are proportional to the rate of lymphocyte proliferation, possibly upregulated lymphocyte proliferation (related to autoimmunity) might explain some of the excess lymphoma risk in autoimmune diseases like SLE. Certainly in a related condition, primary Sjogren's syndrome, authors have implicated chronic antigenic stimulation of

lymphocytes[10]. However, immunosurveillance is also a normal part of cancer defense, so a very active immune system might also be able to delete abnormal (precancerous) cells more efficiently. Detailed case-cohort analyses are currently underway, assessing both drugs and cumulative disease activity as potential mediators of lymphoma risk in SLE.

It has been shown that the most common NHL subtype among cases that arise in SLE is diffuse large B cell (DLBC) lymphoma[11]. In our multi-centre international cohort data, DLBC was the most common NHL histological subtype[12;13]. This NHL subtype arises from activated lymphocytes, again suggesting that chronic inflammation might heighten lymphoma risk in autoimmune diseases like SLE[11].

A PRoliferating-Inducing Ligand (APRIL) is a cytokine highly expressed in DLBC lymphomas in the general population. High concentrations of APRIL have been implicated as possible risk factors related to RA and SLE disease onset. Intriguingly, one study of APRIL expression in the SLE DLBC lymphoma tissues reported a strong association in SLE, but not in the RA[4]. The authors noted that the high expression of APRIL in DLBC lymphomas in some patients might indicate APRIL mediates lymphoma development in these disease subsets. However, the conclusions are by no means definitive. We are currently conducting a similar histology review on the DLBC lymphoma cases in our sample, to determine if the findings confirm high expression of APRIL and/or a role for other agents, such as Epstein Barr virus.

With respect to lung cancer risk, we have previously demonstrated that most SLE patients who develop this are smokers[14], emphasizing yet another reason to counsel SLE patients in smoking cessation. Interestingly, only the minority of the SLE patients with lung cancer had been previously exposed to immunosuppressive drugs[15].

Regarding the higher risk of vulvar cancers in SLE, one important factor is the possibility of altered clearance of viruses, particularly human papillomavirus, HPV, which is linked to this malignancy, as well as to cervical cancer. In young patients prior to initiation of sexual activity, vaccination against HPV may be useful [16],[17]. Altered viral clearance can also predispose to hepatic cancer, and our group has noted at least one case of a hepatitis-positive SLE patient developing a hepatic malignancy (unpublished communication).

The higher risk of thyroid cancer in SLE has been suggested by some authors but few concerted efforts have attempted to determine why this might be so. Associations between SLE and thyroid autoimmunity have been well-documented[18] and thyroid autoimmunity itself increases thyroid cancer risk[19]. One case-control study noted an increased risk of papillary thyroid cancer in SLE, particularly for patients with thyroid autoimmunity[20].

SLE patients appear to have considerable decreased risk for certain hormone-sensitive cancers, as has been shown in this paper as well as in a recent meta-analysis, where decreased risk was seen in SLE for breast cancer (SIR 0.74, 95% CI 0.61–0.89), endometrial cancer (SIR 0.44, 95% CI 0.23–0.77) and ovarian cancer (SIR 0.64, 95% CI 0.49–0.90)[21]. The fact that women with SLE have decreased risk of several hormone-sensitive cancers suggests the possibility of alterations in estrogen metabolism and/or other hormones. Interestingly, results stratifying our female subjects according to age (<50 years, mainly premenopausal, and >=50 years, mainly postmenopausal) showed decreased breast cancer risk in SLE (relative to the general population) for both age groups (data not shown).

It remains a possibility that medications may influence cancer risk in SLE, such as aspirin and non-steroidal anti-inflammatory drugs [22–24] and corticosteroids [25], and anti-malarial drugs [26]. Oncologists have proposed that antimalarials have potential applications

in cancer treatment [27] possibly through a cell death process called autophagy[28]. These drugs will be further evaluated in ongoing analyses by our group.

It is an interesting potential hypothesis that the lower risk for certain cancers in SLE may be related to specific genetic factors that place individuals at risk for SLE, but protect against breast cancer. Though this hypothesis remains to be fully tested, our initial work thus far has failed to explain breast cancer risk in SLE on the basis of genetic factors[29].

We must acknowledge potential limitations of ours study. It is possible that, in some of the cancer cases that occurred within the first year of SLE diagnosis, the SLE-like manifestations were in fact paraneoplastic phenomena. To explore this, in sensitivity analyses, we calculated the SIRs excluding cancers diagnosed in the first year of SLE. The over-all estimates changed little. Thus, it seems unlikely that the elevated over-all cancer risk in SLE reflects a paraneoplastic process alone. Additionally, the majority of the cancers occurred more than 1 year after SLE had been diagnosed.

The persistence of an elevated cancer risk beyond the first year of SLE diagnosis also rules against the possibility that the observed number of cancers was inflated, due to subclinical malignancies being picked up in SLE patients, who tend to have close medical follow-up. There are additional reasons why we believe that this potential bias does not entirely explain our findings of increased cancer risk in SLE. First, breast cancer is one of cancer type where routine screening is available, yet breast cancer was not increased in SLE, in contrast to the striking increase in lymphoma (where no formal screening strategy exists). Furthermore, we have previously demonstrated that in women with SLE do not necessarily present in earlier stages of cancer, compared to the general population[30]. Moreover, evidence suggests that patients with SLE may undergo cancer screening much less frequently than recommended[31]. Last but not least, it has been shown that cancer mortality (not just incidence) is increased in SLE[32], which is convincing evidence of a true increased cancer risk in SLE.

We did not analyze risk according to race in the current analyses, since we did not have data on race for all subjects. This could be important because, in the general population, breast cancer is less common in blacks than whites. However, an earlier paper from our group suggested that the decreased risk of breast cancer was fairly homogenous across white and non-white SLE patients[33]. That earlier paper also suggested that lymphoma risk was fairly homogeneous across different race/ethnicity groups in SLE.

Although cancers in general are more common with increasing age, younger SLE patients have a particularly high relative cancer risk (compared to the general population). However, it must be kept in mind that the absolute rate, even in those aged <40 years, is about 1.56 cases per 1,000 person-years for SLE, versus about 1 per 1,000 per person-year in the general population. Patients need to be aware that their risk for other adverse events, such as cardiac disease, may actually be equally (or more) important. For example, the Mayo clinic calculator demonstrates that for a smoker aged <40 years, the risk of a heart attack or death from heart disease is 3 per 1,000 person-years[34]. Smoking cessation, optimizing exercise and optimal weight control are lifestyle factors that most people, including SLE patients, can focus on to improve cancer risk (as well as risk for even more common adverse outcomes) [35].

Regarding trends over SLE duration, an increased risk of cancer detection was apparent initially, followed by trends for somewhat lower SIRs. This suggests perhaps that not all of the excess cancer risk in SLE is caused by drug exposures. Though there was a trend of highest SIRs earliest in the course of SLE, followed by a trend towards lower cancer risk

later on, for hematological cancer, the elevated risk in SLE compared to the general population persists in both terms of increased age and SLE duration (Tables 3–4).

An additional limitation of the current analyses is that we were unable to assess clinical effects such as types of organ involvement or drug use across the cohort, since we did not have this information for all the cohort members. However, we are currently analyzing, in a case-cohort subset of patients, the effects of these variables on lymphoma risk in SLE.

CONCLUSION

To summarize, our data support an association between SLE and cancer, highlighting the risk for NHL and leukemia, but also demonstrating an increased risk of vulvar, lung, thyroid, and possibly liver cancers. It remains unclear to what extent the association with NHL is mediated by innate versus exogenous factors. On the other hand, women with SLE appear to have a decreased risk of breast, endometrial, and possibly ovarian cancer. The etiology of this phenomenon is also uncertain, though investigations are ongoing.

Acknowledgments

We acknowledge the assistance of Jennifer Lee, Elizabeth Turnbull and Autumn Neville. Our efforts were made possible through the endorsement and support of the Systemic Lupus International Collaborating Clinics research network. Dr. Criswell would like to acknowledge support from the Alliance for Lupus Research and from a Kirkland Scholar Award.

GRANT SUPPORT

This research was funded by Canadian Institutes of Health Research/Arthritis Society grant RG06/092 and National Institutes of Health (NIH) grant 1R03CA128052-01. We also acknowledge the grant that supports the Chicago Lupus Database, NIH/NIAMS P60 2 AR30692 and the grants that support the UCSF Lupus Outcomes Study, NIH/NIAMS P60 AR053308 and NIH/NIAMS R01 5R01AR56476-9, the grant that support the Hopkins Lupus Cohort NIH R01 AR43727, and the grant by the Department of Education, Universities and Research of the Basque Government supporting the Lupus-Cruces research project. Support for McGill University Health Centre cohort comes from Singer Family Fund for Lupus Research. Dr. Criswell would like to acknowledge support from the Alliance for Lupus Research and from a Kirkland Scholar Award. Dr. Bae's work is supported by the Korea Healthcare technology R&D Project, Ministry for Health and Welfare, Republic of Korea (A120404).

Reference List

- 1. Zintzaras E, Voulgarelis M, Moutsopoulos HM. The risk of lymphoma development in autoimmune diseases: a meta-analysis. Arch Intern Med. 2005; 165(20):2337–2344. [PubMed: 16287762]
- 2. Kassan SS, Thomas TL, Moutsopoulos HM, Hoover R, Kimberly RP, Budman DR, et al. Increased risk of lymphoma in sicca syndrome. Ann Intern Med. 1978; 89(6):888–892. [PubMed: 102228]
- Bernatsky S, Boivin J, Joseph L, St Pierre Y, Moore A, Rajan R, et al. The prevalence of factors influencing cancer risk in lupus: social habits reproductive issues and obesity. Journal of Rheumatology. 2002; 29(12):2551–2554. [PubMed: 12465150]
- Lofstrom B, Backlin C, Pettersson T, Lundberg IE, Baecklund E. Expression of APRIL in Diffuse Large B Cell Lymphomas from Patients with Systemic Lupus Erythematosus and Rheumatoid Arthritis. J Rheumatol. 2011; 38(9):1891–1897. [PubMed: 21724695]
- Abu-shakra M, Gladman DD, Urowitz MB. Malignancy in systemic lupus erythematosus. Arthritis & Rheumatism. 1996; 39(6):1050–1054. [PubMed: 8651970]
- Pettersson T, Pukkala E, Teppo L, Friman C. Increased risk of cancer in patients with systemic lupus erythematosus. Ann Rheum Dis. 1992; 51(4):437–439. [PubMed: 1586239]
- Bernatsky S, Boivin J, Lawrence J, Rajan R, Zoma A, Manzi S, et al. An international cohort study of cancer in systemic lupus erythematosus. Arthritis & Rheumatism. 2005; 52(5):1481–1490. [PubMed: 15880596]
- Smitten AL, Simon TA, Hochberg MC, Suissa S. A meta-analysis of the incidence of malignancy in adult patients with rheumatoid arthritis. Arthritis Res Ther. 2008; 10(2):R45. [PubMed: 18433475]

- 9. Ott G, Rosenwald A. Molecular pathogenesis of follicular lymphoma. Haematologica. 2008; 93(12): 1773–1776. [PubMed: 19050067]
- Voulgarelis M, Skopouli FN. Clinical, immunologic, and molecular factors predicting lymphoma development in Sjogren's syndrome patients. Clin Rev Allergy Immunol. 2007; 32(3):265–274. [PubMed: 17992593]
- 11. Dias C, Isenberg DA. Susceptibility of patients with rheumatic diseases to B-cell non-Hodgkin lymphoma. Nat Rev Rheumatol. 2011; 7(6):360–368. [PubMed: 21637317]
- Bernatsky S, Ramsey-Goldman R, Rajan R, Boivin JF, Joseph L, Lachance S, et al. Non-Hodgkin's lymphoma in systemic lupus erythematosus. Ann Rheum Dis. 2005; 64(10):1507– 1509. [PubMed: 16162903]
- Bernatsky S, Ramsey-Goldman R, Gordon C, Manzi S, Nived O, Bae SC, et al. Histology, Prognostic Factors, Treatment, and Outcome in SLE Patients with Non-Hodgkins Lymphoma [Abstract]. Arthritis & Rheumatism. 2009; 60 (Suppl):S1933.
- Bernatsky S, Boivin JF, Joseph L, Gordon C, Urowitz M, Gladman D, et al. The relationship between cancer and medication exposures in systemic lupus erythematosus: a case-cohort study. Ann Rheum Dis. 2008; 67:74–79. [PubMed: 17545189]
- 15. Bin J, Bernatsky S, Gordon C, Boivin JF, Ginzler E, Gladman D, et al. Lung cancer in systemic lupus erythematosus. Lung Cancer. 2007; 56(3):303–306. [PubMed: 17291624]
- 16. Mok CC, Ho LY, Fong LS, To CH. Immunogenicity and safety of a quadrivalent human papillomavirus vaccine in patients with systemic lupus erythematosus: a case-control study. Ann Rheum Dis. 2012 May 15. [Epub ahead of print].
- Chao C, Klein NP, Velicer CM, Sy LS, Slezak JM, Takhar H, et al. Surveillance of autoimmune conditions following routine use of quadrivalent human papillomavirus vaccine. J Intern Med. 2012; 271(2):193–203. [PubMed: 21973261]
- Antonelli A, Fallahi P, Mosca M, Ferrari SM, Ruffilli I, Corti A, et al. Prevalence of thyroid dysfunctions in systemic lupus erythematosus. Metabolism. 2010; 59(6):896–900. [PubMed: 20005534]
- Azizi G, Malchoff CD. Autoimmune thyroid disease: a risk factor for thyroid cancer. Endocr Pract. 2011; 17(2):201–209. [PubMed: 20841310]
- Antonelli A, Mosca M, Fallahi P, Neri R, Ferrari SM, D'Ascanio A, et al. Thyroid cancer in systemic lupus erythematosus: a case-control study. J Clin Endocrinol Metab. 2010; 95(1):314– 318. [PubMed: 19906791]
- Bernatsky S, Ramsey-Goldman R, Foulkes W, Gordon C, Clarke A. Breast, Ovarian, and endometrial malignancies in systemic lupus erythematosus: A meta-analysis. British Journal of Cancer. 2011; 104:1478–1481. [PubMed: 21487409]
- 22. Bernatsky S, Clarke A, Petri MA, Urowitz M, Fortin P, et al. Further Defining Cancer Risk in Systemic Lupus: Updated Results in an Expanded International Multi-Centre Cohort. Arthritis & Rheumatism. 2010; 62(Suppl):S731.
- Moran EM. Epidemiological and clinical aspects of nonsteroidal anti-inflammatory drugs and cancer risks. J Environ Pathol Toxicol Oncol. 2002; 21(2):193–201. [PubMed: 12086406]
- Akhmedkhanov A, Toniolo P, Zeleniuch-Jacquotte A, Koenig KL, Shore RE. Aspirin and lung cancer in women. Br J Cancer. 2002; 87(1):49–53. [PubMed: 12085255]
- Boivin JF, Hutchison GB, Zauber AG, Bernstein L, Davis FG, Michel RP, et al. Incidence of second cancers in patients treated for Hodgkin's disease. J Natl Cancer Inst. 1995; 87(10):732– 741. [PubMed: 7563150]
- Ruiz-Irastorza G, Ugarte A, Egurbide MV, Garmendia M, Pijoan JI, Martinez-Berriotxoa A, et al. Antimalarials may influence the risk of malignancy in systemic lupus erythematosus. Ann Rheum Dis. 2007; 66(6):815–817. [PubMed: 17204564]
- Rahim R, Strobl JS. Hydroxychloroquine, chloroquine, and all-trans retinoic acid regulate growth, survival, and histone acetylation in breast cancer cells. Anticancer Drugs. 2009; 20(8):736–745. [PubMed: 19584707]
- Amaravadi RK. Autophagy-induced tumor dormancy in ovarian cancer. J Clin Invest. 2008; 118(12):3837–3840. [PubMed: 19033653]

- 29. Bernatsky S, Ramsey-Goldman R, Gordon C, Foulkes W, Clarke A. Decreased Breast Cancer Risk In SLE: Can a Genetic Basis Be Determined? Arthritis Rheum. 2011; (Supp) ID 19089.
- Bernatsky S, Clarke A, Ramsey-Goldman R, Boivin JF, Joseph L, Rajan R, et al. Breast cancer stage at time of detection in women with systemic lupus erythematosus. Lupus. 2004; 13(6):469– 472. [PubMed: 15303575]
- Bernatsky SR, Cooper GS, Mill C, Ramsey-Goldman R, Clarke AE, Pineau CA. Cancer screening in patients with systemic lupus erythematosus. J Rheumatol. 2006; 33(1):45–49. [PubMed: 16331804]
- 32. Bernatsky S, Boivin J, Manzi S, Ginzler E, Gladman DD, Urowitz MB, et al. Mortality in systemic lupus erythematosus. Arthritis and Rheumatism. 2006; 54(8):2550–2557. [PubMed: 16868977]
- Bernatsky S, Boivin JF, Joseph L, Manzi S, Ginzler E, Urowitz M, et al. Race/ethnicity and cancer occurrence in systemic lupus erythematosus. Arthritis Rheum. 2005; 53(5):781–784. [PubMed: 16208671]
- [Accessed Nov. 2012] Mayo Clinic Heart Disease Calculator. http://www.mayoclinic.com/health/ heart-disease-risk/HB00047
- Na HK, Oliynyk S. Effects of physical activity on cancer prevention. Ann N Y Acad Sci. 2011; 1229(1):176–183. [PubMed: 21793853]

Research Highlights

- In a multisite international SLE cohort, 15,980 patients were observed for 119,846 (average 7.5) person-years, with a total of 641 cancers occurring, which represents a slight increase in over-all cancer experience in SLE, compared to the general population (relative risk or standardized incidence ratio, SIR 1.14, 95% confidence interval, CI, 1.06, 1.24).
- For non-Hodgkin's lymphoma, NHL the SIR was 4.36, 95% CI 3.43, 5.47).
- In addition, increased risks were seen for cancer of the vulva (SIR 3.79, 95% CI 1.52, 7.78), lung (SIR 1.29, 95% CI 1.03, 1.60) and thyroid (SIR 1.78, 95% CI 1.14, 2.64).
- However, a decreased risk was estimated for breast (SIR 0.74, 95% CI 0.61– 0.89) and endometrial (SIR 0.44, 95% CI 0.23–0.77) cancer.

Table 1

Participating centers: international cohort study of malignancy in SLE

Center	n*	Cohort assembly	Inclusion
NORTH AMERICA			
Baltimore, MD, USA	1691	Followed from first clinic visit [¶]	ACR criteria
Pittsburgh, PA, USA	1587	University of Pittsburgh/regional rheumatology	ACR criteria
Toronto, ON, Canada	1316	Followed from first clinic visit †	ACR criteria
Downstate University-Brooklyn, NY, USA	1124	Followed from first clinic visit †	ACR criteria
San Francisco, CA, USA	721	Lupus Outcomes Study cohort	ACR criteria
Los Angeles, CA, USA	655	Followed from first clinic visit [¶]	ACR criteria
Chicago, IL, USA	598	Followed from first clinic visit [¶]	ACR criteria
Calgary, AB, Canada	522	Enrolled from regional physician network $\stackrel{\not\uparrow}{}$	ACR criteria
Montreal General Hospital, QC, Canada	499	Followed from first clinic visit \dagger	ACR criteria
Winnipeg, MB, Canada	402	Followed from first clinic visit \S	ACR criteria
Chapel Hill, NC, USA	357	Followed from first clinic visit [¶]	ACR criteria
South Carolina, USA	351	Followed from first clinic visit	ACR criteria
Saskatoon, SK, Canada	306	Followed from first clinic visit	ACR criteria
Birmingham, AL, USA	298	Inception cohort (consenting to linkage) ^{\dagger}	ACR criteria
Albert Einstein University, NYC, USA	240	Followed from first clinic visit $^{\hat{S}}$	ACR criteria
Halifax, NS, Canada	232	Followed from first clinic visit \dagger	ACR criteria
Notre-Dame Hospital, Montreal, QC, Canada	121	Followed from first clinic visit [¶]	ACR criteria
Hôpital Maisonneuve-Rosemont Montreal, QC	120	Hospital discharge and clinic records \S	ACR criteria
London, Ontario, Canada	90	Followed from first clinic visit $^{\delta}$	ACR criteria
Vancouver, BC, Canada	81	Followed from first clinic visit $^{\delta}$	ACR criteria
New York University, NYC, USA	78	Followed from first clinic visit	ACR criteria
UNITED KINGDOM			
Lanarkshire, Scotland	1937	Hospital discharge registry ${}^{\$}$	Discharge#
Birmingham, England	439	Followed from first clinic visit \dagger	ACR criteria
London, England	273	Followed from first clinic visit \dagger	ACR criteria
OTHER CENTERS			
Seoul, Korea	770	Followed from first clinic visit †	ACR criteria
Copenhagen, Denmark	560	Followed from first clinic visit †	ACR criteria
Barakoldo, Spain	298	Followed from first clinic visit \dagger	ACR criteria
Lund, Sweden	282	Inception cohort, enroll at SLE diagnosis	ACR criteria
Hannover, Germany	240	Followed from first clinic visit $\dot{\tau}$	ACR criteria

Center	n [*]	Cohort assembly	Inclusion
Reykjavik, Iceland	221	Unselected patients from national registry [¶]	ACR criteria
TOTAL	16,409		

* Number of subjects at each center corresponds to those present during the time in which cancer registry data were available.

 † Prospective assembly.

 \ddagger At least 95% of cohort members met 4 components of the American College of Rheumatology (ACR) diagnostic criteria for SLE (18, 19); patients with a clinical diagnosis of SLE but meeting <4 ACR criteria were not excluded.

 $^{\$}$ Retrospective assembly.

[#]Any hospital discharge diagnosis of SLE, primary, or non-primary. Cohort entry was date of first discharge with SLE diagnosis

Bernatsky et al.

Table 2

Cancers observed and expected, with standardized incidence ratios (SIRs) and 95% confidence intervals (95% CIs)

All 644 566.3 1.14 1.05 1.23 Hematologic* 111 368 3.02 2.48 3.63 Non-Hodgkin Lymphoma 76 17.3 4.39 3.46 5.49 Multiple Myeloma 10 31 2.28 0.90 3.46 Houset 10 5.3 1.88 0.90 3.46 Houset 114 1552 0.73 0.61 0.88 Multiple Myeloma 101 5.3 1.92 0.71 2.76 Determina 114 1552 0.73 0.61 0.88 Leukenia 114 1552 0.73 0.61 0.88 Dorary 214 1252 0.73 0.61 0.88 Valva 212 114 1552 0.74 1.91 Valva 212 0.71 1252 0.74 0.34 Unary 212 0.74 1.27 0.74 1.37 Valva 212 0.74 1.27 0.74 1.37 Unary 212 0.74 1.27 0.74 1.37 Valva 212 0.74 1.27 0.74 1.37 Lung 0.72 0.74 1.27 0.74 1.60 Partners 112 0.74 1.27 0.74 1.67 Lung 0.74 1.27 0.74 1.67 0.74 1.67 Lung 0.74 1.27 0.74 1.27 0.74 1.67 Lung <th< th=""><th></th><th>Observed</th><th>Expected</th><th>SIR</th><th>5</th><th>95% CI</th></th<>		Observed	Expected	SIR	5	95% CI
ologic* 111 36.8 3.02 2.48 ologic* 7 17.3 4.39 3.46 n's Lymphoma 7 3.1 2.28 0.92 m's Lymphoma 7 3.1 2.28 0.90 e Myeloma 10 5.3 1.88 0.90 mis Lymphoma 18 10.3 1.75 1.04 mis Lymphoma 18 10.3 1.75 1.04 mis Lymphoma 18 10.3 1.75 1.04 mis Lymphoma 114 155.2 0.73 0.61 1.05 mis Lymphoma 113 155.2 0.73 0.61 1.04 mis Lymphoma 221 0.65 1.27 0.78 1.04 1.05 mis Lymphoma 221 16.6 1.27 0.78 1.04 1.05 mis Lymphoma 221 16.6 1.27 0.78 1.04 1.05 mis Lymphoma 222 0.51 1.05 0.05 <th>IIV</th> <th>644</th> <th>566.3</th> <th>1.14</th> <th>1.05</th> <th>1.23</th>	IIV	644	566.3	1.14	1.05	1.23
odgkin Lymphoma 76 17.3 4.39 3.46 in's Lymphoma 7 3.1 2.28 0.92 is Myeloma 10 5.3 1.88 0.90 is Myeloma 10 5.3 1.88 0.90 is Myeloma 114 155.2 0.75 1.04 ina 113 20.2 0.64 0.34 ina 113 20.2 0.64 0.34 ina 21 155.2 0.73 0.61 0.34 ina 21 155.2 0.74 0.78 0.46 1 ina 21 20.2 0.64 0.34 0.55 1.52 0.54 1.52 ina 21 21.2 0.46 1.23 0.54 0.54 1.55 ina 12 27.2 0.41 1.25 0.54 0.55 1.55 0.54 0.54 0.55 0.54 0.55 0.54 0.55 0.54 0.55 0.55	Hematologic*	111	36.8	3.02	2.48	3.63
in's Lymphoma73.12.280.92e Myeloma105.31.880.90in Myeloma1810.31.751.04in all all all all all all all all all al	Non-Hodgkin Lymphoma	76	17.3	4.39	3.46	5.49
e Myeloma105.31.880.90nia1810.31.751.04nia114155.20.730.617114155.20.730.61711320.20.640.3472116.61.270.7862116.61.270.7872116.61.270.7862116.61.270.78621210.641.37611227.20.440.23611227.20.440.2361120.941.371.9471120.411.370.9780.120.441.120.9490.110.120.9490.110.120.9790.110.120.9790.110.130.1390.141.131.761131.160.650.341141.150.670.341150.640.650.341160.650.340.341180.640.650.341190.650.341110.650.341120.640.341130.650.341141.250.341150.640.341160.650.341110.650.34111<	Hodgkin's Lymphoma	L	3.1	2.28	0.92	4.70
nia 18 10.3 1.75 1.04 114 155.2 0.73 0.61 12 13 20.2 0.64 0.34 13 20.1 16.6 1.27 0.78 0.61 14 155.2 0.67 0.64 0.34 0.34 15 21 16.6 1.27 0.78 0.46 0.34 15 21 0.55 3.80 0.46 0.34 0.35 0.46 0.34	Multiple Myeloma	10	5.3	1.88	06.0	3.46
114 155.2 0.73 0.61 13 20.2 0.64 0.34 21 21 16.6 1.27 0.78 21 16.6 1.27 0.78 1.52 21 21 0.5 3.80 0.46 21 21 1.9 21 1.9 21 12 27.2 0.44 0.23 21 12 27.2 0.44 0.23 21 12 27.2 0.44 0.23 22 12 0.42 1.04 0.43 22 12 0.44 1.97 0.97 22 11.2 0.12 0.43 1.04 22 11.2 0.90 0.43 0.65 22 11.2 0.12 0.43 1.13 11 11.3 11.4 11.3 0.65 11 0.11 0.12 0.74 0.74 12 11.4 11.8 11.3 0.74 12 11.4 11.6 0.65 0.74 11 10.6 0.65 0.74 0.74 111 16.9 0.67 0.74 0.74 111 16.9 0.67 0.74 0.74	Leukemia	18	10.3	1.75	1.04	2.76
\prime 1320.20.640.34 κ 2116.61.270.34 a 2116.61.270.78 a 220.53.800.46 a 270.533.781.52netrial1227.20.440.23netrial1227.20.440.37 a 1227.20.440.37 a 120.551.301.04 a 120.551.301.04 a 1111.20.900.43 a 1011.20.900.43 a 1011.20.900.43 a 1111.81.190.65 a 1111.81.761.13 a 1111.81.761.13 a 1111.630.650.34 a 1116.90.650.34 a 1116.90.650.34 a 1116.90.650.34 a 1116.90.650.34 a 1116.90.650.34 a 1116.90.650.34	Breast	114	155.2	0.73	0.61	0.88
k 21 16.6 1.27 0.78 a 2 0.5 3.80 0.46 a 7 1.9 3.78 1.52 netrial 12 0.5 3.80 0.46 netrial 12 27.2 0.44 0.23 netrial 12 0.5 1.30 1.04 netrial 12 0.12 0.43 0.43 netrial 11.2 0.90 0.43 0.43 netrial 51 11.8 1.19 0.65 0.65 netrial 51 58.2 0.88 0.65 0.44 0.53 netrial 51 58.2 0.88 0.65 0.74 0.73 netrial 58.2 0.88 0.65 0.74 0.	Ovary	13	20.2	0.64	0.34	1.10
a 2 0.5 3.80 0.46 netrial 7 1.9 3.78 1.52 netrial 112 2.72 0.44 0.23 netrial 12 2.72 0.44 0.23 netrial 12 2.72 0.44 0.23 netrial 12 6.5 1.30 1.04 netrial 112 0.57 0.97 0.97 netrial 113 11.8 0.97 0.97 netrial 58.1 0.11.2 0.90 0.45 netrial 58.1 11.8 1.19 0.65 netrial 58.1 58.2 0.88 0.65 netrial 58.1 13.7 1.76 1.13 netrial 16.9 0.65 0.74 1.13 netrial 16.9 0.65 0.74 1.13 netrial 11.1 16.9 0.65 0.34	Cervix	21	16.6	1.27	0.78	1.93
7 1.9 3.78 1.52 netrial 1.2 27.2 0.44 0.23 netrial 85 65.5 1.30 1.04 ic 12 65.5 1.30 1.04 ic 12 65.5 1.30 0.07 eas 10 11.2 0.90 0.43 eas 10 11.2 0.90 0.43 ic 14 11.8 1.19 0.65 eetal 51 58.2 0.88 0.65 id 24 13.7 1.76 1.13 eetal 11 16.9 0.65 0.34 id 24 13.7 1.76 1.13 etal 11 16.9 0.65 0.34 othetal 11 16.9 0.65 0.34	Vagina	2	0.5	3.80	0.46	13.74
netrial 12 27.2 0.44 0.23 ic 85 65.5 1.30 1.04 ic 12 65.5 1.30 1.04 ic 12 65.5 1.30 1.04 eas 11 1.87 0.97 0.97 eas 10 11.2 0.90 0.43 ic 14 11.8 1.19 0.65 ectal 51 58.2 0.88 0.65 off 24 13.7 1.76 1.13 off 24 13.7 1.76 1.13 off 18.4 1.25 0.74 1.13 off 16.9 0.65 0.32 0.34 off 11 16.9 0.65 0.32	Vulva	L	6.1	3.78	1.52	7.78
isolation 85 65.5 1.30 1.04 icolation 12 6.4 1.87 0.97 east 10 11.2 0.90 0.43 east 10 11.2 0.90 0.43 icolation 14 11.8 1.19 0.65 ectal 51 58.2 0.88 0.65 1.33 id 24 11.8 1.19 0.65 1.13 ectal 51 58.2 0.88 0.65 1.13 id 24 13.7 1.76 1.13 1.13 er 18 14.4 1.25 0.74 1.13 other 11 16.9 0.65 0.32 1.33 other 11 16.9 0.65 0.34 1.33	Endometrial	12	27.2	0.44	0.23	0.77
12 6.4 1.87 0.97 10 11.2 0.90 0.43 11.4 11.8 1.19 0.65 11.5 58.2 0.88 0.65 11.1 13.7 1.76 1.13 11.1 11.3 1.76 1.13 11.1 16.9 0.65 0.43 11.1 16.9 0.65 0.32	Lung	58	65.5	1.30	1.04	1.60
10 11.2 0.90 0.43 14 11.8 1.19 0.65 51 58.2 0.88 0.65 51 58.2 0.88 0.65 51 58.2 0.88 0.65 51 58.2 0.88 0.65 51 13.7 1.76 1.13 51 13.7 1.76 1.13 51 18 14.4 1.25 0.74 51 16.9 0.65 0.32 1.14 51 16.3 0.67 0.34 1.34	Hepatic	12	6.4	1.87	76.0	3.27
14 11.8 1.19 0.65 51 58.2 0.88 0.65 24 13.7 1.76 1.13 28 14.4 1.25 0.74 11 16.9 0.65 0.32	Pancreas	10	11.2	06.0	0.43	1.65
51 58.2 0.88 0.65 24 13.7 1.76 1.13 18 14.4 1.25 0.74 11 16.9 0.65 0.32	Gastric	14	11.8	1.19	0.65	2.00
24 13.7 1.76 1.13 18 14.4 1.25 0.74 11 16.9 0.65 0.32 11 16.3 0.67 0.34	Colorectal	51	58.2	0.88	0.65	1.15
18 14.4 1.25 0.74 11 16.9 0.65 0.32 11 16.3 0.67 0.34	Thyroid	24	13.7	1.76	1.13	2.61
11 16.9 0.65 0.32 11 16.3 0.67 0.34	Bladder	18	14.4	1.25	0.74	1.97
11 16.3 0.67 0.34	Prostate	11	16.9	0.65	0.32	1.16
	Melanoma	11	16.3	0.67	0.34	1.20

Hematologic=all lymphomas, leukemias, and multiple myeloma

Table 3

Cancers observed and expected, with standardized incidence ratios (SIRs) and 95% confidence intervals (95% CIs), according to sex and age

Bernatsky et al.

Observed Expected SIR 95% Sex Sex Sing Sing 95% Sex Sex Sex Sex Sex Sex Sex Female 559 487.8 1.15 1.05 1.05 Male Ss 78.4 1.08 0.87 3.05 Age (years) Sex 78.4 1.08 0.87 3.05 Age (years) Sex 78.4 1.08 0.87 3.05 Age (years) Sex 78.4 1.08 0.87 3.05 Age (sears) Sex Sex Sex 3.09 3.09 3.08 Hematological cancers Sex Sex Sex Sex Sex Sex Sex Male D1 So So So So So So Hematological cancers So So So So So So Hematological cancers Male D1 So So	Total cancers	10				
\sim 559 487.8 1.15 1.0 \sim 85 78.4 1.08 0.8 ears) \sim 80 51.2 1.56 1.1 ears) 80 51.2 1.56 1.1 1.0 \sim 80 51.2 1.51 1.0 1.0 \sim 294 243.1 1.21 1.0 1.0 \sim 2294 243.1 1.21 1.0 1.0 \sim 270 271.9 0.99 0.8 0.8 \sim 270 271.9 0.99 0.8 0.0 \sim 270 271.9 0.99 0.8 0.8 0.8 \circ 00 30.9 $2.71.9$ 0.99 0.8		Observed	Expected	SIR	956	95%CI
559 487.8 1.15 1.0 0.8 sars) 85 78.4 1.08 0.8 ears) 80 51.2 1.56 1.2 ears) 80 51.2 1.56 1.2 80 51.2 1.21 1.0 0.8 2294 243.1 1.21 1.1 1.1 270 270 271.9 0.99 0.8 270 271.9 0.99 0.8 0.8 $0ological cancers 271.9 0.99 0.8 0.8 0ological cancers 270 2.91 2.7 2.91 2.7 0ological cancers 2.90 30.9 2.91 2.7 2.7 0.90 30.9 2.91 2.7 2.7 2.7 0.090 30.9 2.91 2.7 2.7 2.7 0.091 2.9 2.92 2.7 2.7 $	Sex					
85 78.4 1.08 0.8 ears) $ $	Female	529	487.8	1.15	1.05	1.24
Rears) 80 51.2 1.56 1.3 80 51.2 1.56 1.3 294 243.1 1.21 1.0 270 271.9 0.99 0.8 270 271.9 0.99 0.8 270 271.9 0.99 0.8 270 271.9 0.99 0.8 270 271.9 0.99 0.8 0ological cancers 271.9 0.99 0.8 0 0.90 30.9 2.91 2.7 0 0.90 30.9 2.91 2.2 0 20.9 30.9 2.91 2.2 0 2.9 3.56 2.6 2.6 0 2.1 4.9 4.29 2.6 0 13.7 3.51 2.6 0 $1.8.2$ 2.31 1.0	Male	85	78.4	1.08	0.87	1.24
	Age (years)					
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	<40	80	51.2	1.56	1.24	1.94
270 271.9 0.99 0.8 tological cancers cancers cancers cancers Observed Expected SIR 2.3 2.3 c 90 30.9 2.91 2.3 c 90 30.9 2.91 2.3 c 21 5.9 3.56 2.3 c 21 4.9 4.29 2.4 c 21 4.9 4.29 2.6 d 4.8 13.7 3.51 2.6 d 4.8 13.7 3.51 2.6	40-59	294	243.1	1.21	1.08	1.36
(ological cancers Observed Expected SIR e 90 30.9 2.91 2.3 e 90 30.9 2.91 2.3 e 21 5.9 3.56 2.2 e 21 4.9 4.29 2.6 e 21 4.9 4.29 2.6 e 48 13.7 3.51 2.6 e 42 18.2 2.31 1.0	+09	270	271.9	66.0	0.88	1.12
Observed Expected SIR 2 90 30.9 2.91 2.3 2 21 5.9 3.56 2.3 2 21 5.9 3.56 2.3 2 21 4.9 4.29 2.2 3 4.9 4.29 3.51 2.2 42 13.7 3.51 2.2 2.2	Hematologic	al cancers				
e 90 30.9 2.91 21 5.9 3.56 21 4.9 4.29 21 4.9 4.29 48 13.7 3.51 42 18.2 2.31		Observed	Expected	SIR	6 56	95%CI
2 90 30.9 2.91 21 5.9 3.56 21 5.9 3.56 21 4.9 4.29 21 4.9 4.29 48 13.7 3.51 42 18.2 2.31	Sex					
21 5.9 3.56 21 5.9 3.56 21 4.9 4.29 48 13.7 3.51 42 18.2 2.31	Female	06	30.9	2.91	2.34	3.58
21 4.9 4.29 48 13.7 3.51 42 18.2 2.31	Male	21	5.9	3.56	2.21	5.45
21 4.9 4.29 48 13.7 3.51 42 18.2 2.31	Age					
48 13.7 3.51 42 18.2 2.31	<40	21	4.9	4.29	2.65	6.55
42 18.2 2.31	40–59	48	13.7	3.51	2.59	4.65
-	+09	42	18.2	2.31	1.66	3.12

Table 4

Cancers observed and expected, with standardized incidence ratios (SIRs) and 95% confidence intervals (95% CIs), according to duration of systemic lupus erythematosus (SLE)

Bernatsky et al.

Total cancers					
SLE Duration (years)	Observed	Expected	SIR	56	95%CI
⊲	65	26.9	2.20	1.67	2.83
1-4	148	117.4	1.26	1.07	1.48
5-10	151	141.8	1.06	06.0	1.25
10–19	189	179.9	1.05	0.91	1.21
>20	97	97.8	0.99	0.80	1.21
Hematological cancers					
SLE Duration (years)	Observed	Expected	SIR	56	95%CI
<1	10	1.7	5.82	2.79	10.70
1-4	32	5°L	4.24	2.90	5.99
5-10	21	9.2	2.27	1.41	3.48
10–19	36	11.7	3.09	2.16	4.28
>20	12	6.4	1.88	79.0	3.29