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Parameter Importance in FRAP Acquisition and Analysis: A Simulation
Approach
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ABSTRACT Fluorescence recovery after photobleaching (FRAP) is a widespread technique used to determine intracellular
reaction and diffusion parameters. In recent years, due to technical advances and an increasing number of mathematical models
for analysis, there was a resurging interest in FRAP applications. However, care has to be taken when inverting parameters from
such data. We study potential influences on FRAP acquisition and analysis like initial fluorescence distribution, membrane
passage, and geometrical aspects. Monte Carlo simulations are employed for the investigation of reaction-diffusion processes
to additionally include cases in which no analytical description is available. To assess the importance of influencing factors we
apply a sensitivity method based on elementary effects providing an estimate for the global parameter space. The combination
of simulations and sensitivity measure helps us to predict ranges of parameters used in acquisition and analysis for which a reli-
ably inversion of reaction-diffusion parameters is possible. Using this approach, we show that FRAP data are highly susceptible
to misinterpretation. However, by identifying the parameters of susceptibility, our analysis provides the means for taking mea-
sures to significantly improve FRAP data interpretation and analysis.
INTRODUCTION
The interest in molecular interaction and dynamics in living
cells is steadily increasing. Several experimental approaches
based on fluorescent microscopy have been developed over
the years. One of the most widespread techniques to inves-
tigate molecular mobility in living cells is fluorescence re-
covery after photobleaching (FRAP) (1–9).

The underlying strategy of a FRAP experiment is quite
simple. A region of interest (ROI) is chosen and the fluores-
cence in this area is irreversibly bleached by a laser beam.
Subsequently, the reoccurrence of the fluorescence in the
ROI is monitored over time, giving rise to a so-called recov-
ery curve. The shape of this curve is determined by the char-
acteristics of mobility, e.g., molecular interaction, diffusion,
or directed movement. Therefore, FRAP experiments can be
used to deduce parameters characterizing processes such as
diffusion coefficients or reaction rates (10–15).

Due to the implementation of FRAP acquisition tools on
commercially available microscopes, and the introduction
of fluorescent proteins like GFP, the interest in FRAP appli-
cations experienced a resurge in recent years. Despite these
technical advances and an increasing number of mathemat-
ical models for analysis (16–18), some considerations are
still warranted when inverting parameters from such exper-
iments. Not only the experimental setup, but also the subse-
quent mathematical analysis of the generated FRAP data,
can have a marked effect on the parameter outcome. In
this respect, we evaluated the importance of FRAP acquisi-
tion and analysis parameters, employing Monte Carlo sim-
ulations coupled with a sensitivity measure.
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Simulations (i.e., numerical models) can facilitate the un-
derstanding of cellular systems in particular if spatio-tempo-
ral parameters take on importance. Evaluating which model
parameters are most influential and which are negligible can
provide further insight into the system investigated. How-
ever, for a comprehensive model assessment, the overall
impact of all parameters on the model output should be
determined by using as small a number of model evaluations
as possible. Several methods are available for such a sensi-
tivity analysis to provide a quantitative measure of the
parameter importance. These methods differ in complexity
and in the parameter information generated (19). Methods
used to determine the influence of a single parameter on
the model response while neglecting interaction between
parameters are known as screening methods. These are
based on sampling. Parameter sets are sampled from a dis-
tribution and used subsequently to drive the model.

One particularly useful screening method for computa-
tionally expensive models is based on elementary effects,
because this approach only needs a small number of model
evaluations to determine a sensitivity measure for each
parameter. The concept of the elementary effects method
was introduced by Morris (16). A derivative choosing the
parameter sets such that the complete feasible domain of
parameter values is covered was introduced by Saltelli
et al. (17). We used this approach to determine the impor-
tance of parameters used in acquisition and analysis of FRAP.

Numerical models are computationally very expansive,
therefore the reaction-diffusion parameter inversion from
FRAP data commonly relies on simplified analytical
models. These simplifications are based on assumptions
that usually do not hold in the environment of a living
cell. It is easy to imagine that, by these model assumptions,
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only approximate model functions describing the time
course of the fluorescence recovery within the ROI can be
deduced, which will lead to inaccurate parameter values
(i.e., diffusion coefficients and reactions rates).

In this article, the influence of these model assumptions as
well as the influence of the experimental setup (e.g., the
position of the bleaching spot, and the geometry of the
bleached compartment) will be studied.

We will show that FRAP experiments are highly suscep-
tible to misinterpretation. A prerequisite for the successful
combination of biological observations with mathematical
models is an accurate data acquisition as well as an appro-
priate model assumption set. Therefore, it seems evident
to use simulations of FRAP measurements in combination
with a sensitivity measure to determine the main influencing
factors on FRAP recovery curves to significantly improve
their interpretation and analysis.
SIMULATIONS AND SENSITIVITY ANALYSIS

To determine possible influencing factors of FRAP experi-
ments, we use a simulation framework of such experiments
as well as a strategy to quantitatively determine the impact
of each of these factors.

We start out by describing our general setup of FRAP
simulations. Subsequent to the verification of the simulator,
we investigate the impact of different experimental and
analytical aspects of a FRAP experiment. To gain a quanti-
tative measure, we apply a sensitivity method allowing a
direct comparison of various influencing factors on the
output of a FRAP experiment.
Simulations

FRAP data reflect intracellular spatio-temporal processes.
The mathematical description of these processes necessi-
tates partial differential equations (PDEs). Such PDEs
consist of four different components:

1. Spatio-temporal processes.
2. Initial conditions.
3. Boundary conditions.
4. The feasible domain.

Therefore, our FRAP simulator integrates:

Processes

The most important intracellular molecular processes that
have to be addressed are movement and interaction. Our
simulator considers reaction and diffusion. Although advec-
tion would be a special case covered by our simulation
framework, it was not further investigated.

Initial conditions

In general, the initial condition describes the characteristics
of the modeled system at time step t ¼ 0. Specifically, for
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FRAP simulations, the experimentally observed fluores-
cence distribution immediately after bleaching has to be
approximated. Different types of such approximations are
considered.

Boundary conditions

The boundary condition specifies the behavior of the
modeled system at the boundaries of the geometries.
Regarding fluorescent particles, the boundary condition
specifies, e.g., a possible passage over a membrane.

Geometry of the feasible domain

The cellular space in which the experiment is performed has
to be taken into account. Corresponding geometries can be
simplified, or real cell geometries can be used.

The explicit system of PDEs for (S þ 1) diffusing and
reactively coupled compounds Bi is given in Eq. 1, where
DBi

, koni , and koffi are the diffusion coefficients and the asso-
ciation and dissociation rate of the compound Bi, respec-
tively. The initial as well as the boundary conditions have
to be chosen corresponding to the application examples
given in Mai et al. (18):

dcB0

dt
¼ DB0

V2cB0
� kon1cB0

þ koff1cB1
; (1a)

dcBi 2
dt
¼ DBi

V cBi
þ konicBi�1

� kofficBi
� koniþ1

cBi

þ koffiþ1
cBiþ1

; i ¼ 1.S� 1;
(1b)

dcBS 2
dt
¼ DBS

V cBS
þ konScBS�1

� koffScBS
: (1c)

The detailed specifications of the implementation of

the above-mentioned processes and methods can be found
in the Supporting Material, including excerpts of the
source code.
Numerical implementation

We employed Monte Carlo simulations to solve our numer-
ical models and define their realizations as particles,
although they do not have a spatial dimension. The advan-
tage of these Monte Carlo simulations is that only the
boundaries of the simulation domain (in our case plasma
or nuclear membrane) have to be discretized, and no mesh
of the whole domain has to be generated.

Discretization

To assure comparability of the simulation results we chose a
standardized simulations setup.

Simulations were performed using 1000 time steps,
10,000 particles, and a time discretization of Dt ¼ 0.005.
To achieve a smooth recovery curve, 10 simulations per
model and parameter set were averaged. These averaged



FIGURE 1 Analysis of simulation accuracy. Relative error between

FRAP simulations and analytical solutions. Each subplot shows the error

at each simulated time step using 10 different parameter sets. (A) Simula-

tion of two reactively coupled particle fractions, one diffusing and the other

one immobile. (B) Both reactively coupled particle fractions are diffusing.
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curves were then compared with either the analytical solu-
tions or, where applicable, the simulation results.

Simulations of two reactively coupled, diffusing particle
types were performed. Parameter ranges for reaction and
diffusion were chosen corresponding to the literature (18–
20) and can be found in Table 1.

The overall number of simulations depended on the
amount of parameters studied and was set according to the
Morris method (see Section S2.3 in the Supporting
Material).

Code verification

The performance of all algorithms implemented for the
particle-based simulations had to be confirmed. Therefore,
we employed analytical solutions of reaction-diffusion
problems as described in Mai et al. (18) and compared
them with simulations of such experiments under the same
conditions used for calculating the analytical solutions.
The models used include multiple diffusion and reaction
schemes (see Section S3 in the Supporting Material).

We demonstrate exemplarily the results for two different
model types:

1. Diffusion of only one fraction of reactively coupled
particles while the other fraction is immobile; and

2. Diffusion of both particle fractions (Fig. 1).

The initial bleaching profile applied corresponds to the
adapted constant initial condition (see Section S3.1 in the
Supporting Material). For both models an analytical solu-
tion has been described previously (18).
Sensitivity analysis

The results of simulations using the previously described
implementations, are strongly dependent on the parameter-
ization of the processes, i.e., the result will change by vari-
ation of diffusion coefficients or the simulation domain. The
following section will describe the elementary effects-based
TABLE 1 Reaction-diffusion parameter values and ranges

D1 D2 kon koff

IA 10 1 0.5 0.5

IB [5, 10] [0, 5] [0.001, 1] [0.001, 1]

IIA1 10 1 0.5 0.5

IIA2 10 1 0.5 0.5

IIB1 [5, 10] [0, 5] [0.001, 1] [0.001, 1]

IIB2 [5, 10] [0, 5] [0.001, 1] [0.001, 1]

IIIA1 10 1 0.3 0.05

IIIA2 10 1 0.3 0.05

IIIA3 10 1 0.3 0.05

IIIA4 10 1 0.3 0.05

IIIB [5, 10] [0, 5] [0.001, 1] [0.001, 1]

Reaction-diffusion parameter values and ranges used for Monte Carlo sim-

ulations. Two reactively coupled, diffusing particle types are simulated. The

diffusion coefficients are D1 and D2 whereas the reaction is determined by

the association and dissociation rates kon and koff, respectively.
method we used to quantify these changes allowing for a
comparability of parameter impacts.

In general, an elementary effect is the change of the
model output given by adjusting one parameter whereas
all others kept constant. It is defined as

EEi ¼ Mðp1; p2;.; piþD;.; pNÞ�Mðp1; p2;.; pi;.; pNÞ
D

;

(2)

where EEi is the elementary effect of the ith parameter,M is

the model dependent on the N parameters p1,.,pN, and D is
the change of the ith parameter. The parameters have to be
scaled to the unit interval [0,1], because the scaling of the
parameter to true values is already a part of the model.
Therefore, D will also range between 0 and 1.

To obtain the elementary effect of a certain parameter i,
the EEi has to be calculated for K different parameter con-
stellations to assure a mean effect of this parameter i. An
overall number of 2NK parameter sets would be necessary
to estimate the elementary effect of the N parameters based
on K single samples (NK reference sets and NK sets with
adjusted parameter values). In turn, 2NK model runs are
needed to calculate the elementary effects. To reduce the
number of parameter sets and therefore the number of model
runs, an efficient way to sample is the use of K parameter
trajectories.

A parameter trajectory is generated as follows:

(A) A permutation of the vector m ¼ (1,2,.,N) is calcu-
lated;

(B) A random, initial parameter set p(0) is generated;
(C1) The second parameter set p(1) is determined by p(0),

with the parameter corresponding to the first entry of
m adjusted;
Biophysical Journal 104(9) 2089–2097
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(C2) The next parameter set p(2) is determined by p(1), with
the parameter corresponding to the second entry of m
adjusted; and

(CN) The last parameter set of the trajectory p(N) is deter-
mined by p(N�1), with the parameter corresponding
to the last entry of m adjusted.

By using this parameter sampling strategy, the number of
parameter sets in use is reduced from 2NK to (Nþ 1) K. This
design was suggested by Morris (16).

For generating the trajectories, a MATLAB (Ver. 2012a,
The MathWorks, Natick, MA) code was employed from
the MATLAB Toolbox (21).

The proper elementary effect per parameter is calculated
subsequently based on K single values. Because the mean of
the values mi may prove misleading due to cancellation of
effects (22), it is suggested to use the mean of the absolute
single values,

m�
i ¼ 1

K

XK

j¼ 1

���EEðjÞ
i

���; (3)

where K is the number of trajectories and EEi
(j) is the
elementary effect of parameter i within the jth trajectory,
and mi* is the sensitivity measure of the ith parameter.

We used K ¼ 20N trajectories in all of our elementary
effect studies. Therefore, the total number of parameter
sets equals 20N (N þ 1).
ANALYSIS OF FRAP MODELING AND
ACQUISITION

The performance of the simulations was tested successfully
against our recently described analytical solution of the
FRAP recovery curve (18). In all simulations performed
the relative error between simulation and analytical solution
was randomly distributed around zero and below 0.5% (see
Fig. 1), demonstrating the reliable performance of the im-
plemented algorithms. The same was observed for all other
models (described in Mai et al. (18)), reaction schemes,
initial conditions, and parameter sets (data not shown).

Because modeling assumptions are often only simplifica-
tions of the reality, we determined the impact of variations
in these assumptions by varying corresponding model
parameters. The model parameters were adapted by using
the Morris method. The elementary effects were then calcu-
lated to gain a sensitivity measure.

The following three conditions were investigated in
detail:

1. Initial condition. What is the most appropriate model
description for the fluorescence distribution immediately
after the bleach? We addressed the question which of the
simplified initial distributions describes the Gaussian
profile best, and whether this simplification can be gener-
alized (i.e., for arbitrary reaction diffusion parameters).
Biophysical Journal 104(9) 2089–2097
2. Boundary condition. Do we need to restrict movement
possibilities of the fluorophores in our models? To study
this issue in more detail, we investigated the influence of
the chosen boundary condition on the parameter inver-
sion outcome.

3. Geometry. It seems likely that the geometry of the
bleached compartment has a considerable impact on
inverted parameters. As a generalized approach, we
sampled the whole parameter space using real cell geom-
etries as a bleaching compartment.

Other factors are also known to influence the analysis and
acquisition of FRAP data (23–28). Two of these cases
considering normal diffusion, while neglecting sub- or
superdiffusion and the simplification of three-dimensional
processes by two-dimensional projections, were investi-
gated in addition to Conditions 1–3. Corresponding results
can be found in the Supporting Material. In contrast to the
simplification of anomalous diffusion we employed, many
studies have investigated the influence of internal bound-
aries in a more explicit way by using geometries of real
cellular structures extracted from microscopy or tomogra-
phy data (25,26,29). In this study, we focus on the general
impact of sub- and superdiffusion. Whereas our approach
can also be extended to determine the impact of real cellular
boundaries, the simplified strategy will yield a reliable
approximation of the general impact of heterogeneous
environments.

Using FRAP simulations, we aim to identify the most
influential (i.e., sensitive) factors on the outcome of a
FRAP experiment. These results are essential for an opti-
mized experimental setup and for assessing whether deter-
mined reaction diffusion parameters are reliable.
Influence of initial distribution inside
the bleaching spot

The bleaching spot profile observed directly after bleaching
corresponds to a Gaussian distribution, which cannot be
described analytically in most cases. Nevertheless, methods
have been described of how to adapt the initial Gaussian
condition to make calculating an analytical solution
possible. The initial fluorescence intensity profile in the
bleaching spot is simplified either by a constant or adjusted
constant (19) bleaching profile, or, in the most simplified
way, the initial fluorescence intensity (I0) is considered to
be I0 ¼ 0 (10). We investigated whether these different
initial conditions (ICs) are an appropriate approximation
of the initial fluorescence distribution.

We started by using the specific parameter set IA (Tables 1
and 2) for the comparison of three different initial condi-
tions as depicted in Fig. 2. These values were used to adjust
the initial value q and the radius R (see the Supporting
Material for a detailed description). Simulations with
these particular parameters led to a recovery adequately



TABLE 2 Experimental parameter values and ranges

Bleaching spot

(a, s, r0) or (q, r)

Position spot

(d, R) or (dM) b

IA 0.8, 1.2, 1 — —

IB [0.1, 0.9], [0.1, 2], [0.5, 2.5] — —

IIA1 0.1, 2 1.8, 4 0

IIA2 0.1, 2 1.8, 4 1

IIB1 [0.1, 0.9], [0.1, 0.9] [0, 3], [4, 10] [0, 1]

IIB2 [0.55, 0.71], [1.74, 2.18] [0, 3], [4, 10] [0, 1]

IIIA1 0.1, 1 14.23 0

IIIA2 0.1, 1 8.64 0

IIIA3 0.1, 1 12.69 0

IIIA4 0.1, 1 6.05 0

IIIB [0.55, 0.71], [1.74, 2.18] [7.5, 14.25] 0

Experimental parameter values and ranges used for Monte Carlo simula-

tions. For bleaching profile, either a Gaussian distribution is chosen

(bleaching level a, standard deviation s, and radius r0) or an adjusted con-

stant profile (bleaching level q and adjusted radius r) is chosen. The position

of the bleaching spot is specified by the distance between the center of the

bleaching spot and a circular compartment d and a radius R of this circular

compartment or a mean (average) distance to a complex compartment

geometry dM. The kind of boundary condition is set by b.
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approximating the curve of the Gaussian IC only if an
adjusted constant initial value q (adapted radius R) were
used, while the constant IC led to pronounced discrepancies
between the recovery curves (Fig. 2). To prove that these
results are not only valid for this specific parameter set,
the elementary effects were calculated for all the reaction-
diffusion and experimental setup parameters (parameter
ranges used for simulation are IB; see Tables 1 and 2).

A total of 1120 (¼ 20 N(Nþ 1)) parameter sets were used
to simulate FRAP curves considering all four different ICs
(Gaussian profile, zero initial profile, constant profile, and
adjusted constant profile). The elementary effects were
calculated as differences to the Gaussian IC and were
used to identify the parameters responsible for the deviation.
The results as depicted in Fig. 3 show that the adjusted con-
stant IC performs best over the whole parameter range, sug-
gesting that it represents the most appropriate simplification
of the initial bleaching profile. The elementary effects of the
other two ICs are significantly larger for all parameters
investigated.

Interestingly, the most sensitive parameters of the
adjusted constant IC are the experimental parameters a
and s describing the characteristics of the Gaussian profile
(i.e., depth a and variance s). Consequently, it should be
taking care of a comparable bleaching profile over all
FRAP experiments analyzed.

Our simulations showed that an adjusted constant IC with
the corresponding analytical solution is an appropriate
approximation of the initial Gaussian distribution.
Influence of boundary condition

In typical FRAP models, the bleached compartment is
considered to be infinite, allowing the observed molecules
to distribute evenly across all membranes (boundary). This
flow boundary condition usually does not apply to real
cellular environments.

That the boundary condition indeed has an impact on the
model outcome has already been shown (12,30) for selected
parameter sets. However, to determine whether this is a gen-
eral effect over different parameter ranges, we performed
simulations using different boundary conditions and deter-
mined their effect on the parameter inversion outcome.

We started by running simulations with specific param-
eter sets IIA1 and IIA2 (Tables 1 and 2) in an artificial
FIGURE 2 Influence of different types of initial

condition (IC). (A–C) Bleaching spot profiles.

(D–F) Initial distribution of bleached particles.

(A and D) Constant IC. (B and E) Adjusted con-

stant IC. (C and F) Gaussian IC using parameter

set (IA), and (G) resulting FRAP recovery curves.

Biophysical Journal 104(9) 2089–2097



FIGURE 3 Influence of different parameters on mean absolute error

between Gaussian IC versus simplified ICs. Elementary effects m* of reac-

tion-diffusion parameters (D1, D2, kon, koff) and the experimental setup

(depth a and variance s of Gaussian profile and radius of spot r0) using

parameter ranges (IB).
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FIGURE 4 Influence of the chosen boundary condition on the FRAP re-

covery curve. Results are shown for simulations in a circular geometry with

a bleaching spot positioned at the edge of the domain. (A, upper panel) Dis-

tributions of bleached particles considering a no-flow boundary are depicted

(parameter set IIA1). (B, lower panel) Here, the no-flow boundary condition

was omitted (parameter set IIA2). (C) Corresponding recovery curves.
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geometry. A circular geometry, exemplifying an arbitrary
membrane enclosed cellular structure, was used as a simula-
tion domain with either a flow boundary condition (b ¼ 1;
i.e., particles are allowed to cross the membrane without
hindrance), or with a no-flow boundary condition (b ¼ 0;
i.e., the particles are restricted to the membrane enclosed
domain).

The final distribution of particles simulated and the result-
ing averaged recovery curves are depicted in Fig. 4. It seems
obvious that the simulations using this specific parameter set
attach great importance to the boundary condition chosen.

The elementary effects were determined to assess
whether or not this is a general outcome. All simulations
were run employing the adjusted initial condition as we
showed it to be the most appropriate approximation of the
Gaussian profile. The parameter ranges used for the Monte
Carlo simulations are IIB1 (Tables 1 and 2).

A total of 1800 (¼ 20 N (Nþ 1)) parameter sets were used
to simulate the according FRAP curves and calculate the
elementary effects based on the absolute distance between
two recovery curves. The results as shown in Fig. 5 (black
bars) are particularly interesting in two aspects: The most
sensitive factors are q and r describing the initial profile
while b, the parameter characterizing the probability of par-
ticles crossing a boundary, is highly insensitive.

We wondered whether the insensitivity of b might be due
to the broad range for q and r chosen for the previous
elementary effect analysis. We already learned while study-
ing the influence on the initial condition that the initial
profile should be kept constant during the experiments.
Therefore, we restricted the range of q and r to values ob-
tained in real FRAP experiments (AhR-GFP bleached
within the cytoplasm of Hepa-1c1c7 cells; see parameter
ranges IIB2 in Tables 1 and 2). Simulations were run again
Biophysical Journal 104(9) 2089–2097
with 1800 parameter sets where only the values of q and r
were adapted according to the restricted parameter ranges.
Simulation results are depicted in Fig. 5 (gray bars).
Limiting the parameter ranges of q and r has no effect on
the elementary effect of b.

Although our initial simulation using a single specific
parameter set alleges an important role of the boundary con-
dition chosen, our global analysis of arbitrary and experi-
mental parameter ranges disproves this observation. In
conclusion, these findings suggest that the boundary condi-
tion chosen has only a marginal effect on the inverted reac-
tion diffusion parameters. Furthermore, inversion of a fast
diffusion coefficient (D1) is highly unreliable, because the
experimental parameters (q and r) are more sensitive and
therefore have an even greater impact on the FRAP recovery
curve than the parameter of interest. The goal would be to
decrease the ranges of the experimental parameters until
their elementary effect is lower than that of each reaction-
diffusion parameter.
Influence of bleaching spot position

In a setup similar to that described above for the boundary
condition, the significance of the bleaching spot position
for the FRAP recovery outcome was assessed. A cyto-
plasmic geometry was reconstructed from microscopy



FIGURE 5 Effect of boundary condition. Elementary effects m* of

reaction-diffusion parameters (D1, D2, kon, koff) and experimental setup:

depth q and adjusted radius r of bleaching spot, distance between center

compartment and center spot d, radius R of circular compartment and prob-

ability allowing particles crossing the membrane b (parameter ranges IIB1
and IIB2).
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images using NeuRA2 (31,32) and simulations were per-
formed at four different bleaching spot positions using
400 time steps to simulate 20 time units (Fig. 6 A). Recov-
eries of two different fractions of particles were examined
using the parameterization IIIA (Tables 1 and 2).

To find a reference recovery curve for comparison, we
studied the particle distribution within the geometry at the
simulated time steps (see the Supporting Material). A homo-
geneous distribution of particles was only observed for
the central position of the bleaching spot (Fig. 6, Spot 1).
Therefore, the corresponding recovery curve was set as a
reference.

In these four examples, an influence of the bleaching spot
position on the recovery curve is only apparent in regions of
hindered diffusion (Fig. 6, Spots 2 and 4). Interestingly, a
position next to the boundary of the geometry where the
diffusion can take place unhindered to at least one half-
plane (Fig. 6, Spot 3) has only a negligible influence on
the recovery curve. We can then conclude that bleaching
spots should not be positioned in regions like the cell
edge, where protrusions could restrict the diffusion.
To prove that these observations are true not only for the
single specific setup just presented but for the whole param-
eter range, the elementary effects were determined. Our
previous results made obvious that the variations in ex-
perimental parameters should be minimized. Therefore,
simulations were performed with limited, experimentally
deduced, parameter ranges for r and q (parameter ranges
IIIB, Tables 1 and 2) to reliably assess the sensitivity of
the reaction-diffusion parameters related to the bleaching
spot position.

To address the relative position of the bleaching spot to
the compartment boundary, we introduce a new parameter
dM, which represents the mean distance to the periphery.
The value dM is calculated as the mean length of 60 line seg-
ments from the bleaching spot center to the geometry
boundary. This distance measure yields small values for
positions in protrusions of a geometry and comparatively
large values for those near a half-plane (Fig. 6, Spot 3)
and in the center of the geometry (Fig. 6, Spot 1). The dis-
tribution of the distance-measure dM within the cytoplasmic
geometry can be found in the Supporting Material. The
parameter dM was varied in a range according to its distribu-
tion. A total of 1120 parameter sets (¼ 20 N (N þ 1)) were
used to simulate the according FRAP curves and calculate
the elementary effects based on the absolute distance
between two curves.

The analysis showed that dM does have a significant
impact on the recovery—one that is even higher than that
of the other experimental parameters (q, r). Because the
sensitivity of a parameter is directly related to the corre-
sponding parameter range, limiting this range increases
parameter certainty (see Section S3.2 in the Supporting
Material). Therefore, the variation of dM has to be narrowed
to achieve the overall goal of a reliable parameter inversion
for diffusion and reaction processes. Although this seems
hard to accomplish, large variations of dM can only appear
if spot positions in diverse parts of the geometry are used
for the bleaching experiments. Performing the experiments
in comparable regions of the geometry is particularly impor-
tant, as it is hard to calculate the uncertainty (i.e., parameter
range) of this parameter in retrospect; information about the
relative position of the bleaching spot and the cellular
boundaries is limited.
FIGURE 6 Influence of the bleaching spot

location on the FRAP recovery. (A) Cytoplasmic

geometry with four different positions of the

bleaching spot. (B) Simulation results (recovery

curves; parameter sets IIIA).

Biophysical Journal 104(9) 2089–2097



FIGURE 7 Effect of bleaching spot position. Elementary effects m* of

reaction-diffusion parameters (D1, D2, kon, koff) and experimental setup

(depth q and adjusted radius r of bleaching spot as well as median distance

dM of bleaching spot center to compartment’s boundary) in real geometry

(parameter ranges IIIB).
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DISCUSSION

Intracellular reaction-diffusion parameters are commonly
inverted from FRAP data. Although performing such exper-
iments is facilitated by implementation of FRAP acquisi-
tion tools on commercially available microscopes, some
aspects still have to be considered. Either the experimental
setup or the subsequent analysis can contribute to
misleading data interpretation, which has already been
shown by several groups (19,23–26,30). All these studies
focused on specific parameter sets. However, we propose
a global approach employing Monte Carlo-based reaction-
diffusion simulations coupled with a sensitivity measure
based on elementary effects. Calculating elementary
effects allows us to deduce the general influence of a
parameter, obviating a bias by choosing a nonrepresentative
parameter set.

The initial condition (IC), i.e., the initial fluorescence dis-
tribution characterized by the depth and the width of the
Gaussian profile, was identified as a main influencing factor
on the shape of the recovery curve. Variations in this initial
distribution led to an uncertainty in reaction-diffusion
parameter inversion. This issue can be addressed first of
all by using identical settings in a set of FRAP experiments,
which is usually taking care of. However, even accurate
data acquisition can lead to diverse bleaching profiles.
Concluding from our study an a posteriori outlier selection
would be advisable to assure the comparability of the initial
fluorescence distribution.

Because an analytical solution is not available for a
Gaussian initial profile, parameter inversion models rely
on an approximated IC. Our comparison showed that the
adjusted constant IC is not only an adequate approximation
of the Gaussian profile but also outperformed all other
available ICs.

Although in cellular systems various mechanisms of
membrane transport exist (i.e., boundary conditions of the
system), analytical models used for parameter inversion of
FRAP data only consider unhindered membrane passage.
Unexpectedly, variations in transport mechanism indeed
only had a minor impact on the recovery curve, indicating
that such models can be used for data analysis without
concern.

Cellular geometries can be very diverse with respect to
the domain available for an unhindered diffusion. Therefore,
positioning of the bleaching spot might have an consider-
able impact on the FRAP recovery. Our simulations showed
that only in exceptional cases, like bleaching in cell edge
protrusions, the spot position has a perceivable influence.
Nevertheless, such positions should be avoided during
data acquisition—especially because it is not possible to
retrace the position of the bleaching spot relative to the
compartment geometry from the generated imaging data.
Hence, an a posteriori outlier selection cannot be performed
as proposed for the initial distribution. Neglecting a priori
Biophysical Journal 104(9) 2089–2097
considerations for bleaching spot positioning would in-
crease the parameter uncertainty.

Overall, the parameters describing the initial bleaching
profile, i.e., the bleaching efficiency and the size of the
bleached region, were among the most sensitive factors in
all cases investigated (Fig. 7). This underlines the impor-
tance of a consistent experimental setup together with an a
posteriori selection of inconsistent measurements. Apart
from these experimental aspects, a bleaching spot position
avoiding cell protrusions is recommended. Surprisingly,
our study showed that an exact knowledge of the underlying
membrane transport mechanisms is not essential for an
accurate data analysis.

In conclusion, our work shows that elementary effects
are a valuable tool in assessing parameter influences. We
demonstrate that using only specific parameter sets can
lead to contradictory results compared to the global elemen-
tary effects. Therefore, conducting a sensitivity analysis is
highly valuable not only in studying FRAP data but also
in studying intracellular processes in general.
SUPPORTING MATERIAL

Additional Information on Implementation of Reaction, Diffusion, Initial,

and Boundary Conditions as well as Influence of bleaching spot position,

Sub-/Super-Diffusion, and Projection Errors of 3D Processes are

available at http://www.biophysj.org/biophysj/supplemental/S0006-

3495(13)00375-5.
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