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Summary

To perform their specific functional role, B and T lymphocytes, cells of

the adaptive immune system of jawed vertebrates, need to express one

(and, preferably, only one) form of antigen receptor, i.e. the immunoglob-

ulin or T-cell receptor (TCR), respectively. This end goal depends initially

on a series of DNA cis-rearrangement events between randomly chosen

units from separate clusters of V, D (at some immunoglobulin and TCR

loci) and J gene segments, a biomolecular process collectively referred to

as V(D)J recombination. V(D)J recombination takes place in immature T

and B cells and relies on the so-called RAG nuclease, a site-specific DNA

cleavage apparatus that corresponds to the lymphoid-specific moiety of

the VDJ recombinase. At the genome level, this recombinase’s mission

presents substantial biochemical challenges. These relate to the huge dis-

tance between (some of) the gene segments that it eventually rearranges

and the need to achieve cell-lineage-restricted and developmentally

ordered routines with at times, mono-allelic versus bi-allelic discrimina-

tion. The entire process must be completed without any recombination

errors, instigators of chromosome instability, translocation and, poten-

tially, tumorigenesis. As expected, such a precisely choreographed and yet

potentially risky process demands sophisticated controls; epigenetics dem-

onstrates what is possible when calling upon its many facets. In this vign-

ette, we will recall the evidence that almost from the start appeared to

link the two topics, V(D)J recombination and epigenetics, before review-

ing the latest advances in our knowledge of this joint venture.

Keywords: allelic exclusion; chromatin; epigenetics; immunoglobulin;

T-cell receptor; V(D)J recombination.

Introduction; a short trip back in (adaptive)
immunological time

Antigen receptor gene rearrangement and epigenetics are

two indisputably complementary phenomena. Discovered

in the mid-1970s1 and later known as V(D)J recombina-

tion,2,3 the former is the somatic process that reshuffles

and joins together – generally in a random and imprecise

manner – two or three pieces of DNA (V and J segments,

or V, D and J segments) from immunoglobulin genes (in

developing B lymphocytes) or T-cell receptor (TCR)

genes (in developing T lymphocytes), to achieve vast rep-

ertoires of custom-made immunoglobulin and TCRs and

thereby afford adaptive immunity. Over the years, system-

atic studies to untangle the many mysteries of V(D)J

recombination and its sophisticated controls (see below)
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have led to numerous exciting new findings, including in

the early 1990s the discovery of the Recombination Acti-

vating Genes 1 and 2 (RAG1 and RAG2), two adjacent

lymphoid-specific genes that code for the core compo-

nents of the long-sought VDJ recombinase (reviewed in

ref. 4). Extensively covered in this Focus Issue, epigenetics

conversely keeps out of all things involving the revision

of germline DNA, at least so it would first seem. In short,

this idiom refers to the functionally relevant modifica-

tions of, and heritable traits conveyed by the genome – in

particular by the chromatin and nucleosome building

block – which orchestrate regulated changes in gene

expression and in cellular phenotype, yet do not involve

the alteration of the underlying primary DNA sequence

(e.g. ref. 5). Though coined relatively long ago,6 this field

truly exploded during the past decade with a maintained

exponential growth thanks to technical breakthroughs

allowing depiction and interrogation at the genome scale

of the so-called epigenetic code, i.e. the dynamic chromo-

somal marks and structural features that carry the epige-

netic information. Indeed, it has now become clear that a

bulk of molecular procedures (and associated enzymatic

factors thereof) have an epigenetic impact that is cell-type

specific and developmentally regulated. These include

DNA methylation and demethylation,7,8 the active

(energy-consuming) disruption or displacement of posi-

tioned nucleosomes, the exchange of nucleosomal hi-

stones and a variety of biochemical modifications of

histone N-terminal tails,9–13 as well as diverse forms of

non-coding transcription14,15 and three-dimensional (3D)

organization of the genomic material through chromatin

folding and long-range interaction via DNA looping.16,17

Over the years, many of these procedures were shown to

also have an impact on V(D)J recombination.

It did not take long before V(D)J recombination and

epigenetics met. A few years after the discovery of immu-

noglobulin gene recombination in B lymphocytes,1,18 and

the subsequent description of sequential rearrangements

of B-cell antigen receptor genes [i.e. immunoglobulin

heavy (H) chain gene rearrangement preceding immuno-

globulin light (L) chain gene rearrangement; and, within

the IgH locus, DH-to-JH rearrangement preceding VH-to-

DJH rearrangement19,20 (and see below)] two types of

seminal observations were reported by Alt’s group. First,

unrearranged endogenous VH gene segments are

expressed in a developmentally controlled and tissue-spe-

cific manner, with unrearranged VH expression being lim-

ited to the very early stages of B-lymphocyte

differentiation and most prominent in cells undergoing

VH-to-DJH rearrangement.21 Second, exogenous immuno-

globulin and TCR gene segments rearrange equally well

when introduced as plasmid substrates into an immature,

pre-B-cell line in which endogenous immunoglobulin

genes, but not TCR genes, rearrange with substrate

recombination enhanced by transcription of a flanking

selectable gene.22,23 Based on these observations, these

authors formulated the so-called accessibility hypothesis

whereby the accessibility of a locus to a unique VDJ re-

combinase determines the choice of the antigen receptor

gene that will recombine, with chromatin structure antici-

pated as a key determinant of accessibility.24 Since then,

evidence has accumulated in support of the accessibility

hypothesis, to a ‘no doubt about it’ general agreement.

Modern epigenetics has enlightened molecular features

that could confidently distinguish between accessible and

inaccessible immunoglobulin/TCR loci. What is more,

epigenetics appears to play an even broader role in V(D)J

recombination than originally anticipated, impinging not

only on the direct recruitment of the RAG nuclease to

discrete rearranging loci but also on its catalytic activity;

and probably, through some of the molecular procedures

mentioned above, also on the 3D organization of the

actively recombining chromosome with important impli-

cations for the generation of antigen receptor immune

repertoires.

V(D)J recombination, basic features

A succinct description of the molecular and mechanistic

aspects of V(D)J recombination is provided below.

Detailed reviews on these various aspects can be found

elsewhere.25–27

Overall, seven distinct gene loci are normally sub-

jected to V(D)J recombination, including three immu-

noglobulin genes (IgH, IgLj and IgLk), and four TCR

genes (TCRa, TCRb, TCRd and TCRc) two of which

(TCRa and TCRd) are intermingled on the same chro-

mosome. The assembly of IgH, TCRb and TCRd genes

is achieved from separate sets of V, D and J gene seg-

ments, whereas that of IgLj, Iglk, TCRa and TCRc
genes uses V and J gene segments only. Unrearranged

segments are flanked on their rearranging end(s) by

conserved recombination signal sequences (RSSs), which

represent direct targets for the RAG nuclease. Within a

given locus, V(D)J recombination is initiated following

RAG binding (assisted by high mobility group proteins)

to and synapsis of pairs of compatible gene segments,

i.e. segments that are flanked by dissymmetric RSSs in

which evolutionarily conserved 7-base-pair (bp) (hept-

amer) and 9-bp (nonamer) sequences are separated by

either 12 or 23 bp of less-conserved sequences. [Note:

Subsequent biochemical studies on RAG-mediated RSS

cleavage in vitro in fact provided evidence of a two-step

orchestrated ‘capture’ model of RSS synapsis involving

RAG binding to a first RSS before capturing a fitting

partner.28,29 Moreover, based on the detection of initial

cleavage mostly occurring at 12RSSs in vivo, a ‘12RSS

binding first’ model was proposed.30 However, further

investigations have questioned such a universal scenario

because – depending on the locus considered – prefer-
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ential RAG binding to either 12RSS-associated or

23RSS-associated clusters is equally observed.31].

Of note, though theoretically 12/23 compatible, the

direct joining of some gene segments such as for instance

the Vb (23RSS) and Jb (12RSS) segments, is in fact pro-

hibited. Termed beyond (B)12/23, this additional con-

straint is enforced during the V(D)J recombination

reaction itself, with implications on the ordered assembly

of TCRb genes in T-cell development.32

Once brought closer together, RSSs of the paired seg-

ments are precisely cleaved by the RAG nuclease at their

boundary with the coding sequences to make double-

strand breaks. The neighbouring coding DNA is con-

verted to a hairpin during breakage. Broken ends are then

processed and joined with the help of ubiquitously

expressed DNA repair factors, including members of the

non-homologous end joining pathway (the DNA-depen-

dent protein kinase and the Ku, Artemis, DNA ligase IV,

Cernunnos/XLF and Xrcc4 proteins) and, possibly, his-

tone H2AX and the Mre11/Rad50/Nbs1 complex.33,34 The

resulting signal joint (SJ) and coding joint (CJ) products

present different structures, with the former correspond-

ing to the back-to-back fusion of RSS heptamers and the

latter possibly displaying sequence variability at DNA

junctions because of nucleotide deletion and non-tem-

plated nucleotide addition. V(D)J rearrangement main-

tains a correct reading frame in roughly one-third of

cases – ‘out-of-frame’ types of CJ accounting for the

remaining two-thirds – yielding one productive rear-

rangement (one that enables production of potentially

functional immunoglobulin or TCR chains) for every

three attempts on average. Importantly, concurrent analy-

sis of the biochemistry of the RAG proteins provided evi-

dence that these factors are also capable of transposing

RSS-ended fragments into new DNA sites. Such a parallel

activity helps to explain the mechanism of RAG action

and supports proposals that, unexpectedly, V(D)J recom-

bination has evolved from an ancient mobile DNA ele-

ment.35,36 The importance of the role of VDJ

recombinase was further highlighted when misrepair of

DNA double-strand breaks produced at immunoglobulin

and TCR loci was implicated in the pathogenesis of lym-

phoid malignancies in humans and in mice (reviewed in

ref. 37; also see ref. 38).

Regulated controls of V(D)J recombination

Schematically, three levels of control appear to constrain

the activity of the VDJ recombinase. As mentioned above,

V(D)J recombination is accurately coordinated to the

cell-lineage and developmental stage of differentiating

lymphocytes. Hence, immunoglobulin gene complete

rearrangements occur in early B lymphocytes whereas

TCR gene rearrangements occur in early T lymphocytes.

Within the B-cell lineage, IgH genes rearrange first, fol-

lowed by IgL genes; likewise, within the T lineage, TCRb
genes rearrange first followed by TCRa genes. Moreover,

IgH and TCRb genes also achieve ordered recombination

each beginning with a D-to-J rearrangement before being

completed by the appendage of a V gene segment to the

pre-formed DJ complex. Finally, at some antigen receptor

gene loci including the IgH, IgLj and TCRb loci, V(D)J

recombination appears also to be regulated in the context

of allelic exclusion. This phenomenon – whereby antigen

receptor chains are eventually encoded on only one of

two opposite alleles – ensures the specificity of the

immune response depending on antigenic selection of

discrete clones of B or T cells, each restricted to expres-

sion of a homogeneous set of immunoglobulin receptors

or TCR, respectively (the clonal selection theory39). In

these cases, the prevailing, so-called regulated model of

allelic exclusion proposes that antigen receptor V gene

assembly proceeds one allele at a time and that protein

products from a functionally relevant rearrangement (one

that encodes IgH, IgLj or TCRb chains that can contrib-

ute to, respectively, the pre-B or B-cell receptors, or the

pre-TCRs40,41) mediate allelic exclusion through feedback

inhibition of further rearrangement at the corresponding

locus. The accessibility hypothesis originally formulated

to interpret cell-lineage and developmental stage specifici-

ties of V(D)J recombination was extended to the regula-

tion of allelic exclusion assuming in particular that

feedback inhibition down-modulates the accessibility of

the remaining allele. Because allelically excluded B and T

cells generally display DJ rearrangement on, respectively,

the two IgH or the two TCRb alleles and a functional

VDJ rearrangement on only one of these, it is thought

that down-modulation of the accessibility in the context

of allelic exclusion would essentially impinge on V gene

segments, at least at the IgH and TCRb loci.42,43

Accessibility hypothesis: first principles and
consolidation

Despite its elegance, the accessibility hypothesis – with a

lack of an identified recombinase – for a while remained

purely hypothetical, although it was endorsed by strong

and evocative correlations (i.e. DNA and chromatin fea-

tures that mimicked those accompanying gene expression

or silencing). Indeed, V(D)J rearranging substrates or

endogenous clusters of gene segments were found to gen-

erally display hypomethylation of scattered CpG dinucleo-

tides and hypersensitivity to DNase and restriction

endonucleases in contrast to the hypermethylation and

hyposensitivity exhibited by their non-rearranging control

counterparts. Furthermore, immunoglobulin and TCR

loci undergoing V(D)J recombination commonly over-

lapped, in a lineage-specific and developmentally regu-

lated way, with transcriptionally active domains

comprised of unrearranged gene segments (hence the
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term germ-line transcription) – though it remained

uncertain whether transcription induces or is merely a

by-product of locus accessibility.24 More recently, germ-

line transcription was updated, especially where heading

in the opposite direction is concerned: within the IgH

locus, B-cell developmentally regulated DH-JH antisense

intergenic transcripts and VH antisense intergenic tran-

scripts, each appeared to be sequentially produced before

DH-to-JH recombination and during the transition from

DJH-to-VHDJH recombination, respectively; and were like-

wise hypothesized to remodel the corresponding domains

for V(D)J recombination.44,45

The accessibility hypothesis predicts the existence of

accessibility control elements (ACE) at the distinct anti-

gen receptor loci, that would be required to promote V

(D)J recombination. Because of the widespread associa-

tion of V(D)J recombination with germline transcription,

it was anticipated that ACE would be connected to the

control of the latter process. This prediction was first ver-

ified using mouse transgenesis, which demonstrated that

transcriptional enhancer elements act to make a linked

antigen receptor gene minilocus accessible to VDJ recom-

binase,46–49 a role that subsequent studies confirmed for

most endogenous immunoglobulin and TCR locus enhan-

cer elements through gene-targeted mutation in mouse

embryonic stem cells.50 In addition to enhancers, such

mouse knockout studies also identified endogenous

immunoglobulin and TCR transcriptional promoters as

potential ACEs. Generally speaking, enhancer mutation

led to inhibition of V(D)J recombination on a whole-

locus scale, whereas promoter mutation had a more lim-

ited regional impact;51–55 however, both resulted in chro-

matin remodelling as evidenced by changes in epigenetic

marking.56,57 In line with these results, targeted gene

mutation of transcription factors or chromatin-modifying

factors, known to bind immunoglobulin and TCR ACEs,

generally affected, though to varying degrees, V(D)J

recombination at the corresponding loci.58–62

Finally, that cell type-specific chromatin structure

indeed determines the targeting of VDJ recombinase was

elegantly demonstrated by Schlissel’s group.63 Using an in

vitro system, these authors analysed RAG nuclease-medi-

ated cleavage of RSSs flanking immunoglobulin and TCR

gene segments in cell nuclei. They found that both the

lineage-specificity and temporal ordering of gene rear-

rangement is reflected in the accessibility of RSSs within

chromatin to in vitro cleavage, so definitively quietening

any scepticism that remained about the accessibility

hypothesis.

Accessibility hypothesis: the modern age

With chromatin officially holding centre stage, the time

came to ascertain the molecular features that distinguish

RAG accessible and inaccessible immunoglobulin and

TCR loci. This was made possible by the opportunely and

newly developed technical approach chromatin immuno-

precipitation (ChIP), which uses antibodies raised against,

in particular, specific activating or suppressing histone

modifications followed by PCR amplification to accu-

rately locate the given mark within the genome (ChIP-

PCR). [Note: Later, interrogation of genomic location

also used microarray hybridization or deep-sequencing of

amplified ChIP DNA: referred to as (ChIP-chip) and

(ChIP-seq), respectively.]

Available immunoglobulin/TCR enhancer or promoter

mouse mutants also provided invaluable sources of lym-

phoid cell nuclei for these studies. Overall, none too sur-

prisingly, the immunoglobulin and TCR accessible loci

were found to be enriched in epigenetic marks commonly

associated with gene activation [including histone H3/H4

acetylation (H3ac; H4ac); di-/tri-methylation of Lys 4 of

histone H3 (H3K4me2/me3)]; whereas the inaccessible

loci were mostly decorated with epigenetic marks associ-

ated with gene silencing [including di-/tri-methylation

of Lys 9 or Lys 27 of histone H3 (H3K9me2 and

H3K27me3, respectively)].64–69 Interestingly, hotspots of

specific activating marks (H3K4me2/me3) or of marks

differentially affected by enhancer mutations, for example,

were identified, which may represent discrete domains

perhaps important in, respectively, primary recruitment

of the RAG nuclease,65,66 and the hierarchical establish-

ment of locus-specific, chromosomal accessibility.65,69

At this point, epigenetic ChIP-based analyses were also

combined with further genetic manipulations of the

mouse genome (gene knockin) to intentionally modulate

accessibility and V(D)J recombination at discrete antigen

receptor loci, with the aim of challenging the molecular

connection between and improving our mechanistic

understanding of the two processes. Hence, remarkably,

targeting the histone methyl transferase enzyme G9a

(mediating H3K9 methylation) to chromosomal recombi-

nation substrates containing functional ACEs induced

revisions in the local chromatin environment, over-rode

the ACEs’ function, and crippled V(D)J recombination of

linked chromosomal gene segments.70 Moreover, intro-

ducing a transcription terminator into the 5′ end of the

mouse TCR-Ja locus to block transcriptional elongation

effectively suppressed chromatin remodelling and Va-to-
Ja recombination of 3′ adjacent Ja segments.71 Altogether,

these and other studies yielded results compatible with a

scenario in which epigenetic chromatin modifications

introduced during transcriptional elongation of antigen

receptor genes might recruit chromatin remodelling com-

plexes that displace or remodel nucleosomes positioned

over RSSs (and thereby increase RSS accessibility to RAG

proteins) or might even recruit the RAG nuclease itself,

as further discussed below.

RAG2 contains a non-canonical plant homeodomain

finger in a part of the protein that is dispensable for
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RAG-mediated DNA cleavage in vitro (RAG2 non-core

region).72,73 In a number of proteins associated with epi-

genetic regulation, a similar domain specifically binds

H3K4me2 or H3K4me3. Two groups, led respectively by

M.A. Oettinger and S. Desiderio, have shown that this

non-canonical plant homeodomain finger mediates direct

binding of RAG2 to H3K4me2 and (preferentially)

H3K4me3.74,75 The functional significance of the latter

interaction was demonstrated by showing that, in vivo,

(i) mutations in the plant homeodomain finger that abol-

ished H3K4me3 recognition severely impaired V(D)J

recombination, and (ii) DNA binding and recombination

depended on the amount of H3K4me3 deposition. There-

fore, recognition of the post-translational H3K4me3 epi-

genetic mark by RAG2 appears critical to V(D)J

recombination. Strikingly, this may not be confined to a

function in recombinase recruitment only. Indeed, build-

ing on these previous findings, biochemical investigations

further indicated that recognition of H3K4me3 by RAG2

also stimulates the catalytic activity of the RAG nucle-

ase;76,77 and, possibly, stabilizes the newly excised recom-

bination ends within the RAG post-cleavage complex and

their transfer to the non-homologous end joining repair

machinery.78

In this context, what about in vivo binding of the RAG

nuclease to RSS-containing domains of endogenous anti-

gen receptor loci? This issue was beautifully addressed by

Schatz’s group who used transgenic mice expressing an

active site mutant RAG1 protein that binds DNA nor-

mally (and interacts with RAG2) but lacks catalytic activ-

ity, so avoiding the formation of recombination products

that could complicate the interpretation of ChIP data at

immunoglobulin and TCR loci. They demonstrated that

RAG protein binding occurs in a focal manner to small

regions rich in activating histone modifications (H3Ac,

H3K4me3), which they referred to as ‘recombination cen-

tres’.31 Notably, these comprised regions encompassing

Igj and TCRa J gene segments and IgH and TCRb J and

J-proximal D gene segments. Interestingly, while RAG1

binds mostly to RSS-containing regions, RAG2 binds

broadly to H3K4me-rich sequences throughout the mouse

genome. A later study using mutant TCRa and TCRb
alleles found that enhancers control RAG1 binding glob-

ally at Ja or Db-Jb gene segments, and that promoters

direct RAG1 binding locally, a profile that recapitulates

the V(D)J recombinational function of these ACEs

defined in previous knockout studies.79 Overall, ‘recombi-

nation centres’ were interpreted as specialized sites of

high local RAG concentration that facilitate RSS binding

and synapsis and help to regulate recombination order

and fidelity.80 Indeed, recent analysis of DJH-recombined

alleles provided evidence that DJH junctions are selectively

epigenetically marked and bind RAG proteins, thereby

probably permitting DJH-5′ intact RSSs to initiate the sec-

ond step of IgH gene assembly.81

Accessibility in 3D

At several immunoglobulin and TCR loci, RSS synapsis

poses a real challenge as V, D (or DJ), and J gene seg-

ments may be located far apart [> 1–2 Megabases (Mb)]

on the chromosome. A variety of studies have implicated

conformational changes of such loci as important deter-

minants of long-distance V(D)J recombination events. 3D

fluorescence in situ hybridization analyses have revealed

large-scale compaction of immunoglobulin and TCR loci,

which is developmentally regulated and therefore assumed

to punctually facilitate the synapsis of distant RSSs.82–85

For example, the IgH locus looks compacted in pro-B

cells undergoing VH-to-DJH rearrangement; whereas such

compaction is released in the subsequent pre-B stage,

forcing the physical separation of the distal VH genes

from the proximal IgH domain at a stage where further

IgH rearrangement is prevented.83 A detailed analysis of

the topography of the IgH locus in pro-B cells predicted

that the entire locus is organized into dynamic compart-

ments containing clusters of loops with VH regions juxta-

posed to the DH elements, mechanistically permitting

long-range genomic interactions to occur.86

The molecular features that may be responsible for the

developmental regulation of immunoglobulin/TCR locus

compaction/de-compaction are on the verge of disclosure.

We know that IgH compaction depends on the transcrip-

tion factors Pax5, Ikaros and YY1.87–89 Moreover, puta-

tive regulatory sequences of conserved repeat elements

with a potential role in these processes were recently dis-

covered in the distal V gene cluster of the IgH locus.90

These ‘PAIR’ elements are bound by Pax-5 specifically in

pro-B cells and subjected to Pax-5-dependent antisense

transcription. They also recruit the transcription factors

E2A and CTCF throughout B-cell development. Lately,

the CTCF zinc finger protein and its partner, the protein

complex cohesin, have attracted attention as potentially

important players in the regulation of V(D)J recombina-

tion at several immunoglobulin and TCR loci, through

the shaping of DNA looping interactions and their contri-

bution to lineage-specific and developmentally ordered

accessibility and germline non-coding transcription.91–98

Last but not least, detailed analysis (using RNA deep-

sequencing) of germline non-coding transcription

throughout the IgH locus has indicated that the majority

of antisense transcripts localize around a limited number

of PAIR elements; and provided evidence that this partic-

ular activity might affect the 3D chromosomal structure,

bringing the distal part of the VH locus close to the

domain comprising the rearranged DJH and adjacent

enhancer El.99 The overall emerging picture would be

that of chromosomal ‘rosettes’ folding the dispersed VH

gene segments around a core domain bound by the re-

combinase, so creating opportunities for VH-to-DJH rear-

rangement; with nascent non-coding transcription
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possibly facilitating locus compaction and the formation

of macromolecular structures that serve as transcription

and recombination factories99–101 (Fig. 1a).

The control of allelic exclusion: deterministic
versus stochastic

One overarching aim of 3D conformation analyses of

immunoglobulin and TCR loci is a better understanding

of the molecular rules that enforce allelic exclusion, a still

puzzling phenomenon. It appears that allelic exclusion

impinges on the assembly of V gene segments, and com-

prises an initiation phase to dissociate V-to-(D)J rear-

rangements on the two opposite alleles, followed by a

maintenance phase to prohibit these events once a func-

tional V(D)J joint has been made.42,43 In this respect, it is

ostensibly appealing to consider the reversible contraction

and subnuclear compartmentalization processes affecting

the IgH/IgLj and TCRβ loci in, respectively, developing

pro-/pre-B and pro/pre-T cells as key regulatory main-

springs that enforce allelic exclusion (at least and most

obviously during the maintenance phase).82–84 However,

rather than mere locus compaction, the primary impor-

tance in enforcing allelic exclusion, at least at the IgH

locus, may be that the V and D domains remain func-

tionally separate, perhaps achieved through the insulator/

DNA looping activity of CTCF–cohesin complexes.93,102

Separate studies have suggested additional mechanisms

that could possibly also contribute to inducing or main-

taining allelic dissociation, including (i) monoallelic

epigenetic changes that may occur even before rearrange-

ment (as reflected for example by asynchronous immuno-

globulin and TCR locus replication103,104), and would

eventually dispatch the two differentially packaged alleles
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Figure 1. Dynamic combination of deterministic and stochastic features enforces allelic exclusion at V-D-J containing gene loci. (a) Illustration

of a V-DJ recombination factory as proposed by Lucas et al. (Curr Opin Cell Biol 2011;23:318–24). The diagram illustrates rosette-like structures

at an antigen receptor allele that would bring remote V gene segments in proximity to a cis-linked, RAG-loaded DJ-recombined intermediate

product. At homologous alleles, stochastic proceeding of V-to-DJ recombination is assumed to mostly contribute to the V-D-J assembly time of

the given locus [illustrated by the dark brown sections in (b)]. (b) Schematic depiction of stochastic modelling of DNA rearrangement at V-D-J

containing antigen receptor alleles based on the Markov process formalism, as described by Farcot et al. (J Immunol 2010;185:1622–32). The

recombination window defines the time period along developmental maturation of a single lymphoid cell during which all requirements for

sequential rearrangements (including epigenetics) could be met (hence during which recombination of the given locus could occur). The blue,

brown and red sections represent the time course of mono-allelic behaviours in a collection of individual single cells from, respectively, (i) the

transition from germline (GL) to DJ-rearranged (DJ) allelic statuses, (ii) the transition from DJ-rearranged to VDJ-rearranged (VDJ) allelic sta-

tuses, and (iii) the residence of productively rearranged (VDJ+) alleles [or of non-productively rearranged (VDJ�) alleles; depicted in light brown

in the upper right diagram of part (c)] till the recombination window comes to an end. Transition times τDJ and τVDJ correspond to the time

lapses required in the particular case to achieve steps (i) and (ii), respectively; τf corresponds to the time lapse required to achieve feedback inhi-

bition (red bar). (c) Statistical compilation of biallelic behaviours and their contribution to the VDJ+/DJ, VDJ�/VDJ+, VDJ+/VDJ+ and VDJ+/GL

final genomic distribution. The probabilistic curves (Prob) for the τDJ, τVDJ, and τf parameters are shown on the top, with the locations of the

mean values indicated (sDJ ; sVDJ ; sf ).
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towards either the centre of the nucleus (active allele) or

heterochromatin compartments (silenced allele);105,106

(ii) pairing of homologous alleles and, following a RAG-

induced DNA break on one of them, ATM-dependent

repositioning of the other to pericentromeric heterochro-

matin;107 and (iii) discrimination between productive and

non-productive alleles through differential stability of

their mRNA products with a suppressive effect of the

remaining stable mRNA on V(D)J recombination.108

Contrary to such deterministic procedures, however, alle-

lic dissociation in V-to-(D)J joining was also proposed to

simply rely on the stochastic accessibility of only a small

fraction of alleles, as the result of either a high frequency

interaction with repressive nuclear compartments includ-

ing the nuclear lamina and pericentromeric heterochro-

matin,109 or, in a non-mutually exclusive manner,

variegated transcriptional activation.110

The control of allelic exclusion: deterministic,
stochastic and dynamic

Neither a purely deterministic nor a purely stochastic rep-

resentation alone sufficiently accounts for allelic exclu-

sion. Distinct from strictly mono-allelic, deterministic

gene expression systems such as X chromosome inactiva-

tion or gene imprinting, allelic exclusion is a ‘faulty’

developmental process with a low but sizeable fraction of

the emerging lymphoid cells being allelically included that

display productive rearrangements on, e.g. the two IgH

or TCRb alleles.43 [Note: It is now clear that multiple

mechanisms function in a successive manner to limit the

frequency of cells with surface expression of immuno-

globulin or TCR chains from productive rearrangement

at both allelic copies of the corresponding loci, which

depending on the locus considered may vary from 1 to

10% (ref. 43 and references therein)].

On the other hand, highly stochastic scenarios are hard

to reconcile with the relatively high proportion (40–45%)

of cells displaying fully rearranged, productive and non-

productive, IgH or TCRb alleles. Using TCRb allelic

exclusion as a reference system, we proposed that a

dynamic combination of the two concepts, determinism

and stochasticity – as modelled using the Markov chain

formalism, better accounts for the distribution of TCRb
genotypes emerging from early T-cell development;111

(Fig. 1b,c). The deterministic features would simply

include the basic attribute of randomness in V(D)J

recombination (one-third productive / two-thirds non-

productive rearrangement outcomes) and, with regards to

TCRb gene recombination, the sequential Db-Jb and Vb-
DJb rearrangements with no direct Vb-Jb joining (B12/23

constraint), followed by and ending with feedback inhibi-

tion. Molecular changeovers are characterized by transi-

tion rates that are expressed in terms of the mean

duration of a given rearrangement step and the average

time lapse to achieve inhibition, respectively. At the single

cell level, however, stochasticity relies on temporal varia-

tions in the execution of these changes (in other words,

noise), both between cells (extrinsic noise) and alleles

(intrinsic noise), with epigenetics likely occupying the

front stage. It is increasingly recognized that cell fate deci-

sions and underlying genetic circuits are subjected to such

stochastic fluctuations to generate non-genetic cellular

diversity; with, in mammals, intrinsic noise in gene

expression mainly depending on epigenetic-regulated

chromatin changes.112,113 When integrated at the level of

a whole cell-population, this model makes it possible to

readily predict the distinct TCRb cell genotypes and alle-

lic exclusion/inclusion profiles from wild-type and mutant

mice.111 In keeping with the same concepts, we anticipate

that corresponding features at other gene loci could like-

wise be interpreted. Indeed, within the transcription and

recombination factories evoked above, VH-to-DJH recom-

bination might putatively proceed by way of dynamic and

stochastic interactions involving on the one hand the VH

domain-folded ‘rosettes’ and on the other hand the inner

RAG-loaded loci comprising the DJH intermediate CJ

products, respectively.99–101

Conclusions

The long-standing joint venture between V(D)J recombi-

nation and epigenetics tells a win–win story. Epigenetics

has already contributed to ascertaining and clarifying the

regulated recruitment of a common recombinase to RSS

substrates that vary according to modulated changes in

gene accessibility. Deeper examination of these controls

has also offered a unique insight into the epigenetic mul-

tifaceted potential to promoting accurate interconnection

between widely separated gene partners within an intri-

cate chromosomal landscape. The application of increas-

ingly sophisticated genomic approaches to investigate

these issues should continue to disclose as yet unforeseen

biological resources that enforce the V(D)J recombina-

tion–epigenetics partnership. Mathematical modelling

based on the dynamics of epigenetic-driven changes allied

to (by nature) randomness in V(D)J recombination out-

comes may concur and uncover the true intricacy of reg-

ulatory controls on such as allelic exclusion. Advances

could also arise from the investigation of apparently con-

flicting results such as those regarding the generation of

the TCRa repertoire as analysed by fluorescence in situ

hybridization in single cells or deep-sequencing from

whole ab T-cell populations, which either suggested a co-

ordinate bidirectional trimming mechanism that relies on

the proximity of Va and Ja gene segments or the forma-

tion of intralocus loops whereby all Va gene segments

have equal opportunity to recombine.85,114 More gener-

ally, the development of elaborate tools to improve our

understanding of V(D)J recombination events,115 or the
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structural organization of immunoglobulin/TCR chromo-

somal DNA,111,116,117 may shed more light on individual

differences118 in immune repertoire development.
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