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Summary

DNA methylation and histone modifications are central to epigenetic gene

regulation, which has been shown to play a crucial role in development.

Epigenetics has often been discussed in the context of the maintenance of

cell identity because of the heritable nature of gene expression status.

Indeed, crucial roles of the epigenetic machinery in establishment and

maintenance of particular lineages during early development have been

well documented. However, unexpected observation of a developmental

plasticity retained in mature T lymphocytes, in particular in CD4+ T-cell

subsets, by recent studies is accelerating studies that focus on roles of

each epigenetic pathway in cell fate decisions of T lymphocytes. Here, we

focus on the repressive epigenetic machinery, i.e. DNA methylation, his-

tone deacetylation, H3K9 methylation and Polycomb repressive com-

plexes, and briefly review the studies examining the role of these

mechanisms during T-lymphocyte differentiation. We also discuss the cur-

rent challenges faced when analysing the function of the epigenetic

machinery and potential directions to overcome the problems.

Keywords: epigenetics; gene repression; lineage decision; T lymphocytes.

Introduction

Cell fate determination, or lineage commitment, which is

often initiated by exposure to developmental cues, accom-

panies both up-regulation of genes specific for one line-

age and down-regulation of genes associated with other

lineages. Hence, nuclear machinery that is involved in

activation or repression of genes constitutes an integral

part of lineage commitment. In the last decade, it has

become clearer that epigenetic mechanisms play major

roles in both activation and repression processes.

Epigenetic mechanisms act through two major sub-

strates, DNA and histones. In higher eukaryotes, DNA

can be methylated at cytosine mainly in the context of

CpG dinucleotide sequences, producing 5-methylcytosine

(5mC), the accumulation of which at promoter regions is

often associated with the repressive state of gene loci as

well as its stable maintenance, known as gene silencing.1

De novo DNA methylation is mediated through the

Dnmt3-class of methyltransferases,2,3 whereas mainte-

nance of a pre-existing methylation pattern during DNA

replication is catalysed by Dnmt1.4 5mC is recognized by

methyl DNA binding proteins through specific peptide

modules such as MBD (methyl-CpG binding domain) or

triple-zinc-finger motif.5 It is now becoming apparent

that 5mC is not an unchanging modification as it was

once thought to be; it can be de-methylated through

active processes. Recently, TET-family proteins were iden-

tified as enzymes that convert 5mC to 5-hydroxymethyl-

cytosine (5hmC),6,7 and further to 5-formylcytosine (5fC)

and 5-carboxylcytosine (5caC)8,9 through consecutive oxi-

dation reactions. It is also hypothesized that these oxi-

dized products can be reverted to cytosine through the

base excision repair pathway.10 The biological function of
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5hmC, 5fC and 5caC still remains to be fully uncovered,

but genome-wide studies suggest a role of 5hmC in both

transcriptional repression and activation,10 potentially

adding further layers to epigenetic regulation mediated by

modifications of the cytosine residues on DNA. Recogni-

tion of methylated DNA is in some cases followed by

recruitment of histone modification enzymes, such as his-

tone deacetylases (HDACs)11–14 and histone methyltrans-

ferase.15

Covalent histone modifications are another means of

epigenetic regulation. Core histones can be modified at

various sites with diverse molecules, which include acety-

lation, methylation, ubiquitination and phosphorylation.

Combinations of these modifications are hypothesized to

function as a ‘histone code’ that is recognized by specific

binding proteins to execute defined down-stream biologi-

cal processes.16,17 However, recent data suggest that the

role of the code may not be limited to recruitment of fac-

tors but may include allosteric regulation of the bound

factors.18 Furthermore, it was noted that DNA and his-

tone modifications act from one to the other in both

directions.19

Many components of epigenetic machinery were ini-

tially identified through genetic screening in Drosophila,

in which developmental abnormalities were used as an

indicator. Hence, there is no question that the epigenetic

machinery plays crucial roles in determining the cell fate

in multi-cellular organisms, and T-lymphocyte develop-

ment would not be the exception. T lymphocytes develop

in the thymus, and thymocyte progenitors give rise to

several distinct T-cell subsets under various differentiation

conditions, and the key transcription factors required for

the differentiation of each subset have been identified

(Fig. 1). Not surprisingly, these key transcription factors

are shown to interact with various molecules involved in

epigenetic regulation (Table 1). In the table, we only

listed the regulators that were shown to interact directly

with the transcription factors. Hence, the list will further

expand if it includes indirect association through co-fac-

tors. These multi-molecular interactions between tran-

scription factors and epigenetic modifiers further

strengthen the idea that epigenetic gene regulation is an

integral part of establishing lineage-specific transcriptional

programmes during T-lymphocyte differentiation. Below,

we present an overview of two different types of approach

that were aimed at exploring this idea.

Approaches from cis-regulatory elements in
the genes

In lineage decision, the expression or repression of key

transcription factors exclusively determines a cell fate in

many cases. Hence, studying the epigenetic regulation of

genes encoding such factors can provide deeper insights

into the role of the epigenetic machinery in lineage

choices. In this regard, the Thpok gene (also known as

Zbtb7b gene) encoding the master regulator of CD4+

helper T-cell development20,21 has served as an ideal

model for such a study, and the regulatory mechanisms

of its expression are being extensively studied. The

helper-lineage-specific expression of the Thpok gene is

regulated by a silencer element located upstream of the

distal promoter.22,23 Removal of this silencer element can

direct all post-selected thymocytes into the CD8+ cyto-

toxic lineage regardless of their MHC specificity through

uncontrolled de-repression of ThPOK. Epigenetically, the

Thpok locus is in a ‘bivalent’ state, i.e. co-localization of

activation-associated tri-methylated histone H3 Lys4
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Figure 1. Differentiation of T-cell subsets and the key transcription

factors. Signals that induce differentiation are shown on the arrows,

whereas the key transcription factor for each lineage is shown below

the each subset. DP, double-positive; IFN-c, interferon-c; IL-12,

interleukin-12; RA, retinoic acid; TCR, T-cell receptor; Tfh, folicular

helper T; TGF-b, transforming growth factor-b; Th, T helper; Treg,

regulatory T.

Table 1. The key transcription factors for T-cell subsets and their

interacting epigenetic regulators

Cell

subset

Key transcription

factor Interacting epigenetic regulators

CD4+ ThPOK p300,71 HDAC3,4,572

CD8+ Runx HDAC1, 2, 3,53,73,74 Bmi1,53

Suv39h1,73–75

p300,76 MLL,53 MBD353

Th1 T-bet CBP/p300,77 Set7/9,78 Jmjd379

Th2 Gata3 HDAC3, 5,77 HDAC4,80 Bmi160

Th17 RORct p30081

Treg Foxp3 p300,35 SIRT135

Tfh Bcl6 p300,82 HDAC2,82 HDAC4,5,783
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(H3K4me3) mark and repression-associated tri-methylat-

ed histone H3 Lys27 (H3K27me3) mark, in the

CD4+ CD8+ double-positive thymocytes24 (H. Tanaka,

T.N. and I.T., manuscript submitted). As a consequence

of helper versus cytotoxic lineage choice, this bivalent

state resolves to H3K4me3-only or H3K27me3-only status

in CD4+ and CD8+ cells, respectively. Importantly, an

increase or attenuation of the silencer activity alters

the H3K4me3/H3K27me3 ratio at the Thpok locus (H. Ta-

naka, T.N. and I.T., manuscript submitted). So it is con-

ceivable that the expression of Thpok gene is under

epigenetic control.

There is also evidence for the involvement of repressive

epigenetic machinery in the regulation of other lineage-

determining genes. For instance, the Foxp3 locus has a

conserved non-coding sequence that is differentially

methylated between natural regulatory T (Treg) cells and

induced Treg or naive CD4+ T cells.25 The demethylation

at this region correlates well with stable Foxp3 expression,

and thereby stable Treg cell identity.26 In the Gata3 locus,

a distal promoter region is covered by H3K27me3 and

polycomb complexes in naive CD4+ T cells, which express

the Gata3 gene at a modest level. Upon differentiation

toward the T helper type 2 (Th2) subset, H3K4me3 and

Menin–trithorax complex take over H3K27me3 and Poly-

comb complexes, and induce a concomitant increase in

Gata3 expression level.27 These observations strongly sup-

port the idea that epigenetic changes from a repressive

state into an active one play a crucial role in regulating

cell fate decisions.

Approaches from trans-acting factors that
regulate epigenetic modifications

Another approach complementary to the one described

above is to knock out constituent(s) of the epigenetic

machinery and examine the resulting effect on T-cell dif-

ferentiation and function. As covering all the molecules

listed in Table 1 is beyond the scope and space of this

article, we focus on the epigenetic machinery involved in

gene repression and discuss how perturbation of parts of

it affects T-lymphocyte differentiation and function.

DNA methylation

Dnmt1 is a DNA cytosine methyltransferase that recog-

nizes a hemi-methylated DNA and introduces methyl-

groups on the unmethylated strand.4 Given this conserva-

tive mode of DNA methylation, Dnmt1 is often called the

‘maintenance methylase’. Germline knockout of Dnmt1

causes embryonic lethality.28 To investigate its role in T-

cell differentiation and function, an experimental system

that enables T-cell-specific Dnmt1 inactivation was cre-

ated using the Cre/LoxP system. Dnmt1 deletion in the

early stage of T-cell differentiation using the Lck-Cre

transgene resulted in reduced cell survival.29 Although the

Dnmt1-deficiency did not significantly influence thymo-

cyte differentiation including CD4 versus CD8 lineage

choice, the number of cd T cells was increased, the

majority of which were atypical CD8+ cd T cells. In the

mutant using a Cd4-Cre transgene, which acts slightly

later than Lck-Cre at the transition stage from late DN4

to double-positive thymocytes, a decrease in the number

of CD44hi memory T cells in both CD4+ and CD8+ sub-

sets as well as increased cytokine mRNA expression from

activated T cells were observed.29 Repression of Th2 cyto-

kine (i.e. Il4) genes was reversed in both CD4+ and CD8+

T cells. Similarly, expression of the Th1 cytokine inter-

feron-c (IFN-c) was increased in the absence of Dnmt1.

However, analyses of the cytokine level after exposure to

Th1- or Th2-polarizing conditions indicated that DNA

methylation would determine the basal level of expression

but not the responsiveness to a specific cue.30 Addition-

ally, loss of Dnmt1 did not significantly affect the expres-

sion of T-bet and Gata3,30,31 the key transcription factors

required for Th1 and Th2 cell differentiation, respectively,

nor the cytotoxic lineage-affiliated genes,30 suggesting that

the deregulated production of high amounts of cytokines

is a result of the loss of direct repressive regulation of

these cytokine genes by Dnmt1 rather than an indirect

secondary effect via impairment in the lineage choice.

The knockout of a methyl-DNA binding protein, MBD2,

shows a similar phenotype to that of Dnmt1. MBD2 knock-

out mice did not show any significant developmental arrest

during T-lymphocyte development.32 However Mbd2�/

� CD4+ T cells produced higher levels of IFN-c and inter-

leukin-4 (IL-4) in both Th1- and Th2-skewing conditions

compared with wild-type cells. MBD2 regulates Il4 by

directly competing with Gata3 protein at the key regulatory

regions in the Il4 gene, such as CNS-1 and an intronic

enhancer. Similar to Dnmt1 knockout, increased IL-4 pro-

duction was not accompanied by an increase of Gata3

mRNA, again suggesting that the observed effect might not

be the result of a lineage diversion.

Histone acetylation

Histone acetylation is associated with active transcription,

whereas deacetylation is associated with transcriptional

repression, and deacetylases, e.g. members of the HDAC

family proteins, are found in many co-repressor com-

plexes. SIRT1, which belongs to the Sirtuin family pro-

teins, is an NAD-dependent deacetylase of histones as

well as other proteins, and is considered to be a sensor of

metabolic state.33 T-cell-specific Sirt1 deletion, using

either Cd4-Cre or Foxp3-Cre, did not affect the differenti-

ation of conventional T cells and Foxp3+ Treg cells.34

However, SIRT1 deficiency caused an increase in Foxp3

expression level at both mRNA and protein levels in Treg

cells, thereby resulting in enhanced immune suppression
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in mice. This is consistent with the previous report that

SIRT1 destabilizes Foxp3 by directly deacetylating FoxP3

itself.35 Hence SIRT1 is likely to tune Treg cell functions

by regulating the amount of FoxP3.

H3K9 methylation

Suv39h1 is the first histone methyltransferase identi-

fied,36 and is responsible for tri-methylation of histone

H3 Lys9 residue (H3K9me3),37,38 which in turn recruits

heterochromatin protein 1 (HP1)39,40 to mediate gene

repression. The major role of Suv39h1 has been linked

to heterochromatin maintenance,41 but there is also evi-

dence that it regulates euchromatic gene expression as

well. Suv39h1 knockout mice did not have an apparent

defect in thymocyte differentiation and Th1/Th2 differ-

entiation in primary culture. However, when Th2 cells

were re-stimulated under Th1 conditions, substantial

expression of Th1-associated molecules, IFN-c and T-

bet, was observed.42 In those Suv39h1-deficient cells,

there was a decrease in H3K9me3 depositions at vari-

ous Ifng regulatory regions, and an increase in the acet-

ylation of histone H3 Lys9 (H3K9ac) at those regions

as well as the promoter of the Tbx21 gene, which

encodes T-bet. Given a reported interaction between

Suv39h1 and HDAC1/2,43 this increase in H3K9ac levels

may be explained in part by the loss of HDAC1/2

recruitment to these regions. As there was no major

alteration in the chromatin status of other important

Th1 or Th2 signature genes, Suv39h1 seems to be

required specifically for the repression of Ifng and

Tbx21 genes in Th2 cells. In the same report, the

knockout of the Hp1a gene is also described to show a

similar phenotype to that observed in Suv39h1 knock-

out mice,42 consistent with the fact that HP1a binds

not only to H3K9me3, which is created by Suv39h1,

but also to Suv39h1 itself.44

G9a is another H3K9 methyltransferase that preferen-

tially catalyses H3K9 mono-methylation (H3K9me1) and

di-methylation (H3K9me2) in the euchromatic

region.37,38,45,46 Although overall T-lymphocyte differenti-

ation was not altered in the absence of G9a,47,48 G9a

turned out to play a role in regulating cytokine gene

expression during differentiation of effector CD4+ T-cell

subsets.48 The H3K9me2 level was decreased at both Th1

and Th2 cytokine genes in the absence of G9a. Despite

this H3K9me2 reduction, expression levels of Th2 cyto-

kines were reduced in cells that were differentiated under

both neutral and Th2-skewing conditions, whereas IFN-c
production was significantly increased in neutral condi-

tions. Interestingly, a chemical compound that inhibits

methyltransferase activity of G9a did not induce deregu-

lated expression of the above-mentioned cytokines, sug-

gesting a possibility that the catalytic activity of G9a

might be dispensable for regulation of these cytokine loci.

Polycomb complexes

Polycomb group genes were initially identified as genes

that caused homeotic transformation in Drosophila. Fur-

ther genetic and biochemical characterization showed

that Polycomb group proteins are repressors of gene

expression and exert their function by forming two dis-

tinct protein complexes, namely Polycomb repressive

complex (PRC) 1 and PRC2. The core components of

Drosophila PRC1 are Polycomb, Posterior sex comb,

polyhomeotic and RING1.49 In mammals there are two

or more homologues for each of these subunits.

Through its chromodomain-containing subunit, PRC1

can be recruited to tri-methylated histone H3 Lys27

(H3K27me3), which is catalysed by PRC2.50 However,

there is evidence indicating that PRC1 can function

independently of PRC2/H3K27me3.51–53 Another impor-

tant biochemical function of PRC1 is to mono-ubiquiti-

nate histone H2A Lys119.54,55 This reaction is catalysed

by the Ring1B subunit, a mammalian homologue of

dRING1,55,56 and is considered to be important for

gene repression. T-cell-specific deletion of Ring1b did

not apparently affect thymocyte differentiation.57 How-

ever, a decrease in Th2 cytokine production was

observed in Ring1B-deficient Th2 cells, in which Gata3

protein, but not Gata3 mRNA, was decreased. This

suggests that direct regulation of Gata3 by Ring1B

might not be responsible for the observed lower pro-

duction of Th2 cytokines. Also, Ring1B-deficient Th2

cells were more susceptible to apoptotic cell death, in

part because of elevated expression of pro-apoptotic

factor Bim.57 The lower Th2 cytokine production and

higher susceptibility for apoptosis result in attenuated

Th2-type responses, and so antigen-induced allergic air-

way inflammation was reduced in the Ring1b�/�

mouse.

Mel-18 is also a subunit of PRC1 and possesses a Ring-

finger domain. Mel-18 inactivation resulted in impaired

Th2 cytokine production and Gata3 expression under

Th2 conditions. The defect was rescued by introducing

Gata3, demonstrating that impaired Th2 cytokine pro-

duction is mainly a result of decreased Gata3 expres-

sion.58 Bmi-1 is another subunit of PRC1, and is

structurally similar to Mel-18. It is proposed that Bmi-1

and Mel-18 are present in highly similar but distinct

PRC1 sub-complexes.59 Bmi-1 over-expression led to an

enhancement of Th2 cytokine production in a RING-fin-

ger domain-dependent manner. Conversely, Bmi1�/�

CD4+ T cells were deficient in Th2 cytokine production

with a concomitant increase in Th1 cells. Given a putative

role of Bmi-1 in stabilizing Gata3 protein by direct inter-

action,60 impaired Th2 cell differentiation in Bmi-1�/�

mice might be attributed, to some extent, to the instabil-

ity of Gata3 protein. It is intriguing that Ring1B/Mel-18

and Bmi-1 play different roles in Th2 cytokine produc-
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tion, one through transcriptional and the other through

post-translational regulation of Gata3, despite their struc-

tural similarities. Also, it is worth noting that the Ring1B

and Mel-18 are likely to regulate the Gata3 gene in differ-

ent ways despite the fact that these factors could be in

the same complex.

Polycomb repressive complex 2 is another Polycomb

complex, which catalyses H3K27 di-methylation (H3K27

me2) and tri-methylation (H3K27me3). Ezh2, a SET-

domain containing protein, is a known catalytic subunit

of PRC2.50,61–63 T-cell-specific inactivation of Ezh2 at

double-positive thymocyte stage did not cause appreciable

lineage skewing to either helper or cytotoxic lineage.64

However, the H3K27me3 level was not significantly chan-

ged, possibly because of the stability of the H3K27me3

mark or compensation by Ezh1, an Ezh2 homologue.

Ezh2 deletion at the thymocyte progenitor stage caused a

severe developmental arrest at CD4� CD8� double-nega-

tive stage, which was probably the result of defective pre-

TCR signalling caused by impaired actin polymerization.

This study suggests a difficulty in examining the function

of PRC2 in epigenetic regulation during T-lymphocyte

differentiation because of its putative role in regulating

TCR signalling, which is critical for both T-lymphocyte

differentiation and function, besides its involvement in

H3K27 methylation.

Current challenges and future directions

As described above, gene knockout approaches have so far

provided insights into the roles of the epigenetic machinery

in regulating lineage choice and later in lineage mainte-

nance during T-lymphocyte development. Despite an

assumption of dramatic effects because of their global roles

in gene regulation, a lack of one factor does not result in an

apparent developmental arrest or severe lineage skewing in

most cases. It is likely that this reflects redundant functions

among related factors and pathways, which in turn secure

robustness in regulating lineage-specific gene programmes.

The majority of the factors described above have at least

one homologue or functionally similar molecule, which

may compensate and mask the true impact of a single

ablated repressive pathway. In addition, there is an alterna-

tive possibility that co-activators and co-repressors

recruited directly by transcription factors are sufficient to

guide cells to their appropriate lineages. If that is the case,

what is the role of the epigenetic machinery in lineage

determination? One possibility is that it fine-tunes a

threshold by which to select one lineage, i.e. modifying a

length of time window for lineage commitment. Such a

function has been reported in neurogenesis65 and in vernal-

ization of Arabidopsis.66 Alternatively, epigenetic modifica-

tion might act mainly as a stabilizer of gene programmes

that are established by transcription factor circuits. These

scenarios are not necessarily mutually exclusive.

There are several directions that would further address

the role of epigenetics in lineage choice. First, a conven-

tional and time-consuming, but potentially the most fruit-

ful, approach is to analyse the function of each individual

regulatory element for its role in regulating epigenetic

modifications of key transcription factor loci. This

approach can benefit from the astonishing progress in ge-

nomics and epigenomics, assisted by the mass-sequencing

technique. This technique has enabled us to identify

potential regulatory elements and their putative regulators,

so deducing their complex regulatory networks as exem-

plified by the ENCODE project (see ref. 67 and references

therein). Such genome-wide approaches will provide use-

ful information and generate hypotheses to be further

explored by conventional reverse-genetics approaches.

Currently, several new methods that enable us to identify

proteins associated with regions of interest are

reported.68,69 Although these methods are in their infancy,

they will become powerful tools with which to explore the

epigenomic landscape in coming years as they mature.

Another important challenge is to manipulate specific epi-

genetic modifications at a single-locus level and examine

the outcome. This approach has a precedent,70 and is

becoming more feasible thanks to the advance in zinc-fin-

ger engineering technology. Combining these techniques

will enable us to dissect the molecular events occurring on

the key regulatory elements and to examine the role of

each event in closer detail. Second, extensive and compre-

hensive knockout approaches are also to be considered.

For instance, to overcome the redundancy problem, gener-

ating double-, triple-, or more if necessary, mutant mice

for the related epigenetic factors will bring new insights.

The potential problem of this approach is that these fac-

tors have not only shared functions but also distinct func-

tions in many cases. Hence, interpreting the results from

multiple-mutant mice will need extra caution. So far, most

of the knockout approaches have focused on enzymes that

add epigenetic modifications to their substrates. However,

modification-recognizing or de-modifying factors remain

largely untouched. Hence, targeting and analysing those

factors is another important path to unveil the function of

each modification. Third, it will be important to examine

the stability of a given lineage by challenging the cell iden-

tity, as was performed recently in Suv39h1 mutant mice in

the context of Th1/2 lineages.42 It is possible to further

extend this point by assessing the reprogramming poten-

tial of mutant cells in an assay that examines whether line-

age conversion by ectopic transduction of lineage-

inducing transcription factors is facilitated by the muta-

tion.

Even though the forest of epigenetics is far wider and

deeper than we previously thought, it will become possi-

ble to map every single tree in the forest through the use

of all the tools and resources that we have now and will

have in the future.
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