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Summary

Leukotriene B4 (LTB4) is a neutrophil chemotactic molecule with impor-

tant involvement in the inflammatory responses of chronic obstructive

pulmonary disease (COPD). Airway epithelium is emerging as a regulator

of innate immune responses to a variety of insults including cigarette

smoke, the major risk factor for COPD. In this study we have explored

whether cigarette smoke extracts (CSE) or soluble mediators present in

distal lung fluid samples (mini-bronchoalveolar lavages) from smokers

alter the expression of the LTB4 receptor 2 (BLT2) and peroxisome prolif-

erator-activated receptor-a (PPAR-a) in bronchial epithelial cells. We also

evaluated the effects of CSE on the expression of intercellular adhesion

molecule 1 (ICAM-1) and on the binding of signal transducer and activa-

tor of transcription 1 (STAT-1) to ICAM-1 promoter as well as the

adhesiveness of neutrophils to bronchial epithelial cells. CSE and mini-

bronchoalveolar lavages from smokers increased BLT2 and ICAM-1

expression as well as the adhesiveness of neutrophils to bronchial epithe-

lial cells and decreased PPAR-a expression. CSE induced the activation of

STAT-1 and its binding to ICAM-1 promoter. These findings suggest that,

in bronchial epithelial cells, CSE promote a prevalent induction of

pro-inflammatory BLT2 receptors and activate mechanisms leading to

increased neutrophil adhesion, a mechanism that contributes to airway

neutrophilia and to tissue damage.

Keywords: bronchial epithelial cells; cigarette smoke; chronic obstructive

pulmonary disease; inflammation; leukotriene B4.

Introduction

The airway epithelium plays a role in airway defence

mechanisms by releasing cytoprotective mucus and defen-

sins and exerts an important role in co-ordinating local

inflammation and immune responses through the release

of cytokines and chemokines.1 Leukotriene B4 (LTB4) is a

mediator with important involvement in the inflamma-

tory responses in chronic obstructive pulmonary disease

(COPD).2 Chronic neutrophilic inflammation is observed

in COPD and mediates extensive tissue damage

contributing to organ dysfunction.3 Activated neutrophils

release elastase, a protease that correlates with LTB4,
4 that

actively contributes to generating the lung damage in

COPD patients. Purulent exacerbations in these patients

are related to bacterial infections, and are associated with

further increased neutrophilic inflammation and increased

LTB4 concentrations.
5

Leukotriene B4 is able to interact with two cell-surface

receptors LTB4 receptor 1 (BLT1) and LTB4 receptor 2

Abbreviations: BAL, bronchoalveolar lavages; COPD, chronic obstructive pulmonary disease; CSE, cigarette smoke extracts;
ICAM-1, intercellular adhesion molecule 1; LTB4, leukotriene B4; NF-jB, nuclear factor-jB; PPAR-a, peroxisome proliferator-
activated receptor-a
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(BLT2) and with a nuclear receptor named peroxisome

proliferator-activated receptor-a (PPAR-a). The interac-

tion of LTB4 with the cell-surface receptors induces

LTB4-mediated inflammatory activities while the interac-

tion with PPAR-a induces the catabolism of LTB4 and in

turn limits LTB4-related inflammation.6 We have previ-

ously demonstrated, in a model of pleural inflammation,

that the prevalent activation of pro-inflammatory LTB4
receptors in the presence of an inflammatory milieu may

lead to up-regulation of intercellular adhesion molecule 1

(ICAM-1) and to increased adhesion between neutrophils

and the mesothelium, resulting in neutrophil retention on

the surface of mesothelial cells.7

Although increased expression of BLT1 and of PPAR-a
has been observed in distal airways of patients with

COPD,8 the molecular mechanisms involved in this phe-

nomenon are largely unknown. The aims of the present

study were to test whether cigarette smoke extracts (CSE)

alter the expression of both BLT-2 and PPAR-a and to

assess whether this alteration is the result of a direct effect

of CSE or of the inflammatory responses promoted by

cigarette smoke. The experiments were performed in

bronchial epithelial cells stimulated with CSE or with

mini-bronchoalveolar lavage (BAL) from smokers and the

expression of BLT2 and PPAR-a as well as the neutrophil

–epithelial cell adhesion were assessed.

Materials and methods

Patient population

Smoking subjects (> 15 packs/year) (n = 8) and non-

smoking subjects (n = 4) with acute respiratory failure

upon surgery for abdominal or thoracic aneurysm were

recruited. Patients with X-ray or clinical evidence of sep-

sis or pneumonia at the time of mini-BAL collection were

not included. All recruited subjects required mechanical

ventilation and underwent therapy with antibiotics and

systemic corticosteroids (no significantly different doses

among the patients included in the study). Tissue speci-

mens from central bronchi from smoking (> 15 packs/

year) and from non-smoking subjects were also collected.

The study fulfilled the criteria of the Ethics Committee of

Policlinico-Giaccone Hospital, Palermo and was in agree-

ment with the Helsinki Declaration. Informed written

consent from either the patients or their closest relatives

was obtained.

Mini-BAL collection and processing

Distal lung fluid samples (mini-BALs) were obtained using

bronchoscopic aspirate sampling catheters (Kimberly-

Clark Health Care, West Malling, Kent, UK) within 1 hr

from the intubation.9 The protected catheter was blindly

advanced through the endotracheal tube until it was

wedged into a distal airway and two aliquots of 10 ml

sterile 0�9% NaCl were instilled and gently suctioned

(recovered volume about 70% of the instilled volume).

Mini-BAL samples were filtered through a sterile gauze

and then centrifuged at 300 g for 10 min to separate cells

from supernatants. The supernatants were used for stimu-

lating bronchial epithelial cells.

Immunohistochemistry

Tissue specimens from central bronchi were selected, fixed

with 10% neutral buffered formalin and embedded in par-

affin wax. Three-micrometer tissue sections were attached

to poly-L-lysine-coated microscope slides and, after

dewaxing and rehydration, were stained with haematoxy-

lin and eosin or analysed with immunohistochemistry.

Immunohistochemistry and image analysis were used

to determine BLT2 and PPAR-a expression using rabbit

polyclonal antibodies (Cayman Chemical, Ann Arbor,

MI) in central (internal perimeter > 6 mm) airways.

LSAB2 Dako kit (Code No. K0674) (Dako, Glostrup,

Denmark) and Fuchsin Substrate-Chromogen System

Dako were used for the staining. Non-immune rabbit

(Dako) was used as negative control. The immunoreactiv-

ity was evaluated blindly by two independent investigators

using a Leica (Wetzlar, Germany) microscope 9 400

magnification.

Preparation of cigarette smoke extracts

Commercial cigarettes (Marlboro) were used in this

study. Cigarette smoke solution was prepared as described

previously.10 Each cigarette was smoked for 5 min and

one cigarette was used per 25 ml PBS to generate a CSE-

PBS solution. The CSE solution was filtered through a

0�22-lm pore filter to remove bacteria and large particles.

The smoke solution was then adjusted to pH 7�4 and

used within 30 min of preparation. This solution was

considered to be 100% CSE and was diluted to obtain the

desired concentration in each experiment. The concentra-

tion of CSE was calculated spectrophotometrically mea-

suring the optical density (OD) as previously described11

at a wavelength of 320 nm. The pattern of absorbance

showed very little difference among different batches and

the mean OD of the different batches was 1�37 � 0�16.
The presence of contaminating lipopolysaccharide on

undiluted CSE was assessed by a commercially available

kit (Cambrex Corporation, East Rutherford, NJ) and was

below the detection limit of 0�1 EU/ml.

Bronchial epithelial cell cultures

The human bronchial epithelial SV40 immortalized cell

line 16HBE was used in this study.12 16HBE cells were

maintained in minimium essential medium (MEM;
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Gibco, Life Technologies, Carlsbad, CA), supplemented

with 10% fetal calf serum (Gibco) and 0�5% gentamicin

(Gibco). Cell cultures were maintained in a humidified

atmosphere of 5% CO2 in air at 37°. The cells were cul-

tured in the presence and absence of CSE and in the

presence and absence of mini-BAL from smokers or non-

smokers for 18 hr. The concentration of CSE used, 10%,

was selected on the basis of cell apoptosis/necrosis experi-

ments. The time-point was selected on the basis of preli-

minary experiments (data not shown). At the end of

stimulation, cell pellets, cell extracts and cell culture su-

pernatants were collected for further evaluations. In some

experiments a BLT2 antagonist (LY255283) (10 lM) or a

PPAR-a antagonist (MK886) (10 lM) (Cayman Chemical)

was added 1 hr before cell stimulation, as previously

described.7,13,14 The concentrations of both LY255283 and

MK886 were selected by performing a dose–response
experiment (see Supplementary material, Fig. S1).The 20-

lM concentration for both inhibitors was discarded

because it induced cell morphology alterations.

Cell necrosis and cell apoptosis

Cell necrosis and cell apoptosis were evaluated, as previ-

ously described,9 by staining with annexin V-FITC and

propidium iodide using a commercial kit (Bender MedSys-

tem, Vienna, Austria) following the manufacturer’s direc-

tions. Cells were analysed using a FACS Calibur (Becton

Dickinson, Mountain View, CA) analyser equipped with

an Argon ion Laser (Innova 70 Coherent, Santa Clara, CA).

BLT2 and PPAR-a expression

The expression of BLT2 and of PPAR-a in 16HBE cells

was evaluated by flow cytometry using rabbit polyclonal

antibodies anti-BLT2 and anti-PPAR-a (both from Cay-

man Chemical) (1 : 250 for 1 hr) followed by an FITC-

conjugated anti-rabbit IgG (Dako). To evaluate the

expression of BLT2 and of PPAR-a before incubation

with rabbit polyclonal antibodies, cells were permeabilized

using a commercial fix-perm cell permeabilization kit

(Caltag Laboratories, Burlingame, CA). Negative controls

were performed using non-immune rabbit (Dako). Data

are expressed as GeoMean fluorescence intensity and as

percentage of positive cells.

Cell-adhesion assay

Cell-adhesion assay was performed by a method previ-

ously described with minor modifications.15 Briefly,

16HBE cells were seeded in 96-well plates at half-

confluency and kept for 18 hr alone and with mini-BAL

supernatants from smokers. Peripheral blood neutrophils

were isolated from peripheral blood of normal donors as

previously described,16 labelled for 30 min with 20 lM of

fluorocromic dye SFDA (Molecular Probes, Eugene, OR)

and washed and resuspended in PBS (1 9 105/ml).

Immediately before the addition of neutrophils, the

16HBE cultures were washed with warm PBS. Labelled

neutrophils were added in a final volume of 0�1 ml

(1 9 104/well). The plates were incubated at 37° for

20 min to allow neutrophils to contact and to adhere to

the confluent 16HBE, and total fluorescence was mea-

sured using an excitation wavelength of 485 nm and

monitoring emission at 530 nm in a Wallac 1420 Victor

multilabel counter (PerkinElmer Life and Analytical Sci-

ences-Wallac OY, Turku, Finland). Non-adherent cells

were then removed by washing and fluorescence was

measured to evaluate bound cells. Adhesion was expressed

as percentage of the fluorescence ratio of bound cells over

total cells. All test points were performed in triplicate.

The baseline values represent the adhesion of neutrophils

to unstimulated cells.

Evaluation of ICAM-1 expression

The expression of ICAM-1 on the surface of bronchial

epithelial cells was determined by flow cytometry. An

FITC-conjugated mouse anti-human ICAM-1 antibody

(anti-CD54; clone 6.5B5; Dakopatts, Glostrup, Denmark)

was used. Negative controls were performed using a

non-immune FITC-conjugated mouse IgG1 (from

Dakopatts). Data are expressed as GeoMean fluorescence

intensity.

RNA interference and transfection

Cells were plated in 24-well tissue culture plates and

grown in medium containing 10% FBS without the use

of antibiotic until 60–80% confluency. BLT2 or PPAR-a
small interfering (si) RNA (10 lM; Santa Cruz Biotech-

nology, Inc., Dallas, TX) were added to 40 ll siRNA

transfection medium, and the reaction was performed

according to the manufacturer’s instructions until com-

plete transfection of cells (30 hr at 37°). For optimal

siRNA transfection efficiency, control siRNA (10 lM;
Santa Cruz Biotechnology Inc.) was used containing a

scrambled sequence that did not lead to the specific

degradation of any known cellular mRNA. Finally, cells

were stimulated with CSE 10% for 18 hr, and ICAM-1

expression was evaluated. The silencing efficacy of the

RNA interference was checked by flow cytometry.

Western blot analysis for STAT-1

Western blot analysis for signal transducer and activator

of transcription 1 (STAT-1) was performed as previously

described7 with some modifications. Briefly, 16HBE cells

were lysed (10 mM Tris–HCl, pH 7�4; 50 mM NaCl; 5 mM

EDTA; 1% Nonidet P-40; 10 lg/ml PMSF) and protein
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were extracted. A 50-lg sample total proteins was sub-

jected to SDS–PAGE on 4–12% gradient gels (Novex, San

Diego, CA) and blotted onto nitrocellulose membranes.

All blots were first probed using a polyclonal antibody

anti-phospho-STAT-1 (Tyr701) (Cell Signaling, Boston,

MA) (1 : 100, overnight) and a polyclonal antibody anti-

STAT-1 (1 : 100; 1 hr) (Cell Signaling Technology Inc).

Revelation was performed with an enhanced chemolumi-

nescent system (GE Healthcare, Chalfont St Giles, UK)

followed by autoradiography. b-actin (Sigma) was used as

housekeeping protein to normalize differences in protein

loading. Data underwent densitometric analysis and were

expressed as densitometric arbitrary units by normaliza-

tion with the density of the band obtained for b-actin.
STAT-1 activation was assessed by calculating ratio of

pSTAT-1/STAT-1 expression.

Chromatin immunoprecipitation analysis

Chromatin immunoprecipitation (ChIP) analysis was

performed using the EZ-ChIP kit (Upstate-Millipore

Corporate, Billerica, MA) following the manufacturer’s

directions. The 16HBE cells stimulated with CSE 10%

were treated with formaldehyde and the cross-linked

chromatin was sonicated to lengths spanning 200–
1000 bp. The samples were pre-cleared with 60 ll Pro-

tein A–Agarose and then incubated with a polyclonal

antibody anti-human STAT-1. Immunocomplexes were

precipitated using Protein A–Agarose. After washing,

DNA fragments were isolated and purified with col-

umns. The PCR was performed using primers spanning

the promoter region 3537 of ICAM-1 gene using the

primers: 5′-CAC AGA GTG AGA CTC CAT C-3′ (the

forward) and 5′-TGT TGT CCA GGC TGG AGT A-3′
(the reverse).

Statistics

Data are expressed as mean counts � standard deviation.

Comparison between different experimental conditions

was evaluated by paired t-test. P < 0�05 was accepted as

statistically significant.

Results

Mini-BAL from smokers increase BLT2 but decrease
PPAR-a expression in bronchial epithelial cells

Bronchial epithelial cells play a crucial role in the

inflammatory responses to external agents including cig-

arette smoke. The effects of mini-BAL supernatants from

smokers and non-smokers on the expression of pro-

(BLT2) and anti-inflammatory (PPAR-a) receptors for

LTB4 in bronchial epithelial cells were initially explored.

Mini-BALs from smokers and, at lower extent, mini-

BALs from non-smokers increased the expression of

BLT2 as both percentage of positive cells (13�3 � 3%

and 6 � 2�5% variation for smokers and non-

smokers, respectively) and GeoMean fluorescence inten-

sity (18�7 � 1�2% and 3�3 � 3�5% variation for smokers

and non-smokers, respectively) (Fig. 1a,b). Mini-BAL

from smokers, but not mini-BALs from non-smokers,

decreased PPAR-a expression as percentage of positive

cells (11 � 3% of variation) (Fig. 2a,b). The percentage

of positive cells indicates the number of positive cells.

The GeoMean gives a measure of the average content of

the antigen per cell. The findings that mini-BALs

reduced the percentage but not the GeoMean fluores-

cence intensity suggest that mini-BALs are able to

reduce the number of PPAR-a-positive cells without

modifying the PPAR-a content per cell.

In tissue samples, bronchial epithelial cells from smok-

ers showed an intense expression of BLT2 but a weak

PPAR-a expression. In contrast, bronchial epithelial cells

from non-smokers showed an intense expression of

PPAR-a but a weak BLT2 expression (Fig. 3a,b).

Mini-BALs from smokers increase neutrophil
adhesion and ICAM-1 expression in bronchial
epithelial cells

The increased expression of BLT2 may lead to increased

neutrophil adhesion and to increased ICAM-1 expres-

sion.7 Mini-BALs from smokers increased both neutrophil

adhesion to bronchial epithelial cells (Fig. 4) (43 � 19%

of variation) and ICAM-1 expression (71 � 31% of vari-

ation) in bronchial epithelial cells (Fig. 5). The effect on

ICAM-1 expression was related to BLT2/PPAR-a deregu-

lated expression, since BLT2 antagonist reduced while

PPAR-a antagonist further increased the ICAM-1 expres-

sion in bronchial epithelial cells stimulated with mini-

BALs from smokers (Fig. 5).

CSE increase BLT2 and neutrophil adhesion but
decrease PPAR-a expression in bronchial epithelial
cells

To assess whether the exposure to cigarette smoke was

responsible for the effects induced by mini-BALs from

smokers, the direct effect of CSE was tested. The effects

of two different CSE concentrations (10 or 20%) on cell

necrosis/apoptosis were initially assessed. Since CSE 20%

increased cell apoptosis more than CSE 10% (Fig. 6), this

latter concentration was used for assessing BLT2 or

PPAR-a expression. The CSE increased BLT2 (29 � 13%

of variation) (Fig. 7) but decreased PPAR-a (13 � 8% of

variation) expression (Fig. 8) in bronchial epithelial cells.

Moreover, when bronchial epithelial cells were stimulated

with CSE, an increased neutrophil adhesion occurred

(29 � 19% of variation) (Fig. 9).
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Figure 2. Mini-bronchoalveolar lavages (mini-BALs) from smokers decrease peroxisome proliferator-activated receptor-a (PPAR-a) expression in

bronchial epithelial cells. Bronchial epithelial cells (16HBE) were cultured with/without mini-BALs from smokers (n = 5) and from non-smokers

(n = 3) for 18 hr and were used for assessing PPAR-a expression by flow cytometry (see Materials and methods for details). (a) Representative

histogram plots. 1 = negative control; 2 = baseline expression of PPAR-a; 3 = a mini-BAL from smoker. (b) The results are expressed as percent-

age of positive cells and as GeoMean fluorescence intensity � SD.Two replicates were performed from each mini-BAL sample. *P < 0�05
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Figure 1. Mini-bronchoalveolar lavages (mini-BALs) from smokers increase BLT2 expression in bronchial epithelial cells. Bronchial epithelial cells

(16HBE) were cultured with or without mini-BALs from smokers (n = 5) and from non-smokers (n = 3) for 18 hr and were used to assess

BLT2 expression by flow cytometry (see Materials and methods for details). (a) Representative examples of flow cytometric analysis. 1 = negative

control; 2 = BLT2 baseline expression; 3 = BLT2 expression after a mini-BAL from smoker exposure. (b) The results are expressed as percentage

of positive cells and as GeoMean fluorescence intensity � SD. Two replicates were performed from each mini-BAL sample.*P < 0�05
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CSE increase ICAM-1, STAT-1 activation and the
binding of STAT-1 to ICAM-1 promoter in bronchial
epithelial cells

Exposure to CSE increased ICAM-1 expression

(35 � 12% of variation) in bronchial epithelial cells and

this phenomenon was reduced by a BLT2 antagonist

(20 � 7% of variation) which was further increased by a

PPAR-a antagonist (22 � 2% of variation) (Fig. 10).

Silencing experiments for BLT2 and for PPAR-a con-

firmed the results obtained with BLT2 or PPAR antago-

nists. Moreover, the mechanisms promoting the increased

ICAM-1 expression in CSE-treated cells were explored by

assessing the activation of STAT-1 and by assessing the

binding of STAT-1 to ICAM-1 promoter. When bronchial

epithelial cells were exposed to CSE, an increased expres-

sion of phosphorylated STAT-1 occurred (Fig. 11a) and

an increased pSTAT-1/STAT-1 ratio was observed

(Fig. 11b). ChIP assays with anti-STAT-1-specific anti-

bodies showed that STAT-1 was detected on the pro-

moter region of ICAM-1 in bronchial epithelial cells to a

greater extent after CSE exposure (Fig. 11c). These data

provide further evidence that ICAM-1 expression is regu-

lated by STAT-1 activation.

Discussion

Long-term cigarette smoking is the major aetiological

factor for the development of COPD. Airway inflammation

and oxidative stress are implicated in the pathogenesis of

COPD. Leukotriene B4, a potent lipid mediator of

inflammation generated from arachidonic acid via the

5-lipoxygenase pathway, actively contributes to the inflam-

matory processes in smokers and in COPD patients.17

The present study demonstrates for the first time that

the response of the bronchial epithelium to LTB4 is the

result of a balance between the activation of receptors for

LTB4 with a pro-inflammatory outcome (BLT2) and with

an anti-inflammatory outcome (PPAR-a). Cigarette

Smoker Smoker

Non-smoker Non-smoker

(a) (b)

Figure 3. Expression of BLT2 and peroxisome proliferator-activated

receptor-a (PPAR-a) molecules in bronchial epithelial cells from sur-

gical samples of smokers. Immunohistochemistry for BLT2 (a) and

PPAR-a (b) in central airways from surgical samples of smokers

(n = 5) and of non-smokers (n = 3) was performed. Representative

BLT2 and PPAR-a immunostaining at 400 9 magnification was

shown.
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smoke generates an inflammatory milieu that promotes

the preferential activation of pro-inflammatory LTB4
receptors, activation of STAT-1, an up-regulation of

ICAM-1, and an increased adhesiveness between neu-

trophils and bronchial epithelial cells.

Neutrophils are a critical component of the host

defence against micro-organisms18; however, cessation of

neutrophil recruitment and clearance by apoptosis is

mandatory to restore homeostasis and limit host tissue

damage.19

Chronic neutrophilic inflammation is a frequent feature

in lung diseases including COPD; it mediates extensive

tissue damage and contributes to organ dysfunction.3

Leukotriene B4 induces neutrophil recruitment and acti-

vation in patients with COPD,17 it is higher in those with

COPD than in controls, it correlates with the number of

neutrophils20 and contributes to disease progression.21
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V/propidium iodide (PI) method by flow cytometry (see Materials and methods for details). Representative dot plots showing the percentage of

annexin V, PI and annexin V/PI positive 16HBE at baseline and following the exposure of CSE (10%, 20%) are shown.
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Figure 7. Cigarette smoke extracts (CSE) increase BLT2 expression

in bronchial epithelial cells. Bronchial epithelial cells (16HBE) were

cultured in the presence and in the absence of CSE 10% for 18 hr

and were used for assessing BLT2 expression by flow cytometry (see

Materials and methods for details). (a) Representative histogram

plots. 1 = negative control; 2 = baseline expression of BLT2;

3 = CSE 10%. (b) The results are expressed as GeoMean fluores-

cence intensity � SD. *P < 0�05
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Figure 8. Cigarette smoke extracts (CSE) decrease peroxisome pro-

liferator-activated receptor-a (PPAR-a) expression in bronchial epi-

thelial cells. Bronchial epithelial cells (16HBE) were cultured in the

presence and in the absence of CSE 10% for 18 hr (n = 6) and were

used for assessing PPAR-a expression by flow cytometry (see Materi-

als and methods for details). (a) Representative histogram plots.

1 = negative control; 2 = baseline expression of PPAR-a; 3 = CSE

10%. (b) The results are expressed as GeoMean fluorescence inten-

sity � SD. *P < 0�05
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Leukotriene B4 uses a dual-receptor system because it

mediates its activity through the activation of pro-inflam-

matory transmembrane receptors (BLT1 and BLT2) and

of an anti-inflammatory nuclear receptor (PPAR-a). Our
group has previously demonstrated that pleural mesothe-

lial cells, expressing both pro-inflammatory transmem-

brane BLT2 receptor and anti-inflammatory nuclear

PPAR-a receptor, may provide an integrated response to

pleural LTB4 present in parapneumonic effusions.7 The

transmembrane BLT2 receptor is expressed, other than by

leucocytes, by structural cells in a variety of body com-

partments and has a low binding affinity for LTB4.
7,22 A

previous study reports that BLT2 activation led to eleva-

tion of reactive oxygen species and subsequent activation

of nuclear factor-jB), so inducing the expression of vas-

cular cell adhesion molecule-1, which is known to be

involved in eosinophil infiltration into the airways.23 The

down-regulation of BLT2 with anti-sense BLT2 oligonu-

cleotides markedly attenuated airway inflammation and

airway hyper-responsiveness.23 The PPARs are transcrip-

tion factors that belong to the superfamily of nuclear

receptors. PPAR-a reduces pain and inflammation, inhib-

its the release of several pro-inflammatory and pro-angio-

genic enzymes24,25 and has also been reported to bind

and catabolise LTB4 and to limit inflammation. PPAR-a-
deficient mice exhibit a prolonged inflammatory response

when challenged with LTB4
26,27 and PPAR-a activation

inhibits nuclear factor-jB activation28 and down-regulates

chemoattractant production and neutrophil infiltration.29

In a rat model of CSE-induced emphysema, the treatment

with PPAR-a+c agonist for 4 weeks prevented the pro-

gression of emphysematous lung destruction.30

It has been previously demonstrated that BLT1 and

PPAR-a immunoreactivity is increased in the distal air-

ways of COPD patients compared with control subjects

but it does not significantly differ in smokers without

COPD.8 No information is available on BLT2 expression

and on the mechanisms promoted by the unbalanced

expression of BLT2 and PPAR-a on bronchial epithelial

cells.

Our results suggest that cigarette smoke and mini-BALs

from smokers, in vitro, in bronchial epithelial cells, shift

the emphasis of LTB4 towards a pro-inflammatory phe-

notype up-regulating BLT2 expression and down-regulat-

ing PPAR-a. In addition, bronchial epithelial cells from

smokers highly express BLT2 but not PPAR-a molecules.

These findings may be relevant to clarify some pathoge-

netic events leading to COPD because several studies pro-

vide evidence that the in vitro exposure to CSE

reproduces the in vivo changes observed within the air-

ways of smoking humans.31 Exposure to CSE up-regu-

lated the surface expression of ICAM-1 in human

umbilical vein endothelial cells32 and in bronchial epithe-

lial cells.33 Exposure of bronchial epithelial monolayers to

the combination of cigarette smoke followed by C5a
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Figure 9. Cigarette smoke extracts (CSE) increase neutrophil adhe-

sion to bronchial epithelial cells. Bronchial epithelial cells (16HBE)

were cultured in the presence and in the absence of CSE 10% for

18 hr (n = 6) and were used for assessing neutrophil adhesion to

bronchial epithelial cells. The results are expressed as % of the fluo-

rescence ratio of bound cells on total cells. *P < 0�05
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Figure 10. Cigarette smoke extracts (CSE) increase intercellular

adhesion molecule 1 (ICAM-1) expression in bronchial epithelial

cells. Bronchial epithelial cells (16HBE) were cultured in the presence

and in the absence of CSE 10%, of an inhibitor for BLT2

(LY255283; 1 hr pre-treatment) or of an inhibitor for peroxisome

proliferator-activated receptor-a (PPAR-a) (MK886; 1 hr pre-treat-

ment) (n = 6) and then were used for assessing ICAM-1 expression

by flow cytometry. In some experiments (n = 2), RNA interference

for BLT2 or PPAR-a was also performed. The results are expressed

as GeoMean fluorescence intensity � SD.*P < 0�05
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results in an additive response for ICAM-1 expression

and mononuclear cell adhesion compared with smoke or

C5a challenge alone.33

The contribution of LTB4 activity on ICAM-1 up-regu-

lation because of CSE is largely unexplored. Here, we

demonstrate that the treatment with CSE and mini-BALs

from smokers resulted in an up-regulated expression of

BLT2, which in turn increased ICAM-1 expression. Treat-

ment with a BLT2 antagonist reduced the generated

increased expression of ICAM-1. Moreover, CSE and

mini-BALs from smokers reduce the activation of PPAR-

a leading to increased ICAM-1 expression because the

presence of a PPAR-a antagonist increases the effects of

CSE and of mini-BALs from smokers in ICAM-1 expres-

sion. This finding is consistent with previous results

showing that mice lacking PPAR-a have increased expres-

sion of ICAM-1 in the lungs.34 The increased ICAM-1

expression, increasing the adhesiveness of bronchial

epithelial cells, may have several pathological conse-

quences in subjects who smoke. Cigarette smoke exposure

may play a critical role in rhinovirus-induced exacerba-

tions,35 compromising the innate responses against rhino-

virus infection36 and increasing the adhesion of viruses to

airway epithelial cells because ICAM-1 acts as cellular

receptor for the major group of rhinoviruses.37 In our

model, the increased ICAM-1 expression is associated

with increased neutrophil adhesion to bronchial epithelial

cells. This phenomenon may promote an increased accu-

mulation of neutrophils in the airways of smokers, so

contributing to airway neutrophilia, a common feature in

smokers and in patients with COPD. In this regard, it has

been previously demonstrated that epithelial ICAM-1 and

ICAM-2 regulate the passage of human T cells across the

bronchial epithelium.38

Finally, we investigated the molecular mechanisms lead-

ing to the increased ICAM-1 expression in CSE-stimu-

lated bronchial epithelial cells. The ICAM-1 is regulated

by tyrosine phosphorylation activity through STAT-1-

dependent signalling pathways.39 The effect of cigarette

smoke on STAT-1 activation is unclear and it is unknown

whether CSE per se interfere with STAT-1 activation in

bronchial epithelial cells. It has been demonstrated that

the pre-incubation with cigarette smoke reduces the inter-

feron-induced STAT-1 phosphorylation in bronchial epi-

thelial cells40 and that alveolar macrophages from

smokers have reduced STAT-1 phosphorylation,41 but

interferon-c synergistically enhances lipopolysaccharide

signalling in alveolar macrophages from patients with

COPD via STAT1 activation.42 Here, when bronchial epi-

thelial cells were exposed to CSE, an increased expression

of phosphorylated STAT-1 and an increased expression of

STAT-1 on the promoter region of ICAM-1 are detected.

Conclusions

Cigarette smoke and cigarette smoke-induced inflamma-

tion promote an imbalance between pro-inflammatory

and anti-inflammatory LTB4 receptors by up-regulating
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Figure 11. Cigarette smoke extracts (CSE) increase signal transducer and activator of transcription 1 (STAT-1) activation and its interaction with

the promoter of intercellular adhesion molecule 1 (ICAM-1) in bronchial epithelial cells. Bronchial epithelial cells (16HBE) were cultured in the

presence and in the absence of CSE 10% for 18 hr (n = 3) and were used for assessing STAT-1 or pSTAT-1 by Western blot analysis and for

chromatin immunoprecipitation assay (ChIP). (a) Representative Western blots of STAT-1, pSTAT-1 and b-actin expression. Lane 1 = baseline;

lane 2 = CSE 10%. (b) Signals corresponding to pSTAT-1 or to STAT-1 were semi-quantified by densitometric scanning, normalized for b-actin
and results were expressed as pSTAT-1/STAT-1 ratio.*P < 0�05. (c) ChIP assay using anti-STAT1 antibody and PCR using primers spanning the

promoter region 3537 of intercellular adhesion molecule 1 (ICAM-1) gene were performed (see Materials and methods for details) (n = 3). Lane

1 = DNA marker; lane 2 = negative control of PCR; lane 3 = baseline; lane 4 = CSE 10%.
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BLT2 and down-regulating PPAR-a in bronchial epithelial

cells. The prevalence of pro-inflammatory activities of

BLT2 upon cigarette smoke exposure in turn leads to

increased neutrophil adhesion, a mechanism contributing

to airway neutrophilia and to lung tissue damage. These

phenomena are frequently observed in smokers and in

patients with COPD.
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