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The composition of the subgingival bacterial microbiota is a critical determinant in the
health status of periodontal tissues. Gram-negative anaerobes such as Porphyromonas
gingivalis are well-established periodontal pathogens, and high numbers of these bacteria
are found in the subgingival sulcus of patients with chronic periodontitis (43). However, a
burgeoning pool of evidence indicates that these organisms have a far more complex
relationship with the host than merely as pathogens. Gram-negative anaerobes are frequently
present in the oral cavity of periodontally healthy individuals (23, 44, 92, 121, 127, 128,
170), and indeed health is the most common status of the human gingiva despite years of
exposure to a large microbial burden. Periodontal organisms thus appear to have co-evolved
with their host to maintain an ecologically balanced association whereby minimal harm is
inflicted on, or by, either party. Disease will only ensue when this interaction becomes
unbalanced, an event that has been termed an ecological catastrophe (83). Organisms such as
P. gingivalis may thus be more accurately characterized as accidental, or host-adapted,
pathogens.

In the subgingival compartment, epithelial cells represent a major host interface for
colonizing organisms; hence, the interaction between gingival epithelial cells and
periodontal bacteria will contribute to the success or failure of colonization, and to the
maintenance of health or disease in the host. Undeniably, in the case of P. gingivalis, an
intricate and multithreaded relationship exists between the organism and gingival epithelial
cells, which, under optimal conditions, results in stable cohabitation, with both bacteria and
host cells responding and adapting to the presence of their partner to maintain a state of
health. In the event that this relationship becomes perturbed, for example because of an
increase in bacterial burden or an inappropriate immune response, the periodontal disease
process can be initiated (13).

The ability to adapt in response to the host environment is reflected in the genetic diversity
found within many species of periodontal bacteria. Bacteria are masters of adaptation, and at
the genetic level are able to rapidly modify and share DNA. For example, there are
significant levels of genetic variation among P. gingivalis strains, and many studies have
linked this genetic variability to virulence potential (7, 14, 18, 38, 67, 85, 108). Genetic
variability among strains is common in bacteria with long-term carrier states, possibly
arising from the co-evolutionary dynamic of host–pathogen interactions (62, 123). Genetic
variation can produce lineages of bacteria with `good or evil' personalities, in that some are
more virulent and associated with disease, whereas other strains of the same species behave
in a more commensal manner. In this review, we will discuss the current understanding of
pathogenic and commensal aspects of bacterial interactions with periodontal tissues, with a
specific focus on P. gingivalis intracellular invasion and molecular modulation of host cells.

Interactions of periodontal bacteria with epithelial cells observed in vivo
Tissue destruction, mediated either by the host or by bacteria, is a hallmark of periodontal
disease, and with the consequent loss of barrier function it is not surprising that periodontal
bacteria are frequently detected within gingival tissues (1, 20, 41, 101, 116, 131–133, 152–
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154, 157). While tissue invasion (intercellular invasion) is an almost inevitable corollary of
the disease process, a number of oral bacteria have been observed to locate inside host cells
(intracellular invasion) both in the presence and in the absence of disease. Fluorescence in
situ hybridization, combined with confocal microscopy, has established that buccal
epithelial cells from healthy individuals contain a polymicrobial intracellular microbiota that
includes the periodontal bacteria P. gingivalis, Tannerella forsythia, Aggregatibacter
actinomycetemcomitans, Fusobacterium nucleatum, Prevotella intermedia, Eikenella
corrodens and Treponema denticola (128, 129). Importantly, these colonized epithelial cells
are not necrotic or apoptotic, but remain viable (127). In tissue samples from patients with
periodontitis, electron microscopy has demonstrated the presence of periodontal bacterial
within epithelial cells (165); and immunohistochemistry revealed that these intracellular
bacteria include P. gingivalis (122). Similar microscopic techniques have shown P.
gingivalis, T. forsythia, A. actinomycetemcomitans and T. denticola within gingival and
buccal epithelial cells from both healthy individuals and patients with periodontitis (22).

Residence within host cells provides bacteria with a nutrient-rich, generally reducing
environment that is partially protected from the host immune system. Accessing this secure
niche may be critical in the early stages of sulcus colonization by periodontal bacteria, as
low numbers of bacteria are particularly susceptible to clearance by immune mechanisms.
While not immediately contributing to disease, invasive bacteria may use the intracellular
locale to safely persist and replicate. In disease states, intracellular bacteria are less likely to
be physically removed by scaling and root planing (61) and are more resistant to antibiotics
(36). Furthermore, this intracellular population could constitute a reservoir of bacteria for
the repopulation of treated subgingival sites. The ability to invade and persist in host cells is
evidently an important factor in the overall disease process, and P. gingivalis strains isolated
from disease sites possess greater invasion capabilities in vitro than strains from healthy
sites (58). Collectively, these observations indicate that an intracellular location is an
integral component of the lifestyle of many periodontal bacteria, whether in a healthy or
diseased host, and probably contributes to the chronic nature of periodontal disease.

Models to study intracellular invasion
Epithelial tissues are structurally diverse and range from simple, single-layered gut or
glandular epithelia to the complex, stratified epithelia that form the body surface, including
the oral cavity. While all epithelia have features and functions in common, they also exhibit
many tissue-specific properties. The gingival epithelium is a stratified and squamous tissue,
and is composed of oral, sulcular and junctional epithelium. The periodontally relevant
sulcular and junctional epithelia are neither keratinized nor terminally differentiated, unlike
other oral epithelial cells (118). As the differentiation status and tissue of origin can affect
bacteria–epithelium interactions (66, 81, 91, 117), the most relevant models for periodontal
bacteria will involve cells derived from, or with characteristics of, junctional or sulcular
epithelium. A number of in vitro tissue culture models have been developed to study
periodontal bacteria–epithelium interactions, including primary gingival epithelial cells (73,
74), transformed epithelial cells (46) and multilayers (4, 110, 140). Primary gingival
epithelial cells, obtained from gingival explants, express keratin and differentiation markers
characteristic of the junctional epithelium, and are naturally senescent (105, 106).
Transformed lines derived from gingival epithelial cells are also poorly differentiated and
respond similarly to oral bacteria (46, 104), without potential confounding influences of
patient to patient variability (64). The KB and HEp-2 cell lines were originally thought to be
derived from human oral epidermal carcinomas, and have been used as model systems for
studies of periodontal disease. However, these cell lines are now known to have arisen from
HeLa cell contamination, and as such are less relevant for studies of the oral cavity.
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Utilization of orally derived model systems has demonstrated that several species of
periodontal bacteria can internalize within epithelial cells through a bacterially directed
process. Invasive organisms include P. gingivalis (Fig. 1), A. actinomycetemcomitans, T.
forsythia, F. nucleatum and P. intermedia (Table 1) (6, 33, 45, 54, 55, 72–77, 86, 87, 130,
136). In addition, consistent with the multispecies etiology of periodontal disease, bacteria
can co-operate with one another to facilitate invasion. For example, P. gingivalis (or its outer
membrane vesicles) enhance the invasion of T. forsythia into epithelial cells (55). F.
nucleatum can transport noninvasive Streptococcus cristatus into epithelial cells through the
formation of co-adhered dual-species consortia (35). F. nucleatum can also enhance the
invasion of P. gingivalis, although in this case the synergistic effect results from the
interaction of F. nucleatum with the host cells (135). These in vitro observations emphasize
the ecological nature of periodontal disease, in which multiple species act in concert.
Periodontal bacteria can also enhance the invasion of Pseudomonas aeruginosa into
epithelial cells, which may provide a mechanistic basis for the epidemiological association
between periodontal disease and respiratory tract infections (109).

The initial interaction with epithelial cells
Attachment or close physical association between bacteria and epithelial cells can be a
prelude to internalization. Engagement of membrane receptors by bacterial surface ligands
allows recalibration of the cellular machinery to mediate pathogen entry into these
nonphagocytic host cells. Many invasive bacterial species manipulate host cell receptors to
activate their uptake, and oral pathogens are no exception to this paradigm (37). The most
intensively studied of the invasive oral bacteria is P. gingivalis, and this subgingival resident
will be the focus of the remainder of this review.

The mechanisms of P. gingivalis adhesion to, and invasion of, epithelial cells are
multifaceted and involve a number of effector molecules (Fig. 2). In terms of initial binding,
the predominant adhesins are the major fimbriae (168, 174), which are composed of the
FimA structural subunit protein along with minor proteins FimC, D and E (100). The FimA
subunit directly engages αvβ3 and α5β1 integrins on the epithelial surface (93, 174), and this
interaction initiates an integrin-associated signaling cascade that triggers bacterial
internalization (174). The focal adhesion adaptor and signaling proteins paxillin and focal
adhesion kinase (FAK) are recruited to sites of P. gingivalis attachment (176), and the
resulting information flow converges on the cytoskeletal architecture. Both actin
microfilament and microtubule structures are remodeled to accommodate the entry of P.
gingivalis (73, 174, 176). Integrin-mediated internalization may take place in lipid raft entry
platforms that signal through the Rho GTPase, Rac1 (156, 161).

The strength of the initial adherence between P. gingivalis and the host epithelial cell can
vary. The major (long) fimbriae are the primary bacterial adhesins, and there are at least six
alleles of the fimA gene (fimA I, Ib, II, III, IV and V) distributed among strains worldwide
(3, 95). In studies of P. gingivalis isolates from healthy and diseased individuals, major
fimbriae composed of type Ib, II or IV are more commonly associated with periodontal
disease, whereas type I, III, or V fimbriae are more often found in P. gingivalis strains
colonizing healthy patients (3, 89, 90). The fimA II allele has been shown to result in
stronger adherence to epithelial cell receptor α5β1 integrin, compared with other fimA types
(94, 96).

While FimA–integrin interactions constitute the predominant means of P. gingivalis
adherence and entry into gingival epithelial cells, FimA binding to intercellular adhesion
molecule (ICAM) 1 can also initiate invasion into HeLa cells (156), and this mechanism
could also play a role in gingival cells. Furthermore, invasion occurs in the absence of
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FimA, albeit less efficiently. Therefore, other invasins are operational, and these include the
gingipain proteases (103, 119). The gingipains are a family of three arginine/lysine-specific
proteases (RgpA, RgpB and Kgp) that are found in the outer membrane of the bacteria and
are also secreted into the surrounding environment. The gingipain proteases have both
enzymatic and structural functions that are integral to the successful adherence of P.
gingivalis (19, 145). Gingipain protease activity has been shown to improve P. gingivalis
binding to gingival cells by modifying matrix proteins and revealing epithelial surface
cryptitopes (68, 69, 158), and protease-deficient mutants show diminished invasion
efficiency (112). Structurally, the RgpA and Kgp gingipains possess hemagglutinin/adhesin
domains that are involved in the attachment of P. gingivalis to epithelial cells (17, 114). The
adhesin domain of RgpA associates with fibronectin and with the α5β1 integrin receptor for
fibronectin on gingival fibroblasts (142), which can lead to internalization and nuclear
targeting of this gingipain protease (141). RgpA can interact with clatherin, and the purified
protein can be internalized via a clathrin-dependent endocytosis pathway in HeLa (HEp-2)
cells (12). As RgpA proteins are present on the surface of P. gingivalis, this molecule may
act as an adhesin and allow internalization of P. gingivalis cells via an alternative pathway to
that driven by FimA–integrin interactions.

Internalization
The interaction of P. gingivalis FimA fimbriae with epithelial cell surface integrins initiates
a cellular response that recruits FAK and paxillin to the cytoplasmic membrane at the
bacterial attachment site (174, 176). The resulting protein–protein interactions among
integrin, FAK and paxillin produce a phosphorylation-regulated signaling scaffold that
activates Rho-family GTPases, enzymes which play a central role in initiating downstream
signaling cascades and regulating cytoskeletal dynamics (25, 47). The subsequent actin and
microtubule remodeling, the recruitment of lipid raft components, and host-cell
phosphorylation activity are all required for internalization of P. gingivalis (73, 75, 138, 161,
167, 176). The invasion process is complete in approximately 15 min and ultimately results
in the perinuclear localization of the bacteria (11).

Entry of P. gingivalis into host cells results in the reprogramming of major host-cell
signaling pathways. Consistent with activation by integrin-initiated Rho cascades,
components of mitogen-activated protein kinase pathways are selectively targeted for
regulation by internalized P. gingivalis. Extracellular signal-regulated kinase 1/2 and c-Jun
N-terminal kinase activities are down-regulated and up-regulated, respectively (167). Kinase
regulation occurs in a dose-dependent manner and requires metabolically active bacteria,
implying that the regulation of host mitogen-activated protein kinases requires the
production of bacterial effectors. Invasion by P. gingivalis also induces a transient increase
in epithelial cell cytosolic calcium concentrations (10, 57). Calcium signaling can regulate a
variety of cellular functions; and during invasion with bacterial pathogens, calcium levels
can influence cytokine expression and modulate intracellular trafficking and cytoskeletal
activities (159). Calcium levels impact P. gingivalis manipulation of host cells, as over-
expression of the calcium-binding protein, calprotectin, in gingival epithelial cells inhibits
invasion (99).

Although P. gingivalis does not possess the type III secretion machinery that injects
bacterial invasion effectors directly into the host cell cytoplasm (56, 98, 134), it does secrete
a distinct set of proteins upon encountering the epithelial cell environment (112). Among
these is a HAD family serine phosphatase (SerB), that is active on host cell phosphoproteins
and influences P. gingivalis entry and survival (48, 160). Microarray analysis found that
SerB impacts the transcriptional profile of gingival epithelial cells, with pathways involving
the actin cytoskeleton among those significantly overpopulated with differentially regulated
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genes (48). Moreover, a SerB mutant of P. gingivalis is defective in actin remodeling and in
internalization, and interaction between gingival epithelial cells and purified SerB protein
results in actin re-arrangements, an increase in the F/G actin ratio, and disruption of
microtubule dynamics. Thus, SerB can interact with signaling pathways that regulate gene
expression, cytoskeletal dynamics and ultimately affect P. gingivalis internalization and
survival. One could presume that the net effect of signaling pathway manipulation is
alteration of the host cellular physiology, restructuring the cytoskeleton to direct bacterial
uptake and perinuclear localization, and ultimately crafting a protected intracellular niche
for these fastidious organisms.

Adaptation of P. gingivalis to the intracellular environment
It hardly bears mentioning that the mammalian intracellular environment is quite distinct
from both bacterial culture medium and the subgingival sulcus. Intracellular bacteria will
experience distinct nutritional and physical conditions and, as is facile for bacteria, will
adapt to these conditions through gene and protein regulation. Global molecular approaches
to examine bacterial transcriptional and proteomic changes have provided insights into this
complex process.

Transcriptional profiling by microarrays has been adopted to examine global gene regulation
during the process of P. gingivalis invasion. Hosogi & Duncan (50) found that during
attachment to HeLa (HEp-2) cells, genes encoding oxidative stress-response components
and heat shock proteins were up-regulated, indicating that P. gingivalis bacteria on the
surface of host cells experience oxidative stress and produce heat shock proteins to maintain
protein function and viability. A study of gene expression of P. gingivalis within endothelial
cells (125), demonstrated that internalized bacteria regulate pathways relating to energy
metabolism, protein synthesis and transport through the outer membrane. Differential
display reverse transcription-polymerase chain reaction confirmed that inside epithelial cells
P. gingivalis regulates the expression of membrane transporters, and that loss of the
corresponding gene products impairs bacterial invasive ability (113). Although functional
roles for these transporters have yet to be defined, it is likely that they will affect the import/
export of cations and nutrients.

Protein expression has been compared between internal and external P. gingivalis using
whole-cell quantitative proteomic analyses (169). Interestingly, several classical virulence
factors, including FimA, RgpA/B and Kgp, show decreased expression in internalized P.
gingivalis. While FimA is required for optimal adherence and to initiate invasion pathways,
production of this protein is evidently superfluous once the bacteria reach the intracellular
milieu. Tight control of gingipain production is also a prudent maneuver for bacteria
attempting to establish an intracellular niche, as gingipains are potent proteases and their
over-expression could result in excessive damage to the interior of the host cell. Internal P.
gingivalis also down-regulate a number of hemin-acquisition systems, and thus iron may not
be limiting in the intracellular environment.

Establishment of a stable relationship between the host cell and internalized bacteria is
stressful for both host and pathogen. For P. gingivalis, the transition from extracellular to
intracellular environments evidently requires a drastic overhaul of the proteins and enzymes
required for survival. As is common for bacteria adapting to changing conditions, multiple
systems exist to mediate the disposal of toxic products, degrade inactive proteins and to
assist in the expression and folding of new proteins. Intracellular P. gingivalis up-regulates
the production of stress-associated proteins such as peroxidases, components of the Clp
family and heat shock proteins such as HtrA. Deletion of the clpB or clpP genes has a
negative impact on bacterial survival in gingival epithelial cells (16, 177, 181), and mutation
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of htrA results in an increased sensitivity to hydrogen peroxide and a decreased survival in
animal infection models (126, 178).

In terms of bacterial metabolism, in internalized bacteria there is an increased abundance of
proteins comprising the energy pathway leading from asparagine/aspartate amino acids to
ATP. The pathway producing propionate shows an increased abundance of component
proteins, while a tendency towards decreased abundance of proteins is observed for the
pathway leading to butyrate production. As propionate is a less potent inducer of apoptosis
than butyrate (84), this metabolic shift could also minimize damage to the host cells. The
translational machinery, including ribosomal proteins and transfer RNA synthetases, shows
a significant increase in expression, as do proteins responsible for transcription. In total,
approximately 50% of the expressed proteome is differentially regulated by intracellular P.
gingivalis. Overall, these results suggest that the intracellular environment, while initially
stressful, is energy rich for P. gingivalis and consequently it is advantageous for the
organism to undergo major adaptations that permit entry into, and use of the metabolic
substrates available within, the host cell.

Intracellular localization
Intracellular bacteria must avoid host cell defenses located within the cytoplasm in order to
establish long-term residence in the host cell. A primary defense organelle is the acid-
containing lysosome, which is the `garbage disposal' system of the eukaryotic cell.
Membrane-bound vacuoles containing cytoplasmic debris fuse with lysosomes, which
degrade the material contained within the vacuole by exposure to lysosomal acids and
enzymes. Once inside the cell, bacteria must act swiftly to prevent exposure to lysosomes.
Two cytoplasmic membrane-trafficking systems converge on lysosomes: the autophagic
pathway and the endosomal pathway. Intracellular pathogens use varying approaches to
manipulate these membrane trafficking systems. Some pathogens remain within a
membrane-bound vacuole and express effectors to block fusion with lysosomes. Other
organisms escape from the vacuole and subsist freely in the cytoplasm. P. gingivalis is
capable of invading multiple cell types (30), and accumulating evidence indicates that it uses
different strategies to evade lysosomes in epithelial cells and endothelial cells.

Gingival epithelial cells are the main host tissue in contact with P. gingivalis, thus eons of
host–pathogen contact and adaptation have resulted in a finely tuned relationship. P.
gingivalis traversing the epithelial cell outer membrane must initially be encompassed
within a compartment derived from the host membrane (34, 74, 139, 140). Once inside the
cell, however, P. gingivalis escapes and survives unbound in the cytoplasm, where it
remains viable for extended periods of time and even replicates (73, 74, 79, 111).
Ultimately, these nonmotile bacteria localize to the perinuclear region of the host cell, an
area densely packed with endoplasmic reticulum. One could hypothesize that the
endoplasmic reticulum contents act as an excellent nutrient source for these proteolytic
bacteria, and they may target this location to feed off proteins produced by the endoplasmic
reticulum during host cell translation.

Although the oral cavity is the natural home of P. gingivalis, these bacteria can disseminate
intra-vascularly during the transient bacteremias that result from mastication or oral hygiene
procedures. Under these circumstances, P. gingivalis will be in contact with the endothelial
cells that line the vessels of the circulatory system. P. gingivalis can adhere to and invade
endothelial cells, although at a lower frequency than gingival epithelial cells (29, 120).
Variation between the frequencies of invasion into epithelial and endothelial cells may be
related to differences in surface receptors and signal transduction pathways. Microscopic
evidence illustrates differences in the intracellular localization route of P. gingivalis between
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epithelial and endothelial cells. In endothelial cells, P. gingivalis ultimately traffics to
autophagosomes, distinctive double-membraned vacuoles that are part of the autophagic
pathway (31, 32). Once in these membrane compartments, the bacteria block fusion with
lysosomes and probably use protein debris trafficked through the autophagic pathway as
their nutrient source (9, 124). P. gingivalis persists in these autophagosome vacuoles, and
inflammation and cell damage can result from the accumulation of high loads of these
intracellular bacteria. It has been speculated that the invasion of coronary artery endothelial
cells by oral bacteria may be a contributing factor to the link between periodontal disease
and cardiovascular disease (28).

Phenotype of colonized cells
The stress associated with maintaining an intracellular bacterial burden results in significant
phenotypic changes in the infected host cells. There is a spectrum of physiological and
morphological outcomes that may result from bacterial invasion, with the ultimate destiny of
the host cell being dependent on the characteristics of the invading P. gingivalis strain, the
total bacterial burden and the host cell type. Perhaps one of the most critical bacterial
characteristics is the production of gingipain virulence factors. Gingipain proteases are
secreted to make protein nutrients available for the asaccharolytic P. gingivalis. High levels
of these bacterial enzymes can damage host cells and connective tissue, and can induce
apoptosis (145). Hence, strains of P. gingivalis that produce high levels of gingipains will be
more cytotoxic (60, 102, 143, 144, 149, 166), whereas less proteolytic strains, and strains
that can control protease production appropriately, are able to establish a more commensal
relationship with the host by regulating apoptotic signaling pathways to prevent cell death
(82, 97, 163, 172, 175).

Exposure of host cells to high-protease-secreting P. gingivalis, or to high numbers of
bacteria, results in cell rounding and loss of attachment as a result of gingipain cleavage of
cadherins and integrins (143). Gingipains can also penetrate the host cell (102), where
gingipain protease activity is sufficient to activate pro-apoptotic molecules such as
caspase-3, caspase-8, caspase-9, Bid and Bax (149). Additional damage to periodontal
tissues can result from the activation of matrix metalloproteases by P. gingivalis gingipains
(26, 27, 42, 115) and the destruction of paxillin and other focal adhesion components (49,
63, 96). Conversely, the anti-apoptotic phenotype induced by low-protease-secreting P.
gingivalis, or by challenge with lower numbers of bacteria, is associated with activation of
the phosphatidylinositol 3-kinase/Akt and Janus kinase/STAT pathways, up-regulation of
anti-apoptosis genes Bcl-2 and survivin, and inhibition of cytochrome c release and of
caspase-3 activity (Fig. 3) (82, 172). More recently, P. gingivalis has been shown to interfere
with ATP-induced apoptotic pathways via the secretion of an ATP-hydrolyzing enzyme that
is a homolog of nucleoside diphosphate kinase (175). ATP scavenging by P. gingivalis
inhibits apoptosis by preventing ATP ligation of P2X7 purinergic receptors (Fig. 3).

Bacterial interference with cellular physiology can also impact the host cell cycle, by either
activating or inhibiting cell cycle progression. In gingival epithelial cells, invasion with P.
gingivalis results in increased proliferation, which is associated with accelerated progression
through the S-phase (Fig. 4) (70). Up-regulating the rate of cell division may be a
mechanism to maintain a reservoir of bacterially infected cells, in response to the high rate
of cell turnover in the junctional epithelium (13). Host cell division may also allow bacterial
cells to replicate without creating an overwhelming intracellular bacterial burden. In disease
states, loss of cell cycle control could impact wound healing in the periodontal pocket, thus
facilitating bacterial penetration of the periodontal tissues.
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Invasion of periodontal tissues
As discussed, subversion of host physiology is a complex and stressful process for both the
host cell and the invading pathogen. Once a stable relationship is achieved, it is
understandable that P. gingivalis would attempt to prolong the life span of its host cell by
blocking apoptosis and stimulating proliferation. The host cell does not, however,
necessarily achieve a state of immortality; ultimately, intracellular bacteria must have a
strategy to access new environments. P. gingivalis has been detected in the periodontal
connective tissue, implying that cell-to-cell spread of bacteria is a common event.

In a recent study, Yilmaz et al. (173) presented a new in vitro model system to study
bacterial cell-to-cell transmission. In this system, P. gingivalis bacteria (labeled with red
fluorescence) are allowed to invade cultured gingival epithelial cells (labeled with blue
fluorescence). After 24 h of co-culture, the infected blue gingival cells are mixed with
uninfected green gingival cells. Using fluorescence microscopy, the investigators were able
to clearly demonstrate transmission of bacteria from infected to noninfected host cells.
Transmission from cell to cell is mediated by a membranous projection with a structural
scaffold composed of actin filaments. Initiation of the spreading mechanism occurs at the
highest frequency after 24 h of invasion, indicating that cell-to-cell transmission is a late-
stage strategy of invasive P. gingivalis (171). This intracellular transmission does not appear
to affect host cell viability and may be a prominent mechanism for the spread of invasive
bacteria in the `stealth' mode. By moving deeper into the epithelial layers, P. gingivalis can
ensure access to viable, nonshedding epithelial cells.

In a three-dimensional cellular model for bacterial dissemination, Andrian et al. (4)
demonstrated that P. gingivalis can spread through the upper layers of gingival epithelial
cells and can also penetrate the basement membrane into connective tissues. P. gingivalis
gingipain proteases are capable of degrading matrix and tight junction components,
destroying the physical barriers formed by extracellular connective tissue and cellular
adhesion (2, 4, 146, 147). A P. gingivalis gingipain mutant was also able to invade the upper
gingival layers, but was unable to access the connective tissue layer (4). The ability to
disseminate beyond the initial site of infection is a characteristic of pathogenic bacteria in
general, and we can anticipate that P. gingivalis strains able to penetrate the basement
membrane and approach the alveolar bone may be more likely to exacerbate the bone loss
associated with periodontal disease.

Impact on innate immune surveillance
An expected advantage of residing in an intracellular niche is avoidance of the host immune
response. However, during adherence and invasion bacteria are exposed to innate immune-
surveillance systems. Gingival epithelial cells express toll-like receptors and other surface
pattern-recognition receptors along with intracellular recognition systems such as NODs
(150). A robust proinflammatory cytokine and chemokine response would thus be expected
following an interaction between the gingival epithelium and the periodontal bacteria. In
many instances, such as with F. nucleatum, this is indeed the case (164). P. gingivalis can
also induce the expression of proinflammatory immune mediators from gingival epithelial
cells (5, 71, 137); however, the inflammatory phenotype of P. gingivalis is much more
subtle and nuanced. P. gingivalis often suppresses or evades various components of innate
immunity, a feature that has led to its characterization as a stealth-like pathogen (24, 40).
For example, gingival epithelial cells do not express CD14 (a co-receptor for toll-like
receptor 2) on the surface and thus respond poorly to P. gingivalis FimA (39), which may
limit inflammatory responses to fimbriated, invasive P. gingivalis. A more pro-active role
for P. gingivalis in dampening innate immune responses can be seen from its ability to
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suppress transcription of the interleukin-8 gene in gingival epithelial cells, and thus inhibit
expression of this chemokine (51–53, 59, 164). Moreover, P. gingivalis can antagonize
interleukin-8 secretion following stimulation of epithelial cells with other common plaque
constituents, a phenomenon known as localized chemokine paralysis (24). A reduction in
interleukin-8 levels, along with the down-regulation of intercellular adhesion molecule-1
(52, 80) will impair neutrophil infiltration of gingival tissues, and consequently debilitate
local innate immunity and eventually disrupt the ecological balance between the host and the
subgingival microbiota, contributing to the initiation of disease activity.

Mechanistically, invasive P. gingivalis inhibit the activity of the transcription factor NF-κB
through the SerB-mediated disruption of signaling pathways (48). In addition, P. gingivalis
proteases impair inflammatory responses through the degradation of cytokines, chemokines
and their receptors (8, 15, 88, 107, 148, 155, 179, 180). However, consistent with the bipolar
personality of P. gingivalis, gingipain RgpA–Kgp complexes can penetrate the gingival
connective tissue and stimulate the secretion of proinflammatory mediators (102).
Moreover, the activation of protease-activated receptors PAR-1 and PAR-2 by P. gingivalis
proteases can both down-regulate the production of interleukin-8 (162) and up-regulate the
production of interleukin-6 (78). Clearly the pro- or anti-inflammatory status of gingival
tissues in the presence of P. gingivalis is highly context dependent.

Gingival epithelial cells can protect themselves against microbial challenge by the
production of antimicrobial peptides, such as human beta-defensins (40), and intracellular
antimicrobial compounds, such as calprotectin (99). As with some cytokine responses, there
is no obvious trend for human beta-defensin regulation by P. gingivalis. In various studies,
human beta-defensins 1, 2 and 3, which are produced by gingival epithelial cells, have been
found to be all up-regulated, variously up-regulated or not regulated (21, 40, 151, 164).
While bacterial strain differences and heterogeneity in epithelial cell receptor expression
(65) may account for some of these differences, it is also possible that the bacterial load
plays an important role. At a high number of P. gingivalis (possibly corresponding to
advanced disease), the secreted proteases may overwhelm host cells and obscure the
biological activity of other molecules, whereas at lower bacterial numbers (more equivalent
to gingival health), the full range of P. gingivalis host physiology subversion may be
observed.

Conclusions
Periodontitis presents with a wide spectrum of clinical severity, and this complex disease
phenotype is produced by variations in host susceptibility as well as variations in the
composition and virulence of the oral bacterial microbiota. Investigation of the host-
pathogen interaction at the cellular level has begun to reveal the behaviors of periodontal
bacteria that contribute to the disease process. For many oral bacteria, the ability to invade
host cells and establish an intracellular niche is a critical survival mechanism. As
exemplified by P. gingivalis, this initially innocuous relationship with a host cell can
potentially shift to a more sinister one.

From the host–bacteria interactions described here, it may seem as if P. gingivalis is
suffering from multiple-personality disorder. However, this pathogenic variability is
consistent with the genetic diversity of P. gingivalis. Strains with more potent combinations
of virulence factors are capable of causing cell damage or death, whereas other, less virulent,
strains behave in a more commensal manner. Thus, the specific virulence attributes of the
invading bacterial strain are key to determining the final host cell outcome. Further
investigation of these virulence traits will facilitate the development of the next generation
of periodontal therapies.
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Fig. 1.
Invasion of human epithelial cells with Porphyromonas gingivalis. Confocal image of
gingival epithelial cells [stained with TRITC-phalloidin (red)] infected with P. gingivalis
[stained with FITC (green)]. The image was analyzed using Imaris version 5.0.1 software. A
Z-stack of the x–y sections was converted to composite images using the iso surface and
spot detection functions of the surpass option. The section view in the x and y axes was
created using the clipping function. The image was generated by Masae Kuboniwa, Osaka
University, Japan.
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Fig. 2.
Model of interactions between Porphyromonas gingivalis and gingival epithelial cells that
are associated with internalization. Proximity to gingival epithelial cells induces P.
gingivalis to secrete proteins such as the SerB serine phosphatase. SerB enters gingival
epithelial cells where it dephosphorylates target proteins, including mitogen-activated
protein kinase family members, which in turn prevent NF-κB activation. SerB activity
culminates in a reduction of interleukin-8 production and in the remodeling of microfilament
and microtubule cytoskeletal architecture. Adhesion of P. gingivalis is mediated by the long
(FimA) fimbriae that engage integrins and induce the formation of focal adhesin complexes
and integrin-dependent signaling. Calcium ions (Ca2+) are released from intracellular stores,
a signaling event that also funnels through the cytoskeletal structure, and the cytoskeletal re-
arrangements allow P. gingivalis to enter the host cell. P. gingivalis cells rapidly locate in
the perinuclear area where they replicate and utilize microfilaments to spread to adjacent
gingival epithelial cells. CM, cytoplasmic membrane; IL-8, interleukin-8; IκB, inhibitor of
κB; MAP, mitogen-activated protein kinase; MF, micro-filament; MT, microtubule; NF-κB,
nuclear factor-κB; P, phosphate.
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Fig. 3.
Summary of major apoptotic pathways modulated by Porphyromonas gingivalis in gingival
epithelial cells to suppress apoptotic cell death. Jak1; P; PI3K; PIP3; Stat3.
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Fig. 4.
Porphyromonas gingivalis impacts cell cycle control in gingival epithelial cells. Schematic
representation of cell cycle pathways modulated by P. gingivalis infection. The pointed
arrow indicates molecular interactions resulting in activation; the flat arrow indicates
molecular interactions resulting in inhibition. Reprinted with permission from Microbes and
Infection 2008, 10:122-128, Copyright Elsevier (70).
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Table 1

Invasive periodontal bacteria, invasion effectors and host cytoskeletal requirements for internalization

Species Invasins Cytoskeletal requirements

Porphyromonas gingivalis Major fimbriae (FimA) Actin polymerization

Gingipains Microtubule activity

Phosphoserine phosphatase (SerB)

Aggregatibacter actinomycetemcomitans Fimbriae Actin polymerization

Membrane vesicles

Extracellular amorphous material

Api surface proteins/autotransporters

Fusobacterium nucleatum FadA surface protein Actin polymerization

Lam adhesin Microtubule activity

Prevotella intermedia Type C fimbriae Actin polymerization

Tannerella forsythia BspA leucine-rich surface protein

S-layer
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