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SUMMARY

Circadian clocks are coupled to metabolic oscillations through nutrient-sensing pathways. Nutrient
flux into the hexosamine biosynthesis pathway triggers covalent protein modification by O-linked
[B-D-N-acetylglucosamine (O-GIcNAc). Here we show that the hexosamine/O-GIcNAc pathway
modulates peripheral clock oscillation. O-GIcNAc transferase (OGT) promotes expression of
BMAL1/CLOCK target genes and affects circadian oscillation of clock genes /n vitroand in vivo.
Both BMAL1 and CLOCK are rhythmically O-GIcNAcylated and this protein modification
stabilizes BMAL1 and CLOCK by inhibiting their ubiquitination. /n vivo analysis of genetically
modified mice with perturbed hepatic OGT expression shows aberrant circadian rhythms of
glucose homeostasis. These results establish the counteraction between O-GlcNAcylation and
ubiquitination as a key mechanism that regulates the circadian clock and suggest a crucial role for
O-GIcNAc signaling in transducing nutritional signals to the core circadian timing machinery.

INTRODUCTION

Almost all mammalian cells contain a self-sustained circadian (about 24-h) clock that runs in
tight synchrony with environmental cues, including light and food (Bass and Takahashi,
2010). While the master pacemaker residing in the hypothalamic suprachiasmatic nucleus
(SCN) is entrained directly by light, peripheral circadian oscillators can be entrained by
diurnal feeding (Schibler and Sassone-Corsi, 2002). Among various macronutrients, glucose
is a particularly potent entraining cue for peripheral clocks (Stephan and Davidson, 1998).

© 2013 Elsevier Inc. All rights reserved.

"Correspondence to: xiaoyong.yang@yale.edu, Contact: Xiaoyong Yang, Tel: 1-203-737-1446, Fax: 1-203-785-7499,
xiaoyong.yang@yale.edu.

Publisher's Disclaimer: This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our
customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of
the resulting proof before it is published in its final citable form. Please note that during the production process errors may be
discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

SUPPLEMENTAL INFORMATION:

Supplemental information includes four figures, two tables, and additional experimental procedures.



1duasnuey Joyiny vd-HIN 1duasnuey Joyiny vd-HIN

1duasnuey Joyiny vd-HIN

Lietal.

RESULTS

Page 2

Cellular nutrient sensors such as nuclear receptors have been proposed as mechanisms for
entrainment by food (Asher and Schibler, 2011; Yang, 2010; Yang et al., 2006), but the
molecular basis for glucose-mediated entrainment remains a mystery.

Circadian timekeeping occurs at the cellular level by virtue of transcriptional-translational
auto-regulatory feedback loops (Mohawk et al., 2012). The transcriptional activators
BMAL1 and CLOCK drive expression of Period (Perl and Per2) and Cryptochrome (Cry1
and Cry2) genes. PER and CRY proteins accumulate progressively and in turn inhibit
BMAL1/CLOCK activity, thus generating the approximate 24-h cycle of clock gene
expression. The pace of oscillation of this auto-feedback loop is controlled by various
regulatory mechanisms, including post-translational modifications of clock proteins (Bass
and Takahashi, 2010).

Cells also possess a distinct form of post-translational modification that is highly sensitive to
nutrient availability. Glucose flux via the hexosamine biosynthesis pathway leads to
intracellular glycosylation by addition of p-D-N-acetylglucosamine (GIcNAc) to many
cytoplasmic and nuclear proteins at the hydroxyl groups of serine and threonine residues
(Hanover et al., 2012; Hart et al., 2011). This widespread and dynamic glycosylation is
mediated by O-linked GIcNAc transferase (OGT) and O-GIcNAcase (OGA), which
catalyzes sugar addition and removal, respectively. O-GIcNAc modification is increasingly
recognized as a key regulator of diverse cellular processes. O-GIcNAcylation of a number of
transcription factors mediates the effects of glucose on transcription of genes involved in
key metabolic processes (Hart et al., 2011). A recent study has shown that O-GIcNAcylation
links the cardiomyocyte circadian clock to metabolic outputs (Durgan et al., 2011). In
Drosophila, O-GlcNAcylation of the PER protein has been shown to contribute to setting the
clock speed (Kim et al., 2012). The present study provides the direct evidence that glucose
availability regulates cellular clock oscillation through the hexosamine/O-GIcNAc pathway.
We further demonstrate that BMAL1 and CLOCK are key targets of O-GIcNAcylation that
in turn prevents degradation of these proteins by inhibiting their ubiquitination. Accordingly,
this work establishes a new mechanism for metabolic entrainment of the circadian clock by
covalent modification of core clock components.

The hexosamine/O-GIcNAc pathway modulates cellular clock oscillation

In light of the important role of food-derived signals for peripheral clock entrainment, we
examined whether the nutrient-sensing hexosamine pathway affects circadian oscillation.
After dexamethasone synchronization, U20S cells (U20S-B6) stably expressing a
BmalZI:luciferase reporter construct were grown in high (25 mM) glucose culture medium
containing D-luciferin and monitored by the real-time bioluminescence recording system.
Addition of azaserine, an inhibitor of hexosamine biosynthesis (Figure S1A), increases the
period length and decreases the amplitude of Bmal1 oscillation (Figure 1A). D-glucosamine
is able to fuel the cellular pool of UDP-GIcNAc, the donor substrate of O-GIcNAcylation
(Figure S1A). Addition of D-glucosamine dramatically delays the phase of Bmall
oscillation (Figure S1B). These data indicate a role for the hexosamine pathway in circadian
regulation.

To substantiate our observations, we examined the oscillation of endogenous clock genes in
synchronized U20S-B6 cells. Compared with low (5 mM) glucose, high glucose increases
the amplitude of Bmalland CryZ mRNA oscillation, whereas azaserine suppresses them
(Figure 1B). Immunoblot analysis shows that low glucose and azaserine also decrease
BMALL1 protein levels as compared with high glucose (Figure 1C). Although the glucose
concentrations do not affect the phase of Bmall mRNA cycling (Figure 1B), low glucose
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delays the phase of BMALL1 protein accumulation (Figure 1C), suggesting that glucose can
regulate BMALL levels post-transcriptionally.

GFATL is the first and rate-limiting enzyme in hexosamine biosynthesis and the target of
azaserine. The siRNA-mediated knockdown of GFAT1 decreases expression of Bmall and
Cry1 (Figures 1D and S1C), which is also seen in the cells transfected with OGT siRNA
(Figures 1E and S1D). Consistently, OGT knockdown reduces BMAL1 protein abundance
(Figure S1E). Furthermore, OGT knockdown dramatically decreases the amplitude of the
BmalZI:luciferase rhythm (Figure 1F). Taken together, these data demonstrate that the
hexosamine/O-GIcNAc pathway regulates cellular clock oscillation.

OGT promotes expression of BMAL1/CLOCK target genes

To further dissect the circadian function of hexosamine signaling, we examined the
rhythmicity of expression of key genes in this pathway. In mouse livers, diurnal levels of
Gfatl transcripts are ultradian with a 12-hr period, whereas Ogttranscripts oscillate in a
circadian manner (Figure 2A). Oga expression exhibits a weak diurnal rhythm (Figure S2A).

To investigate whether rhythmic hexosamine signaling affects expression of clock genes, we
analyzed the endogenous gene expression in U20S cells transiently expressing GFP or OGT
from recombinant adenovirus vectors. The results show that OGT significantly increases
expression of Per2and CryI (Figure 2B). In contrast, Cre-induced homologous
recombination in OGTfoX'Y mouse primary hepatocytes that eliminates OGT expression
decreases expression of BMAL1/CLOCK target genes, including Perl, PerZ, Cryland Rorc
genes (Figure 2C). Luciferase reporter assays using a Per2-luciferase construct reveal that
OGT promotes BMAL1/CLOCK-mediated activation of Per2transcription, whereas the
catalytically dead OGTgggga/eg00a (OGTEg/an) has no effect (Figures 2D, S2B and S2C).
These results indicate that OGT increases BMAL1/CLOCK transcriptional activity by an
enzymatic mechanism, and thereby promotes expression of BMAL1/CLOCK target genes.

Rhythmic O-GIcNAcylation stabilizes BMAL1 and CLOCK by inhibiting their ubiquitination

Chromatin immunoprecipitation using an anti-O-GIcNAc antibody reveals that O-
GlcNAcylated proteins associate with the known E-box elements (Ripperger and Schibler,
2006), the conserved motif recognized by BMAL1/CLOCK, in the promoter of the circadian
gene Dbp (Figure 2E). This suggests that the BMAL1/CLOCK complex itself could be O-
GlcNAcylated. To test this possibility, we immunoprecipitated epitope-tagged BMAL1 and
CLOCK proteins expressed in synchronized U20S cells and assayed the O-GIcNAc levels
of BMAL1 and CLOCK over a complete circadian cycle. Immunoblot analysis reveals that
both BMAL1 and CLOCK are O-GlcNAcylated rhythmically (Figure 3A). O-
GlcNAcylation of endogenous CLOCK proteins is decreased by azaserine treatment (Figure
S3A), supporting the importance of the hexosamine pathway in circadian regulation.

It has been known that OGT can modulate protein stability (Dey et al., 2012; Ruan et al.,
2012). Whether OGT regulates CLOCK stability was tested by treating HEK293T cells
expressing Myc-tagged CLOCK in the presence or absence of exogenous OGT with
cycloheximide (Figure 3B). OGT overexpression increases the estimated half-life of
CLOCK proteins. In line with this, we found that OGT overexpression decreases the steady-
state ubiquitination of CLOCK (Figure 3C).

As shown in Figure 3A, BMALL is also O-GlcNAcylated. The doOGAP bioinformatic
database predicts serine 418 (S418) in BMAL1 as a putative modification site (Wang et al.,
2011) (Figure S3B). Mutation of S418 to alanine decreases but does not abolish O-
GlcNAcylation of BMAL1 (Figure 3D). To investigate whether O-GIcNAc modification on
BMAL1 regulates its stability, Myc-tagged wildtype (WT) BMALL or S418A mutant was
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transiently expressed in HEK293T cells in the presence or absence of exogenous OGT and
treated with cycloheximide (Figure 3E). The BMAL1 S418A mutant degrades faster than
the WT protein, and OGT overexpression increases the half-life of BMALL, as it does on
CLOCK (Figures 3B and 3E). To test whether O-GIcNAcylation regulates BMALL stability
by inhibiting ubiquitination, HEK293T cells transiently expressing Myc-tagged BMAL1
WT or S418A were treated with the proteasome inhibitor MG132 in the presence or absence
of the OGA inhibitor PUGNACc. Elevation of global O-GIcNAc levels by PUGNAC leads to
decreased ubiquitination, and BMAL1 S418A has more attached ubiquitins than WT (Figure
3F). Per2-luciferase reporter assays show that BMALL S418A exhibits impaired
transcriptional activity compared to WT when co-expressed with CLOCK (Figure S3C).

The nuclear deubiquitinase BRCA1-associated protein 1 (BAP1) has recently been
characterized as an OGT-binding protein that removes the ubiquitin markers on other
associated proteins (Dey et al., 2012; Ruan et al., 2012). It follows that OGT-targeted
proteins are likely to be regulated by BAP1. Co-expression of BAP1 in HEK293T cells
transiently expressing Myc-tagged BMALL1 or CLOCK reveals that BAP1 stabilizes both
proteins (Figure 3G). Based on these results, we conclude that OGT stabilizes BMAL1 and
CLOCK through direct O-GlcNAcylation which prevents ubiquitination and subsequent
degradation.

Hepatic manipulation of OGT perturbs the diurnal rhythm of glucose homeostasis

In line with the results from U20S cells (Figure 1C), immunoprecipitation analysis of O-
GIcNAcylated proteins from mouse livers shows diurnal variations in O-GIcNAcylation of
BMAL1 and CLOCK that peaks in the fed/dark phase (Figure 4A). Consistently, O-
GIcNAcylation of hepatic BMAL1/CLOCK is increased by refeeding, confirming that O-
GIcNAcylation of clock proteins is responsive to food availability (Figure S4A). To
determine whether O-GlcNAcylation regulates circadian clocks /in vivo, we generated liver-
specific OGT overexpression mice by tail-vein injection of recombinant adenovirus (Figure
4B). Analysis of circadian transcripts in livers of these mice shows that OGT overexpression
advances the phase of Bmall and Clock and increases expression levels of Per2, Cry1,
Rory, and Dbp during the peak phase (Figures 4B and S4B, and Table S1), supporting the
notion that O-GlcNAcylation increases BMAL1/CLOCK-mediated E-box-dependent
transcription.

To study the effects of O-GIcNAc deficiency on clock oscillation, we generated liver-
specific OGT knockout mice by tail-vein injection of the recombinant adenovirus expressing
Cre recombinase into OGT floxed mice. Immunoblot analysis shows that BMAL1 and
CLOCK exhibit decreased O-GIcNAc levels in mouse livers (Figure S4C). The oscillation
of Bmall transcripts exhibits decreased amplitude, due to reduced peak levels (Figure 4C).
However, Per2and Cry1 oscillation is unchanged (Figure S4D), suggesting the existence of
compensatory mechanisms. Together, these results indicate that O-GIcNAcylation regulates
circadian rhythms of clock gene expression /n vivo.

Nutrient-dependent peripheral clock entrainment allows metabolic tissues to optimize the
timing of their metabolic processes. Accordingly, we examined whether glucose-responsive
O-GIcNAc signaling in the liver affects diurnal rhythms of glucose metabolism. The results
show that overexpression of OGT boosts the diurnal rhythm of blood glucose whereas
control mice maintain a weak diurnal variation of circulating glucose (Figure 4D). Knockout
of OGT advances the circulating glucose rhythm by 6-8 h and induces hyperglycemia in the
daytime (Figure 4E). To assess the circadian metabolic effects of reduced O-GIcNAc
signaling, we assayed the circadian responses of OGT deficient animals to intraperitoneal
injection of a bolus of glucose. While control mice exhibit diurnal changes in glucose
tolerance, depletion of OGT exacerbates the already poor glucose tolerance at ZT1 (1h after
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light—on), which is not seen at ZT13 (Figure 4F). Gluconeogenesis is known to be circadian.
RT-gPCR analysis of liver transcripts shows that rhythmic expression of gluconeogenic
genes is perturbed by OGT overexpression or depletion (Figures S4B and S4D). This
indicates that O-GIcNAc signaling is important for diurnal regulation of glucose metabolism
in vivo and support the conclusion that OGT acts as a nutrient-sensing mediator that resets
peripheral circadian clocks.

DISCUSSION

Here we have shown that the hexosamine/O-GIcNAc pathway regulates the circadian clock
in peripheral tissues. It has been known for a decade that diurnal variation in nutrient
availability can override the light/dark cycle to entrain circadian rhythms in peripheral
tissues (Damiola et al., 2000; Stokkan et al., 2001). How metabolic signals entrain the
circadian clock remains a central question in circadian biology (Bass and Takahashi, 2010).
Among macronutrients, glucose has a prominent role in metabolic entrainment (Hirota et al.,
2002; Stephan and Davidson, 1998). Extracellular glucose levels modulate intracellular
UDP-GIcNAc and subsequent O-GIcNAc levels through the hexosamine biosynthesis
pathway (Figure S1A). OGT overexpression increases the amplitude of clock oscillation /in
vivo (Figure 4B) whereas OGT knockout decreases O-GIcNAcylation and protein
abundance of BMAL1 and CLOCK and decreases Bmall oscillation (Figures 4C and S4B).
Notably, depletion of OGT in liver fails to perturb oscillation of the core oscillator genes Per
and Cry (Figure S4D). This conundrum may be explained by the dominant effect of cryptic
oscillating systemic cues (Hughes et al., 2012; Kornmann et al., 2007). For instance, Hughes
et al. found that recovery of the SCN clock in clock mutant mice is sufficient to re-establish
the circadian rhythm of the liver clock. Whether O-GIcNAc signaling is integral to food
entrainment in peripheral clocks is an important subject for further investigation.

We further demonstrate that O-GIcNAcylation on BMALL1 and CLOCK prevents their
protein degradation by inhibiting ubiquitination. The control of BMAL1/CLOCK protein
stability is emerging as a critical layer of regulation on the amplitude and phase of clock
oscillation (Cardone et al., 2005; Lee et al., 2008; Sahar et al., 2010; Stratmann et al., 2012).
We have demonstrated that O-GlcNAcylation stabilizes BMAL1/CLOCK and thereby
increases BMAL1/CLOCK-mediated transcription of genes in the negative limb of the
clock, such as Perand Cry (Figures 3 and 4). O-GIcNAcylation of PER and other
components could further stabilize the negative limb (Kim et al., 2012). Together, our study
helps establish a framework for understanding the crosstalk between different protein
modifications on the positive limb of the circadian clock and provide a novel mechanism for
food entrainment.

In physiological context, perturbation of the O-GIcNAc signaling in liver affects the diurnal
rhythm of glucose homeostasis (Figures 4D—4F). OGT has been established as a suppressor
of insulin signaling and a mediator of glucorticoid transrepression and gluconeogenesis
(Dentin et al., 2008; Housley et al., 2009; Li et al., 2012; Ruan et al., 2012; Yang et al.,
2008). Thus, changes in plasma glucose rhythm are likely due to the combined effects of
OGT on the circadian clock and nutrient/hormone signaling.

In summary, the present study establishes the crosstalk between O-GIcNAcylation and
ubiquitination as a key molecular mechanism underlying metabolic entrainment of the
circadian clock, supporting the concept that various post-translational modifications on the
clock proteins integrate environmental and physiological cues to control circadian rhythms.
Diurnal rhythms of O-GIcNAc signaling have broad implications for the circadian regulation
of physiological processes in peripheral tissues, and the O-GIcNAc cycling enzymes OGT
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and OGA are thus potential drug targets for treating disorders at the interface of nutrient
metabolism and circadian rhythms.

EXPERIMENTAL PROCEDURES

Cell culture

U20S, Hela, and HEK 293T cells were maintained in high glucose DMEM with 10% fetal
bovine serum (FBS). U20S-B6 cells were maintained in high glucose DMEM with 2 pg/ml
of Puromycin (Sigma) and 10% FBS. Primary hepatocytes were isolated by Yale Liver
Center Core Facility and plated in DMEM with 10% FBS, 2 mM sodium pyruvate, 1 uM
dexamethasome, 0.1 uM insulin on Collagen | coated plates. U20S-B6 cells were
transfected by lipofectamine 2000 (Invitrogen). U20S, HelLa, and HEK 293T cells were
transfected with FUGENE HD (Promega). For time course studies of BMAL1/CLOCK O-
GIcNAc modifications, U20S cells were transfected upon confluence, cultured for two days,
then shocked by 100 nM dexamethosone for 90 min and switched to fresh high glucose
DMEM medium with 10% FBS. For expression assays, primary hepatocytes and U20S cells
were infected with adenoviruses in serum-free DMEM medium containing 0.5% BSA.
Azaserine (20 uM), D-glucosamine (5 mM), PUGNACc (10 uM, 16 h), MG132 (20 uM, 4 h),
Cycloheximide (100 pg/ml) were added to the cultures as indicated.

Real-time recordings of bioluminescence

48 hours after transfection, cells were shocked for 90 min at 37°C in a final concentration of
100 nM dexamethasone. Following dexamethasone shock, the medium was replaced with
high glucose Phenol Red-free DMEM (Gibco, supplemented with 10% FBS, 10 mM HEPES
pH 7.3, non-essential amino acids, sodium pyruvate, and 100 uM D-Luciferin). The plate
was sealed with a plastic cover and was read in a temperature-controlled TECAN infinite
M200 Luminometer and iControl Software (Tecan Group, Ltd) (Vollmers et al., 2008).
Luminescence for each well was integrated over 5 seconds and read at 30-minute intervals
for 5 days at a temperature setting of 37 °C. Lumicycle data were statistically assessed for
rhythmicity using JTK_Cycle (Hughes et al., 2010) using a period length window of 18-40
hours. Three days of data were used for analyses, spanning 24-96 h after changing to the
assay culture media. JTK_Cycle was implemented in R (x64 v2.12.1) (Hughes et al., 2010;
Miyazaki et al., 2011). All scripts are available on demand.

RNA extraction, cDNA synthesis, and real-time quantitative PCR

Procedures were described previously (Ruan et al., 2012). Q-PCR data were normalized to
either 43664 or Gapdh as indicated. Primer sequences were listed in Table S2.

Antibodies, immunoprecipitation and immunoblotting

Anti-Flag (F3165) and anti-p-Actin (A5441) antibodies were from Sigma. Anti-Bmall
(A302-616A) and anti-Clock (A302-617A) were from Bethyl Laboratories. Anti-O-GICNAc
(RL2, ab2739) and anti-OGT (ab50270) were from Abcam. Anti-Ub (P4D1, sc-8017) and
anti-Myc (9E10, sc-40) antibodies were from Santa Cruz Biotechnology. Anti-HA antibody
(12CAD5) was from Roche. Procedures for immunoprecipitation and immunoblotting assays
were described previously (Ruan et al., 2012).

Chromatin immunoprecipitation

Procedures were described previously (Ruan et al., 2012). The 3" UTR of Dbpwas used as
the negative control. A small aliquot of untreated sonicated chromatin was reverse cross-
linked and used as the total input DNA control.
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Animal studies

All procedures have been approved by the Institutional Animal Care and Use Committee of
Yale University. Male C57BI/6 mice (10-week old) were purchased from NCI/NIH. Female
OGTflox/flox (5. months old) mice were generated previously (Shafi et al., 2000; Watson et
al., 2010). Mice were maintained under 12h/12h light/dark cycle with free access to food
and water. Recombinant adenoviruses (2 x 10° plaque forming units (o) for males, 5 x 108
pfufor females) was delivered by systemic tail-vein injection to mice. 3—-6 days after viral
infection, mice were subjected for glucose tolerance tests. Ad /ibitum fed male mice were
injected with intraperitoneally with glucose (1.5 g/kg body weight) at ZT1 or ZT13. Blood
glucose were measured from tail-vein blood collected at the designated times using Nova
Max Glucometer. Tissues were collected for RNA and protein isolation.

Statistical Analysis

Data are presented as means + SEM. Statistical analysis was with GraphPad Prism by
ANOVA, post-hoc Bonferroni’s test or t test where appropriate. Statistical analysis was
accepted as significant if ~value was < 0.05.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. The hexosamine/O-GIcNAc pathway modulates cellular clock oscillation

(A) Average real-time bioluminescence from synchronized U20S-B6 cells stably expressing
a BmalI:luc construct in the presence or absence of azaserine (n = 5). The vertical bar
represents relative luminescene (Rel. Lum.). Circadian parameters were calculated by
JTK_CYCLE. (B) RT-gPCR analysis of synchronized U20S-B6 cells (n = 3). 5G/25G, 5/25
mM glucose; AZA, azaserine. (C) Immunoblot analysis of synchronized U20S-B6 cells (n
= 3 per lane). (D) RT-gPCR analysis of synchronized U20S-B6 cells transfected with
GFATL1 siRNA (n = 3). (E) RT-gPCR analysis (n = 3) and (F) average real-time
bioluminescence (h = 5) of OGT knockdown on clock oscillation in synchronized U20S-B6
cells. siCTL, scrambled siRNA; siGFAT1, GFAT1 siRNA; siOGT, OGT siRNA. All data
are shown as mean + SEM. *P <0.05, **P<0.01, ***P <0.001, ****P,<0.0001, post-hoc
Bonferroni’s test or two-tailed Student's ftest.
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Figure2. OGT promotes expression of BMAL /CLOCK target genes

(A) Diurnal levels of GfatZ and Ogt mRNA in mouse livers (n = 4). Data were normalized to
that of t36b4. (B) RT-gPCR analysis of U20S cells infected with the adenovirus expressing
OGT (n = 3). (C) RT-qPCR analysis of OGTTI°X'Y mouse primary hepatocytes transduced
with the adenoviral vector expressing Cre recombinase (n = 3). (D) Per2-luciferase assays of
HeL a cells transiently expressing OGT, Myc-BMAL1, and Myc-CLOCK constructs (n = 3).
GFP was used to equalize the total plasmid amount. Luminenscence signals were
normalized to that of GFP control groups. Immunoblot analysis of cell lysates is shown to
confirm overexpression of OGT. (E) Chromatin immunoprecipitation (ChIP)-qPCR analysis
of mouse primary hepatocytes using an O-GIcNAc antibody (n = 3). ChIP with mouse 1gG
was used as the negative control. The diagram of assayed DNA regions is shown on the
right. gPCR signals were normalized to those from genomic DNA inputs. All data are shown
as mean + SEM. *P<0.05, **P <0.01, ***P <0.001, post-hoc two-tailed Student's #test.
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Figure 3. O-GIcNAcylation stabilizes CLOCK and BMAL 1 by inhibiting ubiquitination

(A) Circadian O-GIcNAc levels of BMAL1/CLOCK in synchronized U20S cells transiently
expressing Myc-tagged BMAL1 or CLOCK. O-GIcNAc levels normalized to levels of
BMAL1 and CLOCK proteins are shown below the BMAL1 blot. (B—C) HEK 293T cells
were transfected with Myc-CLOCK in the absence or presence of Flag/HA (FH)-tagged
OGT. (B) Immunoblot analysis of CLOCK upon cycloheximide (CHX) treatment. Half-
lives of Clock are shown. (C) Immunoblot analysis of ubiquitination of CLOCK. Cells were
pre-treated with MG132 and subjected to immunoprecipitation. (D) HEK 293T cells were
transfected with Myc-tagged wildtype (WT) or S418A mutant BMALL. O-GIcNAcylation
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of BMAL1 was determined when pre-treated with or without PUGNACc was determined. (E)
Stability of WT and S418A BMAL1 in the absence or presence of FH-OGT was determined
by CHX treatment of transfected HEK 293T cells. (F) Immunoblot analysis of
ubiquitination of BMAL1 WT and S418A in HEK 293T cells. Cells were pre-treated with
MG132 and subjected to immunoprecipitation. (G) Immunoblot analysis of Myc-tagged
BMAL1/CLOCK upon CHX treatment in the presence or absence of Flag-BAP1.
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Figure4. OGT regulates expression of clock genes and glucose homeostasisin mouse livers

(A) Diurnal O-GlcNAc profiles of BMAL1/CLOCK in mouse livers (n = 3 per time point).
Results of densitometry analysis are shown on the right. (B) Diurnal gene expression
profiles of male mouse livers transduced with Ad-OGT (n = 4 per time point). Data were
normalized to v36b4. (C) Diurnal gene expression profiles of Ogtfloxed female mouse
livers transduced with Ad-Cre (n = 3 per time point). Data were normalized to Gapah. (D)
Diurnal plasma glucose levels in male mice overexpressing OGT in livers (n = 7). (E)
Diurnal plasma glucose levels in female OGTfloX/flox mice overexpressing Cre in livers (n =
12). (F) Diurnal plasma glucose responses to intraperitoneal glucose tolerance tests (GTT) at
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week 12 in male mice expressing scrambled-shRNA (shCTL) or OGT-shRNA (shOGT) in
the liver (n = 7). Average areas under curve (AUC) of GTT curves are shown on the right.
All data are shown as mean £ SEM. *P<0.05, **P <0.01, ***P <0.001, post-hoc
Bonferroni’s multiple comparison test.
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