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Summary
Objective—Although many cancer patients experience multiple concurrent symptoms, most
studies have either focused on the analysis of single symptoms, or have used methods such as
factor analysis that make a priori assumptions about how the data is structured. This article
addresses both limitations by first visually exploring the data to identify patterns in the co-
occurrence of multiple symptoms, and then using those insights to select and develop quantitative
measures to analyze and validate the results.

Methods—We used networks to visualize how 665 cancer patients reported 18 symptoms, and
then quantitatively analyzed the observed patterns using degree of symptom overlap between
patients, degree of symptom clustering using network modularity, clustering of symptoms based
on agglomerative hierarchical clustering, and degree of nestedness of the symptoms based on the
most frequently co-occurring symptoms for different sizes of symptom sets. These results were
validated by assessing the statistical significance of the quantitative measures through comparison
with random networks of the same size and distribution.

Results—The cancer symptoms tended to co-occur in a nested structure, where there was a small
set of symptoms that co-occurred in many patients, and progressively larger sets of symptoms that
co-occurred among a few patients.

Conclusions—These results suggest that cancer symptoms co-occur in a nested pattern as
opposed to distinct clusters, thereby demonstrating the value of exploratory network analyses to
reveal complex relationships between patients and symptoms. The research also extends methods
for exploring symptom co-occurrence, including methods for quantifying the degree of symptom
overlap and for examining nested co-occurrence in co-occurrence data. Finally, the analysis also
suggested implications for the design of systems that assist in symptom assessment and
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management. The main limitation of the study was that only one dataset was considered, and
future studies should attempt to replicate the results in new data.

1. Introduction
Although cancer patients experience on average between 11-13 symptoms [1], most research
has focused on the etiology, progression, and treatment of single symptoms. Furthermore,
because of the additive impact of multiple symptoms, patients with many co-occurring
symptoms generally fare worse than those who have only a few [2-8]. Understanding how
symptoms co-occur in patients can therefore lead to more efficient assessment and
management of symptoms, and significantly improve the overall function and quality of life
for cancer patients [9].

To address this need, recent research has used data reduction methods such as factor analysis
[10] and hierarchical clustering [10] to identify symptom clusters in different granularities of
data. For example, hierarchical cluster analysis was used to identify a cluster of five
symptoms (e.g., hot flashes) in menopausal women with breast cancer [11], and factor
analysis was used to identify three clusters of symptoms across patients of all types of
cancer [12]. While these early studies have made important inroads into identifying
symptom clusters, researchers have admitted that such methods produce results that are
inherently unverifiable [11]. For example, there is no commonly accepted method to select
cut-off points in a dendrogram (generated by hierarchical clustering [10]) to identify disjoint
clusters. More importantly, these methods are based on a priori assumptions about the
existence of disjoint symptom clusters, potentially masking more complex relationships in
the data.

Inspired by the importance of symptom cluster research, but concerned about the a priori
assumptions in current methods about the structure of clusters in the data, we used a network
layout algorithm to first visualize the complex relationship between cancer patients and
symptoms. This approach enabled us to visually inspect the data, with minimal assumptions
about the underlying structure of symptom co-occurrence in the data. For example, networks
enable the identification of multiple structures (e.g., hierarchical, disjoint, overlapping,
nested) in a single representation, and therefore can guide the selection of cluster analysis
methods that are designed to analyze only specific types of structures. Using the visual
observations from the networks, we therefore selected and developed the appropriate
quantitative methods to verify the nature of the co-occurrence. Such a multi-method
approach helped us to arrive at a new understanding of how symptoms co-occur across
cancer patients, with insights about the treatment and management of co-occurring
symptoms.

We begin with an overview of the relevant clinical literature referred to as “symptom cluster
research.” Next, we present how the current literature motivated our research question,
followed by a description of the data, and how we used a combination of network
visualizations and quantitative methods to address that research question. The results of the
analyses were then used to explore implications for the design of decision-support systems
and methods to understand symptom co-occurrence. We conclude with a description of our
future research in using networks and associated quantitative methods to understand patient
factors associated with symptom clusters, and their implications for symptom management
and treatment.
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2. Background on Symptom Co-Occurrence
2.1 Current Research on Identifying Symptom Clusters

The research topic of symptoms clusters was first introduced by Dodd et al., [13] to bring
attention to the fact that although many patients experience multiple co-occurring
symptoms, most research in symptom management had until then focused on the etiology
and treatment of single symptoms. They proposed the following working definition of a
symptom cluster: “When three or more concurrent symptoms (e.g., pain, fatigue, and sleep
disturbances, or nausea, vomiting, and poor appetite) are related to each other, they are
called a symptom cluster.” [13]. Since then there have been other definitions proposed
including two or more concurrent symptoms [14], but currently there is no resolution on the
definition of a symptom cluster [1].

Despite the lack of agreement on the definition of a symptom cluster, there has been active
research in identifying them in different patient-symptom databases. Most of the symptom
cluster research has been in cancer [1, 15], although the approach is increasingly being used
to analyze non-cancer conditions such as myocardial infarction [16], and fibromyalgia [17].
A recent review of the literature on cancer symptom cluster research [1] identified two
classes of studies: (1) analysis of symptom clusters across all types of cancers pooled
together, and (2) analysis of symptom clusters in specific cancers such as breast cancer.
Within each class of studies there was considerable variability in the number of patients, the
instruments used to identify symptoms, and the methods used. For example, Walsh and
Rybicki [18] analyzed 922 cancer patients with different cancers using a 38-item symptom
checklist. The data were analyzed using agglomerative hierarchical cluster analysis, which
helped to identify 7 different symptom clusters. In contrast, Chen and Tseng [12] analyzed
151 cancer patients using the MD Anderson Symptom Inventory [19]. The data were
analyzed using factor analysis which helped to identify two symptom clusters. Across the
studies, the only common symptom cluster was nausea and vomiting, with high variability in
the rest of the symptom clusters identified.

A similar variability in data collection, analysis methods and resulting symptom clusters
occurs in the analysis of specific cancers such as breast cancer [11], and lung cancer [20].
To date, the research in specific cancer sites has not identified any common clusters across
studies [1]. Symptom cluster research is therefore clearly in its early stages, and while there
is considerable interest in identifying symptom clusters, there is neither consensus on the
definition of symptom clusters, data collection methods, analytic approaches, nor resulting
clusters [21-23].

2.2 Current Methods Used to Analyze Symptom Co-Occurrence
Although a consensus on definitions and data collection methods is crucial for symptom
cluster research to move forward, we focus here only on the methods for identifying
symptom clusters. As stated by two reviews of the symptom cluster literature [1, 15],
researchers have used two main methods to analyze symptoms clusters: (1) agglomerative
hierarchical clustering, and (2) factor analysis. The first approach can be used to either
cluster symptoms based on how they co-occur across patients, or to cluster patients based on
how they share symptoms. The method entails first generating a dendrogram (a hierarchy of
symptoms or patients) based on how frequently the symptoms co-occur across patients or
how patients are similar based on their symptoms. The resulting dendrogram is then visually
inspected to determine a cut through the hierarchy to define disjoint clusters. Hierarchical
clustering is highly dependent on the choice of dissimilarity and linkage measures, and the
agglomerative nature of the algorithm makes it very sensitive to small variations in the data
[24]. Furthermore, there is no commonly accepted method to determine the cut through a
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dendrogram, or whether a cut is even appropriate. Given these methodological issues, other
methods (visual or quantitative) should be used to confirm the findings.

The second approach that is commonly used to identify symptom clusters is factor analysis
[10]. This method predicts a set of latent factors that explain the covariance among a set of
symptoms. For example, if two symptoms frequently co-occur together across patients,
those two symptoms will be collapsed into a latent factor, with a significance value that
denotes the amount of the covariance that can be explained by that factor. The resulting
latent factors therefore help to identify the symptom clusters. Similar to hierarchical cluster
analysis, factor analysis is also a data exploration method which can be used for a wide
range of applications to reduce data. However, factor analysis used in the above way
assumes that the underlying data has disjoint clusters, and is therefore biased to find such
types of structures in the data.

We believe that while both these methods are powerful, they should be used and interpreted
carefully so that they do not introduce biases in the analysis of symptom clusters. To avoid
these problems, we decided to use network visualizations as a way to first visually analyze
the data to determine how symptoms might be structured, and only then use data reduction
methods with the appropriate biases to quantitatively analyze the data. Furthermore, because
there is no consensus in the definition of the term “symptom clusters” (which to us
inherently suggests non-overlapping groups of symptoms), we use the term “symptom co-
occurrence” to keep open the possibility of more complex organizations of symptoms than
what is currently expected when using the term “cluster”. For example, the symptoms might
co-occur randomly, or uniformly across patients, both of which are valid co-occurrence
patterns but which lack clusters.

3. Method
Based on the above motivations, our research began with the question: How do symptoms
co-occur across cancer patients? To address this research question, we made critical
decisions regarding data selection and data analysis as discussed below.

3.1 Data Selection
We conducted a secondary analysis on data collected in a published study on cancer
symptom management [25]. The data consisted of 671 cancer patients who were 21 years of
age or older, have a solid tumor cancer or non-Hodgkins lymphoma, were undergoing
chemotherapy, and spoke and read English. The patients reported eighteen symptoms using
the M.D. Anderson Symptom Inventory [19] which measures symptom severity ranging
from zero (not present) to ten (worst imaginable), with symptom management advice given
to patients whose symptom severity was greater or equal to four on any given symptom. Six
patients did not report any symptom severity values and therefore were dropped from the
analysis, resulting in a total of 665 patients. The patients varied on a number of disease and
demographic variables including type and stage of cancer, sex and age (see Table I for
descriptive statistics of the dataset). Similar to several studies [12], the focus of our study
was to analyze how symptoms co-occurred across all 665 patients at baseline (i.e., prior to
any interventions) and to use insights from that analysis for partitioning of the data based on
cancer type and symptom severity.

3.2 Data Analysis
Our analysis consisted of two steps. (1) Exploratory visual analysis using network
visualizations. (2) Quantitative analysis of visual patterns by selecting appropriate existing
methods, and developing new ones when the existing methods did not suffice. The results of
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these analyses were validated by assessing the statistical significance of the quantitative
measures through comparison with random permutations of the networks of the same size
and distribution. The overall methodology is therefore to visually inspect the data to
determine the nature of the symptom co-occurrence, before selecting quantitative methods to
analyze the observed patterns.

3.2.1 Exploratory Visual Analysis—Networks are increasingly being used to analyze a
wide range of phenomena, such as how diseases relate to genes [26], how diseases spread
through a social network [27], and how information is scattered across web pages [28]. A
network is a collection of nodes joined in pairs by edges; nodes represent one or more types
of entities (e.g., patients or symptoms), and edges connecting pairs of nodes represent a
specific relationship between the entities (e.g., a patient has reported a symptom). Figure 1a
shows a sample bipartite network (where there are two classes of nodes, and edges exist
only between different classes of nodes) of patients and their symptoms.

As shown in Figure 1a, the sample bipartite network visually represents the explicit
relationships between the six patients and eight symptoms. In this network, the black nodes
represent patients, the white nodes represent symptoms, and the size of a node is
proportional to its degree (number of edges that connect to that node). For example, Fatigue
is the most commonly occurring symptom with six edges each connected to a patient. In
contrast, Dry Mouth is less common with only three edges, and located off-center close to
the patients to which it is connected.

Network layout algorithms have two advantages for analyzing complex relationships. (1)
They do not require a priori assumptions about the structure of clusters within the data, such
as the hierarchical assumption of hierarchical clustering, or subspace model of factor
analysis. Instead, by using a simple pair-wise representation of nodes and edges, network
layouts enable the identification of multiple structures (e.g., hierarchical, disjoint,
overlapping, nested) in a single representation [29]. (2) They can be visualized and analyzed
using a set of network algorithms to reveal global regularities in the data. For example,
Figure 1a shows how a force-directed layout algorithm [30] helps to visualize the
relationship between patients and symptoms. The algorithm pulls together nodes that are
tightly connected to each other, and pushes apart nodes that are not.

As shown, the result is that patients that have similar symptoms (e.g., P1, P2, and P3 in
Figure 1a) are placed close to each other, and close to their symptoms (e.g., Fever). The
layouts were created using Pajek [31] (version 1.24). While this layout depends on the force-
directed assumption and its implementation, we view such algorithms as less biased for data
exploration, because they do not impose a particular cluster structure on the data.

Our analysis first considered an un-weighted network, with edges indicating symptom
prevalence at any severity (see later section on replication that takes severity into
consideration when analyzing the network). In addition, nodes were colored to represent
disease type (e.g., black nodes represent breast cancer patients).

To understand the structure of symptom co-occurrence, we transformed the bipartite
network using a standard network reduction method called a one-mode projection [26]. As
shown in Figure 1b, all patient nodes were removed, an edge was placed between two
symptoms if they co-occurred in one or more patients, with a number (called the edge
weight) denoting the frequency of the symptom co-occurrence. This network therefore
showed the frequency with which pairs of symptoms co-occurred across patients.

Bhavnani et al. Page 5

Methods Inf Med. Author manuscript; available in PMC 2013 May 08.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



3.2.2 Quantitative Analysis—We used two existing (modularity and hierarchical
clustering) and two novel (degree of symptom overlap and co-occurrence block diagram)
quantitative methods to analyze the patterns of symptom co-occurrence suggested by the
network visualizations. The choice of these methods was the direct result of visual patterns
observed from the bipartite and one-mode networks described above.

Each method computes a numerical measure that quantifies some aspect of the network, and
the significance of this measure is determined by comparison to random permutations of the
networks. Comparison to random permutations of an observed network is a standard
approach in network science to test the validity of a quantitative pattern identified in the real
data [26]. Random networks are generated by random reassignment of network edges while
preserving the total number of edges and nodes observed in the original network. For all
methods except modularity (which is a measure that incorporates comparison to random
networks), we calculated a p-value as the fraction of times the random network’s measure
was more extreme (larger or smaller, depending on the method) than that of the observed
network. To ensure that our results were not caused merely by the prevalence of the
symptoms (e.g., if two symptoms occur frequently, there is a high probability they will also
co-occur), we also preserved symptom degree distribution when generating the random
networks for agglomerative hierarchical clustering, and for the block diagram.

1. Degree of Symptom Overlap across Patients: To quantitatively analyze the observed
overlap of symptoms across patients, we plotted the mean number of patients sharing
symptom sets of different sizes. More precisely, for each number k ranging from one to the
total number of symptoms, we generated a random k-tuple of symptoms, and calculated the
number of patients in which at least those k symptoms co-occur. By averaging over the
random choice of symptoms, we obtain a smooth curve. We then calculated the area under
this curve as a measure of how many patients on average share a progressively increasing
number of symptoms. Comparison of this area (which we call degree of symptom overlap)
to random networks was done to reveal whether the symptom overlap was greater or less
than what could be expected to occur by random chance.

2. Modularity: To assess the degree of clustering in the network, we used the RGraph
algorithm [32] which attempts to partition a bipartite network into clusters (or modules) by
optimizing modularity. The modularity of a partition is defined as the number of edges
falling within clusters, minus the expected number of such edges in a network of the same
size with randomly reassigned edges. Modularity values range from −1 to +1, where high
values (>0.3) represent significantly more edges within clusters compared to random
networks of the same size, zero represents no difference compared to random networks, and
negative values represent fewer edges within clusters compared to random networks.

As discussed by the authors [32], the algorithm uses simulated annealing to optimize
modularity, and takes as input a cooling factor and an iteration factor. These parameters
determine tradeoffs between accuracy and computational efficiency. The values for these
parameters were set to those suggested by the authors [32] in their instructions to use the
algorithm, with an emphasis on accuracy (cooling factor [c]=0.999, iteration factor [f]=1).

3. Agglomerative Hierarchical Clustering: We used agglomerative hierarchical clustering
to test if the symptoms were nested. By nested we mean that given a symptom ranking (e.g.,
from most common to least common), they are considered nested if a patient that exhibits a
particular symptom in that list (e.g., the fifth ranked symptom), then that patient is highly
likely to have all symptoms of higher rank (i.e., symptoms of rank one, two, three, and four).
In addition, if a patient does not exhibit a particular symptom (e.g., the fifth ranked
symptom), then that patient is highly likely to not have symptoms of lower rank (i.e.,
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symptoms of rank six, seven, etc.). Intuitively, the symptoms are nested if, whenever a
patient has a symptom, then that patient tends to have all other symptoms that are more
prevalent in the data.

To test for nestedness, we used agglomerative hierarchical clustering with the Jaccard
dissimilarity measure and Ward2 linkage criteria [10]. The Jaccard dissimilarity measure
between two symptoms is one minus the ratio of the number of patients experiencing both
symptoms to the number of patients experiencing either symptom [33]. The algorithms starts
with each symptom as a singleton cluster, and recursively merges clusters based on
minimum similarity, where dissimilarity is extended from symptoms to sets of symptoms
using the linkage.

The dendrogram is often used to impose a clustering by thresholding at a certain level.
However, there is no clear level at which to threshold. Instead, we use the following more
systematic approach to assess whether the symptom co-occurrence follows a nested
structure. We calculated the minimum number of edits it would take to transform the
dendrogram generated from the real data, into a perfectly nested dendrogram (that is, a
dendrogram whose depth is one minus the number of symptoms). The significance of this
measure was determined by comparison to 1000 random networks, where the size and
symptom degree distribution were preserved.

4. Co-occurrence Block Diagram: A limitation of the hierarchical clustering is that the
agglomerative algorithm does not guarantee an optimal solution. This is because it
aggregates sets of symptoms in incremental steps, and therefore the sets identified at any
level of the dendrogram are not necessarily globally optimal.

Because we wished to understand the explicit relationship of how each symptom was related
to the rest of the symptoms based on their co-occurrence across patients, we developed an
exhaustive algorithm to create a block diagram of symptom co-occurrences. The rows in the
block diagram represent the most frequent co-occurring symptom sets of different sizes, and
the columns represent an ordered list of symptoms based on the frequency of their co-
occurrence (explained below). This block diagram was generated by the following method:

1. Exhaustively identified all co-occurring symptom sets of different sizes. In other
words we identified all co-occurring symptom sets of size one, two, three, …
maximum number of co-occurring symptoms (which was sixteen).

2. Selected the most frequent symptom set for each set size generated in the above
step. For example, the most frequent co-occurring set size of three was Fatigue,
Insomnia, and Weakness. When there were two or more equally frequent sets, then
a conservative approach was taken by selecting the one that least matched the
symptom members of the last symptom set size.

3. Progressively added new symptoms to the columns in the block diagram for each
additional row. For example, the most frequently co-occurring set size of four was
Fatigue, Insomnia, Weakness, and Distress. Therefore, Distress was added to the
fourth column of the block diagram.

4. Cells in the block diagram were colored black to indicate the symptoms comprising
each co-occurring set. For example, the most frequent symptom set size of seven
did not contain Pain, which was present in the most frequent set size of six.
Therefore the respective cell in the Block Diagram was not colored black. To
understand the role of symptom severity, we redid the above analyses with severity
scores at greater or equal to four.
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We used the block diagram to assess whether the symptoms co-occurred in a nested
structure. If the pattern from left to right is a uniformly descending staircase pattern, then the
symptoms are perfectly nested. However, if there are gaps in the perfectly staircase pattern,
then the degree of nestedness is based on how many cells are out of place from a perfectly
nested pattern. In particular, we calculated the number of edits needed in the block diagram
to make it perfectly nested, where an edit is defined to be the operation of swapping two
consecutive boxes on the same row. To test the significance of the degree of nestedness, we
compared it to the same measure generated from 1000 random networks of the same size
and symptom degree distribution.

5. Replication of Results in Subsets of the Data: To test whether the overall results
changed if we considered only high symptom severity, or cancer type, we replicated two key
analyses in subsets of the data. This was done by analyzing modularity and nestedness on a
network which only had symptom severity greater or equal to four (the threshold for
interventions to occur), and then on three of the most frequent cancers: breast (n=231), lung
(n=112), and colon cancer (n=79).

4. Results
The analysis of the cancer data revealed three distinct patterns. For each of the three patterns
we describe the results of the exploratory visual analysis, and the results of the quantitative
analysis including their validation.

4.1 High Overlap of Symptoms across Patients
Visual Analysis—As shown in Figure 2, the patients form a ring around the eighteen
symptoms in the center. Patients close to the inner set of symptoms tend to have many
symptoms compared to patients in the outer ring. For example, the patient P-338 (c) has
sixteen symptoms, whereas the patient P-138 (d) has only one symptom. This network
topology where there are many high degree patients (with respect to the total number of
symptoms) in the ring connecting to a small number of high degree symptoms in the center,
suggests a high overlap in the number of symptoms for most patients (resulting in a gray
mass of indistinguishable edges).

Quantitative Analysis—The above pattern of high overlap was quantitatively analyzed
by plotting the mean number patients sharing symptom sets of different sizes. As shown by
the solid curve in Figure 3, a high proportion of patients (80.41%) as measured by the area
under the curve, share between one and three symptoms, and a diminishing number of
patients share a higher number of symptoms.

The area under this curve quantifies the degree of overlap. The degree of overlap (817.67) in
the cancer network is significantly higher (p<.01) compared to the mean degree of overlap
(504.08) of 1000 random networks of the same size. This result suggests that the high
overlap of symptoms in the cancer network is not a random occurrence, and therefore a valid
pattern of symptom co-occurrence.

4.2 Absence of Symptom Clusters
Visual Analysis—Figure 2 shows the absence of patient, symptom, or patient-symptom
clusters. Most of the symptoms are clumped in the center, and the patients and cancer types
are evenly distributed around the symptoms. This absence of distinct multiple clusters of
symptoms was unexpected, as most of the literature on symptom clusters has hypothesized
the presence of distinct symptom clusters in cancer. Futhermore, when we colored the
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patient nodes by cancer type (see online supplementary Figure S1), there were no patient
clusters based on cancer type.

Quantitative Analysis—To quantitatively confirm the absence of symptom clusters, we
used the well-known network measure called modularity, as implemented by the RGraph
algorithm [32]. The modularity was extremely low at 0.067, indicating that the symptoms
exhibit no significant clustering.

4.3 The Nested Structure of Symptom Co-Occurrence
Visual Analysis—As shown in Figure 2, there is a wide range in the degree of the
symptoms. There are fifteen commonly-occurring symptoms in the center of the network,
and three less common symptoms off center. For example, Fatigue (b) is the most
commonly occurring symptom with edges to 602 of the 665 total patients. In contrast, Fever
(a) is off-center with only 64 edges. This pattern of connections results in a high mean and
standard deviation in symptom degree (Mean=287.61, SD=132.68), with overall low
modularity or absence of distinct clusters.

The absence of distinct clusters suggests that the symptoms are nested. To further probe this
observation, we analyzed the one-mode projection on symptoms (designed to show how
symptoms co-occur). Figure 4 shows the pair-wise relationship between symptoms, where
the edge weight between two nodes denotes how many times the connected symptoms co-
occurred across patients. As shown, the one-mode projection has a core-periphery topology
which suggests a nested structure (a specific form of hierarchy). For example, Fatigue and
Insomnia are in the center of the network because they co-occur most frequently with each
other (442 times). However, they co-occur with progressively diminishing frequency with
symptoms that are further and further away from the core (e.g., Fatigue co-occurs with
Nausea only 308 times) and very infrequently with symptoms at the periphery (e.g., Fatigue
co-occurs with Fever only 63 times).

Quantitative Analysis—The above nested structure of symptoms was first quantitatively
analyzed using hierarchical clustering. As shown in Figure 5, the depth of the resulting
dendrogram is nine. Furthermore, although we could select an arbitrary cut-off point to
identify disjoint clusters, there is actually no natural break in the dendrogram to reliably
determine such clusters. This confirms the results of our earlier modularity analysis which
found that there appears to be an absence of distinct symptom clusters in the data. In
addition, the number of edits needed to transform the actual dendrogram to a perfectly
nested dendrogram was eight.

The above tree depth and number of edits for the network were compared against
dendrograms generated from 1000 random networks of the same size and symptom degree
distribution. The mean tree depth of the random networks was six, and the mean number of
edits to transform the random networks to perfectly nested networks was eleven. The results
revealed that the probability of the nested structure of cancer symptoms occurring by chance
was less than 0.1 percent (p < 0.001).

Unfortunately, the one-mode projection and the hierarchical cluster analysis both have
inherent limitations in revealing the explicit members of the nested structure: The one-mode
projection is limited in that it can only show the pair-wise associations and therefore
conceals how groups of symptoms co-occur; the agglomerative nature of the dendrogram
conceals globally optimal co-occurrence frequencies.

To address the above limitations, we analyzed the symptom co-occurrence data using the co-
occurrence block diagram. As shown in Figure 6, the block diagram lists the most frequently
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co-occurring symptoms, ranging from one to the maximum set size of sixteen co-occurring
symptoms. With the exception of set sizes seven, eleven, and fourteen, the most frequently
occurring symptom sets are a proper subset of the next larger set size. The degree of
nestedness (number of edits required for a perfectly nested pattern) = fifteen, which was
significantly less than the mean degree of nestedness of 1000 random networks that
preserved the size and symptom degree distribution of the original network (mean = 228.4, p
< 0.001). The analysis therefore explicitly revealed the strongly nested nature of symptom
co-occurrence, which was significant.

4.4 Replication of Results in Subsets of the Data
Partitioning Data Based on Symptom Severity—As described in the Data Selection
section, an important symptom severity threshold was greater than or equal to four, at which
level tailored symptom management advice was given to the patients. We therefore removed
all edges in the network that were below four, and repeated two key quantitative analyses on
the resulting network: (1) modularity (to test if there existed symptom clusters), and (2) the
degree of nestedness using the block diagram (to test for nestedness).

Modularity for the new network (with severity greater than or equal to four) was extremely
low at 0.078. Therefore, similar to the network which did not take into consideration
symptom severity, there was also strong evidence for the absence of symptom clusters when
taking into account symptom severity. Furthermore, for the new network, the degree of
nestedness was high at 59 edits required to achieve perfect nesting, versus a mean of 282.78
edits required for 1000 random networks (that preserved the size and symptom degree
distribution of the original network) to achieve perfect nesting. These results were
significant (p < 0.001).

Partitioning Data Based on Cancer Type—As shown in Table II, the dataset
contained eleven different cancer types. We therefore analyzed whether the patterns
observed in the pooled analysis changed when the different cancer types were analyzed
individually. We extracted the three most frequent cancer subtypes, namely breast (n=231),
lung (n=112), and colon cancer (n=79), and repeated the analysis of modularity and degree
of nestedness. As shown in Table II, there was very low modularity for each cancer type,
suggesting the absence of symptom clusters, and significantly high nestedness instead.

5. Discussion
Based on the clinical literature, we expected that our analysis would identify distinct
symptom clusters. Distinct clusters occur infrequently in random networks [26] and hence
their occurrence would have been highly indicative of a meaningful underlying process.
However, we found no such clusters. This result was replicated when taking into account
symptom severity, in addition to specific cancer type. Fortunately, our seemingly null results
led us to probe deeper into the structure of co-occurring symptoms using multiple methods,
starting with visualizations and analyzing those observations through existing and new
quantitative methods. This exploratory process led us to the conclusion that symptoms co-
occur in a nested pattern rather than in distinct clusters. Furthermore, the comparison of the
results with equivalent random networks led us to conclude that cancer symptom co-
occurrence is more complex than we originally expected, but not random as we
subsequently feared.

We believe that our overall methodology could address the variability in methods currently
used to analyze symptom clusters [1]. By first visually analyzing their data, researchers
could decide on which quantitative method is the most appropriate for analyzing patterns of
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symptom co-occurrence in their data, and therefore achieve a more systematic methodology
for analyzing symptom co-occurrence.

5.1 Limitations
The limitation of the overall study was that we considered only one dataset to analyze
patterns in cancer symptomatology. Future studies should apply the same methods described
in this article to test whether the nested pattern of symptom co-occurrence is also present
using similar data from another population1.

Another limitation of our work is that the block diagram used to measure degree of
nestedness requires an exhaustive search for the most frequent symptom combinations for
each set size, a technique which is feasible only in datasets with relatively few symptoms.
Our ongoing research addresses computationally efficient algorithms to generate block
diagrams regardless of the number of symptoms. Until this work is completed, the existing
block diagram approach can be used to complement existing methods such as hierarchical
clustering, rather than to replace them.

5.2 Implications for Clinical Practice and Research
Our findings have implications for both clinical practice and future research. Currently
cancer patients undergoing chemotherapy are screened for upwards of eighteen symptoms
during clinic visits [34-36]. As these patients are already burdened with the stress of therapy,
efficient means for assessing symptoms are needed not only during office visits, but also at
home where there is increasing interest in using telephonic or web-based symptom
monitoring [37, 38].

The absence of disjoint symptom clusters precludes an approach of asking a few questions
to eliminate candidate symptom clusters. Instead, the nested pattern of symptom co-
occurrence suggests new approaches for developing computational systems for rapid
symptom assessment. For example, to efficiently identify all severe symptoms, a system
could initially present a list of common symptoms ranked by frequency or severity. Each
time a symptom is selected, the remaining symptoms are re-ranked based on their co-
occurrence in the data with the already selected symptoms. For example, a patient presenting
Fatigue with Insomnia may next be asked about Weakness, while a patient presenting
Fatigue without Insomnia may next be asked about Dry Mouth as the latter most frequently
co-occurs in patients with Fatigue but not Insomnia. Such a process should save time and
reduce excess burden on the patient by obtaining a complete picture of the patient’s
symptoms through a small set of targeted questions.

The nested structure of cancer symptoms also suggests that the underlying biochemical
mechanism in chemotherapy may involve a single mediator which causes additional
symptoms as its concentration increases. Alternatively, it may involve a chain reaction
where each intermediate state causes another symptom. Future research will need to confirm
our results, and test such emergent hypotheses. Additionally, the results imply that symptom
cluster researchers can avoid biasing their results by (1) visualizing their data to develop
hypotheses about the underlying structure of symptom co-occurrence, (2) selecting
appropriate multiple methods to verify observations realizing the limitations of single
methods, and (3) developing new methods if current methods do not suffice.

1Publically available datasets for replicating this study include the Health and Retirement Study (http://hrsonline.isr.umich.edu/).
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6. Conclusions and Future Research
Inspired by the research on symptom clusters, but concerned by the limitations of using
methods with a priori assumptions about the structure of clusters in the data, we used
networks to visually analyze how symptoms co-occurred across cancer patients. These
observations were then quantitatively analyzed through carefully selected existing and novel
methods, and compared against random permutations of the network. Although the results
consistently showed the absence of multiple distinct symptom clusters, the multi-method
approach revealed a strongly nested structure of symptom co-occurrence, where a small set
of symptoms co-occurred in many patients, and a progressively larger set of symptoms co-
occurred with a decreasing number of patients. This result reveals a more complex co-
occurrence organization of symptoms across patients than previously reported. The result
also suggests that a computational approach designed carefully to fit into current work
practice could limit the questions clinicians need to ask patients in order to obtain a
complete picture of their symptoms.

Because symptoms can be caused by a number of factors that change over time including the
disease itself, co-morbid conditions, treatment, and other symptoms, our future research
aims to use networks in combination with quantitative methods to probe deeper into this
large number of variables. Our aim is to help clinicians accurately identify, predict, and treat
co-occurring symptoms, with the ultimate goal of improving compliance with therapy, and
the overall quality of life for cancer patients.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
A sample patient-symptom bipartite network (a) showing patients as black nodes, and
symptoms as white nodes. The size of a node represents the number of edges that are
connected to it. Therefore the Fatigue node in the center is large because many patients have
that symptom. Bipartite networks can be reduced to analyze how symptoms co-occur using a
method called a one-mode projection (b). Here the nodes represent symptoms, and the edges
represent one or more times that the connected symptoms co-occur in a patient.
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Figure 2.
A patient-symptom bipartite network in the top left (where edges represent symptom
severity at any level) visually shows the high overlap of 18 symptoms (white nodes) across
665 patients (black nodes). This high overlap results in a large cluster of symptoms in the
center of the network, and a few symptoms that are off center (shown in more detail in the
inset). The size of the nodes is proportional to the edges that connect to them. Therefore
common symptoms have large nodes, whereas rare symptoms have smaller nodes. The
patients that have many symptoms are closer to the center and closer to their symptoms. The
above layout was automatically generated by the Fruchterman Reingold algorithm [30].
Please see supplementary figure S1 for the same network where the patient nodes are
colored by each patient’s type of cancer revealing that there exists no clustering of patients
based on cancer type.
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Figure 3.
The mean number of patients who share different numbers of symptoms shows that many
patients share between 1-3 symptoms, and a decreasing number of patients share more than
3 symptoms. The area under the curve is significantly different from the same curve
generated from 1000 random networks of the same size (shown with 95% confidence
intervals).
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Figure 4.
The one-mode projection on symptoms of the bipartite network (shown in Figure 1), reveals
how pairs of symptoms co-occur across patients. The edge thickness is proportional to the
number of times two symptoms co-occur in a patient. Highly co-occurring symptom are
pulled together, and because of the nested structure, have also been pulled to the center.
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Figure 5.
A dendrogram generated by the agglomerative hierarchical clustering method suggests the
nested structure of symptom co-occurrence.
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Figure 6.
A block diagram showing the most frequently co-occurring symptoms for each size of
symptom set. With the exception of set sizes 7, 11, and 14, the symptoms follow a strongly
nested pattern.
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Table II

The modularity and degree of nestedness for the top three most frequent cancer types in the dataset. In all
cases the modularity is very low (indicating that there exists no symptom clusters), and significantly higher
degree of nestedness compared to 1000 random networks of the same size and symptom degree distribution.

Cancer Type
(number of
patients)

Modularity Degree of Nestedness

Number of edits
required for block
diagram
(generated from
the real network)
to be perfectly
nested

Mean number of
edits required for
block diagrams
(generated from
1000 random
networks) to be
perfectly nested

Significant
difference
between real
network and
random networks

Breast (n=231) 0.068 17 232.5 p=0

Lung (n=112) 0.072 66 204.6 p=0.007

Colon (n=79) 0.074 58 235.9 p=0
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