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We compare and contrast the genetic architecture of quantitative phenotypes in two genetically well-characterized model
organisms, the laboratory mouse, Mus musculus, and the fruit fly, Drosophila melanogaster, with that found in our own species
from recent successes in genome-wide association studies. We show that the current model of large numbers of loci, each
of small effect, is true for all species examined, and that discrepancies can be largely explained by differences in the
experimental designs used. We argue that the distribution of effect size of common variants is the same for all phenotypes
regardless of species, and we discuss the importance of epistasis, pleiotropy, and gene by environment interactions.
Despite substantial advances in mapping quantitative trait loci, the identification of the quantitative trait genes and
ultimately the sequence variants has proved more difficult, so that our information on the molecular basis of quantitative
variation remains limited. Nevertheless, available data indicate that many variants lie outside genes, presumably in
regulatory regions of the genome, where they act by altering gene expression. As yet there are very few instances where
homologous quantitative trait loci, or quantitative trait genes, have been identified in multiple species, but the availability
of high-resolution mapping data will soon make it possible to test the degree of overlap between species.

Recent successes in mapping quantitative trait loci (QTLs) that

contribute to phenotypic variation in humans and model organ-

isms make it possible to address important questions about the

genetic architecture of quantitative phenotypes, such as the likely

number of loci, their mode of genetic action, and interaction with

each other and with the environment. An understanding of the

genetic architecture of quantitative traits is not only important in

its own right, it will also inform studies that seek to proceed to the

identification of the quantitative trait genes (QTGs) and the

quantitative trait nucleotide (QTN) variants, the functional

changes in DNA sequence that contribute to trait variation.

In this work we use examples from two genetically well-

characterized model organisms, the laboratory mouse, Mus mus-

culus, and the fruit fly, Drosophila melanogaster, to discuss how an

understanding of the genetic architecture of quantitative pheno-

types in model organisms informs mapping experiments in hu-

man genetics. In our discussion of the latter, we draw upon the

recent successful application of genome-wide association studies

(GWAS) to both quantitative phenotypes (such as height and

weight) and disease phenotypes (assuming that the genetic ar-

chitecture of common disease is similar, if not identical, to that of

quantitative phenotypes).

Genetic architecture has been the subject of a number of re-

cent reviews, most of which deal with information from a single

model organism (Mackay 2004) or review a small number of

phenotypes (Kendler and Greenspan 2006). Here, our purpose is

different. We tackle three related questions. (1) How much does

genetic architecture differ between species? (2) How much does

genetic architecture vary between phenotypes? (3) Are the same

genes involved in the same phenotype in different species?

Answers to these questions are important because of the need to

identify genes involved in human disease phenotypes and to de-

termine how those genes exert their effect. Currently, model

organisms such as the fly and the mouse are the resources of

choice for functional genetic studies.

How much does genetic architecture vary between
species?
Within a species, the genetic architecture of different phenotypes

appears to be similar, but that similarity may not extend to com-

parisons between species. How much does knowing about one

species inform us about another? Below, we review data on the

number of loci, their effect sizes, and how they operate on quan-

titative phenotypes. For quantitative traits, we define the homo-

zygous effect, a, as one-half of the difference in the mean trait

phenotype between individuals that are homozygous for alterna-

tive QTL alleles (Falconer and Mackay 1996). Homozygous effects

are usually reported as either a fraction of the phenotypic standard

deviation of the trait in the mapping population (a/sP), or as

a fraction of the phenotypic variation (sP
2) of the mapping pop-

ulation. In this review, unless otherwise stated, a genetic effect size

is meant in this latter sense as a proportion of the phenotypic

variance. Heterozygous effects, d, are estimated as the difference

between the mean value of the trait for individuals that are het-

erozygous for the QTL alleles, expressed as a deviation from the

average of the two homozygous genotypes. Heterozygous effects

are generally expressed as d/a, where d/a = 0 denotes strict addi-

tivity (Falconer and Mackay 1996).

Genetic architecture: Many loci of small effect
In the 1990s, with the availability of genome-wide marker sets, it

became possible for the first time to map the chromosomal loca-

tion of genetic effects that contribute to quantitative variation

(Lander and Botstein 1989; Hilbert et al. 1991; Jacob et al. 1991;

Todd et al. 1991). The methods adopted depended on the organ-

ism: Mouse and fly geneticists could use inbred strains, thereby

considerably simplifying the genetics. By setting up a cross be-

tween two inbred strains, or by using the inbred derivatives of
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such a cross (recombinant inbred [RI] lines), only two alleles seg-

regated at any locus, and all alleles had the same frequency. In

contrast, human geneticists had to make do with what the vaga-

ries of evolution, population history, migration, and mutation had

put together.

To map QTLs in rodents, about 100 markers and a few hun-

dred animals were sufficient to provide robust statistical evidence

for the location of genetic variants contributing to quantitative

phenotypic variation. With falling costs and automated geno-

typing, plus the development of software packages that made the

analyses easily accessible to biologists without statistical expertise,

any biologist could, and did, map a phenotype. Consequently,

a large literature emerged in the last decade of the 20th century, as

biologists turned to genetic mapping to help them identify genes

involved in the physiological process or disease that constitutes

their special interest.

Mapping QTLs was also relatively easy in flies (and much

cheaper than in rodents). Remarkably, the picture that emerged

from both organisms was broadly similar. Most of the early map-

ping studies revealed that a few QTLs with relatively large effects

accounted for the bulk of phenotypic variation in most traits. This

observation was central to driving attempts to capture common

genetic variants segregating in human populations. Critically, the

estimates of effect size from model organisms suggested that QTLs

explaining as much as 10% of the phenotypic variance might be

found, in which case linkage studies using a few hundred families

would be sufficient to detect them.

Subsequent studies in mice and flies using larger samples

began to reveal a more complex picture. For instance, doubling the

number of mice in the mapping population from 800 to 1600

more than doubled the number of QTLs found to influence

a measure of fear-related behavior (Turri et al. 2001a, b). A study in

Drosophila genotyped over 2000 markers on pools of flies selected

from an initial sample of over 10,000 F2 individuals (Lai et al.

2007) and substantially increased the number of QTLs known to

influence life span in the fly. Furthermore, high-resolution map-

ping of QTLs revealed more complex genetic architectures than

implicated from the initial genome scans. Single QTLs identified

in genome scans typically fractionated into multiple, closely

linked QTLs, often with opposite effects. In mouse genetics this

finding emerged from studies that chased single effects through

the creation of congenics and includes QTLs influencing seizures

(Legare et al. 2000), obesity (Stylianou et al. 2004), growth

(Christians and Keightley 2004), blood pressure (Frantz et al. 2001;

Alemayehu et al. 2002; Garrett and Rapp 2002a,b; Ariyarajah et al.

2004), diabetes (Podolin et al. 1998), antibody production

(Puel et al. 1998), and infection (Bihl et al. 1999). In flies, high-

resolution mapping efforts using a higher density of recom-

bination or performing quantitative complementation tests to

deficiencies revealed similar complexity for QTLs affecting

wing shape (Weber et al. 1999, 2001; Mezey et al. 2005), longevity

(Pasyukova et al. 2000; De Luca et al. 2003; Wilson et al. 2006),

resistance to starvation stress (Harbison et al. 2004), mating

behavior (Moehring and Mackay 2004), olfactory behavior

(Fanara et al. 2002), locomotor reactivity (a startle response)

(Jordan et al. 2006), and numbers of sensory bristles (Dilda and

Mackay 2002).

Nevertheless, although more QTLs were discovered, the

results were still inconsistent with the ‘‘infinitesimal’’ model of

quantitative genetic variation (Falconer and Mackay 1996; Lynch

and Walsh 1998), which posits extremely large numbers of loci

with very small effects. Rather, the allelic effects followed an ex-

ponential distribution, as proposed by Robertson (1967), with

a few loci with moderate to large effects, and increasingly larger

numbers of loci with increasingly smaller effects.

Despite the success and predictions of genetic architecture

from work on model organisms, by the end of the 20th century

human genetic studies of complex phenotypes were foundering.

A small number of high-profile successes continued to en-

gender optimism (e.g., the identification of the epsilon4 allele of

APOE [APOE*4] as a susceptibility gene for Alzheimer’s disease

[Corder et al. 1993]), but the majority of genetic studies of hu-

man quantitative phenotypes became mired in failures to repli-

cate. One simple and unavoidable interpretation of the relative

failure was that human studies were underpowered (Risch and

Merikangas 1996). Many of the human linkage studies were

powered on the basis that the distribution of effect sizes would

be approximately exponential, with a few at the top end ex-

plaining perhaps 10% of the phenotypic variation, as found in the

model organism work. Could it be the case that genetic architec-

ture of quantitative phenotypes in humans was different from

mice and flies?

Discrepant findings are largely attributable to differences in

the number and frequencies of alleles segregating in outbred

populations compared with those in crosses between inbred

strains. Estimates of effect size, when expressed as the percentage

of phenotypic variance attributable to genetic variation at a locus,

vary according to the experimental design. Suppose we identify

a QTL that contributes to 1% of the genetic variation in an outbred

population. In a model organism we could then set up a breeding

program to isolate that chromosomal region so that all other ge-

nomic regions are inbred—consequently, the locus now contrib-

utes to 100% of the genetic variation. Conversely, QTLs identified

in simple systems may have smaller relative effects in outbred

populations, because the fraction of the total phenotypic variance

explained by a QTL with a given effect depends on both allele and

genotype frequencies.

The genetic variance (sG
2) of a strictly additive (d = 0) QTL

with allele frequencies p and q and homozygous effect a is

2pqa2 in an outbred population (Falconer and Mackay 1996). In

progeny derived from a cross of two inbred lines, the frequency

of all segregating alleles is p = q = 0.5, whereas in an outbred

population, allele frequencies can vary throughout the entire

range. Thus, a QTL with homozygous effect a = 0.5sP will explain

12.5% of the phenotypic variance in an F2 population but only 8%

of the variance in an outbred population where the minor allele

frequency is 0.2%, and 4.5% of the variance in an outbred pop-

ulation where the minor allele frequency is 0.1. Furthermore, only

the two homozygous genotypes are present in a population of RI

lines, whereas only one homozygous genotype and the hetero-

zygote segregate in a backcross (BC) population. Thus, the genetic

variances for a population of RI lines, F2 individuals, and BC

individuals are, respectively, a2, a2/2, and a2/4 (Lynch and Walsh

1998); i.e., in the ratio 4:2:1 for RI:F2:BC.

Furthermore, the locus-specific effect on the phenotypic

variance depends additionally on environmental variance and the

number of other QTLs that contribute. In a cross between two

inbred rodent strains a detectable locus contributes to about 5% of

the phenotypic variation (Flint et al. 2005). In a complex quasi-

outbred stock (known as the heterogeneous stock [HS]) (Valdar

et al. 2006a), assuming the QTL allele frequencies remain com-

parable, the same locus is likely to explain about 2.5% of the

variance (Flint et al. 2005). In a fully outbred population, the locus

will account for much less.
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In the last 2 yr, with the advent of adequately powered

genome-wide association studies in humans, we have at last reli-

able estimates of the locus-specific effect sizes that contribute to

variation in complex phenotypes. Genome-wide association

analyses of human case-control samples reveal that the genetic

architecture of quantitative traits and disease consists of alleles of

small effect size. With the exception of the HLA locus on some

autoimmune diseases (such as type 1 diabetes) and a few outliers

(such as a variant of the HTRA1 gene with an effect on age-related

macular degeneration [Dewan et al. 2006]), the per-allele odds

ratios are almost all less than 1.5. The genetic architecture of dis-

ease and quantitative phenotypes appears to be the same: Small

effect sizes characterize quantitative variation in humans. Good

examples are height and weight: 54 loci have now been identified

that influence height, a great advance on what we knew before the

advent of genome-wide association studies (Gudbjartsson et al.

2008). However, each variant contributes less than half a percent

to the total phenotype variance. Another way of putting this is

that an allele that increases height does so by adding about 0.4 cm.

Similarly, for the 10 loci identified that contribute to body mass

index (Thorleifsson et al. 2009; Willer et al. 2009), allelic effects

range from 0.06 kg/m2 to 0.33 kg/m2.

The small effect sizes reported in human studies do not

necessarily mean that the infinitesimal model is a useful de-

scription of quantitative genetic variation in human populations.

The important parameter is the distribution of effect sizes. Figure 1

shows the distribution of effect sizes at 140 loci discovered for 20

disease phenotypes. In this case, effect size is expressed as a locus-

specific odds ratio (so that an allelic odds ratio of two doubles the

risk of developing the condition). Note the skewed distribution of

the findings, and note also that the distribution is certainly

truncated for smaller effects that studies do not have enough

power to detect. Despite sample sizes in excess of 10,000, power to

detect the QTLs that influence height and weight is about 10%

(Willer et al. 2009). In fact, the loci discovered account for re-

markably small amounts of the total phenotypic variance. For

height, all known loci explain <5% of the variance. For a measure

of obesity (body mass index) known loci account for <1% of the

variance (Willer et al. 2009). It is quite possible that there is a long

tail of much smaller effects remaining to be discovered.

Genetic architecture: Context-dependent effects
While it is generally accepted that the effect of a QTL should be

considered in the context of the genetic background on which it

occurs, the sex of the animal, and within the environmental

context in which the phenotype is measured, systematic measures

of the extent of context-dependent effects are still lacking. Results

from model organisms unambiguously reveal that these effects

exist, largely through the ability to control both genotype and

environment, but their detection is not always easy.

Epistatic interactions (defined as a statistical interaction be-

tween genotypes at two [or more] loci) are difficult to detect in

QTL mapping studies, because the large number of pairwise tests

for marker–marker interactions imposes a low experiment-wise

significance threshold. Large mapping populations are required to

sample individuals in the rarer two-locus genotype classes, and

segregation of other QTLs can interfere with detecting epistasis

between the pair of loci under consideration. Consequently, most

QTL mapping studies report only main QTL effects, or evaluate

epistasis only between QTLs with significant main effects.

In flies, epistatic interactions have been documented be-

tween QTLs affecting the quintessential additive traits, numbers of

sensory bristles (Long et al. 1995; Gurganus et al. 1999; Dilda and

Mackay 2002), and wing shape (Weber et al. 1999, 2001), as well as

longevity (Leips and Mackay 2000, 2002; Mackay et al. 2006) and

locomotor behavior (Jordan et al. 2006). Epistatic effects can be as

large as main QTL effects, in opposite directions between different

pairs of interacting loci, and between loci without significant main

effects on the trait.

Epistatic interactions are more readily detectable in diallel

crosses, which produce all possible doubly heterozygous geno-

types from a collection of mutations affecting the same trait that

have been generated in a common background, or by constructing

all nine possible two-locus genotypes for two biallelic loci. The

few studies using these designs all reveal extensive epistasis: for

metabolic activity (Clark and Wang 1997), olfactory behavior

(Fedorowicz et al. 1998; Sambandan et al. 2006), climbing be-

havior (van Swinderen and Greenspan 2005), and locomotor

startle response (Yamamoto et al. 2008). Remarkably, epistatic

interactions have also been observed between functional poly-

morphisms affecting alcohol dehydrogenase protein level within

the Adh locus (Stam and Laurie 1996).

Where epistasis has been sought in mice, it has in most cases

been found. For example, Cheverud and colleagues, in a series of

studies on growth, body weight, and morphometry, have identi-

fied numerous interactions in a cross between a large inbred

mouse strain (LG/J) and a small inbred strain (SM/J) (Cheverud

et al. 2001; Klingenberg et al. 2001, 2004; Workman et al. 2002; Yi

et al. 2006). Two locus interaction models indicated the presence

of epistasis, as others have independently found for the same

phenotypes (Brockmann et al. 2000). Methodological improve-

ments have led to the identification of even more epistatic QTLs in

the same cross (between LG/J and SM/J). For instance, a Bayesian

method, developed to deal with the problem of testing multiple

interactions, estimates epistatic effects by generating posterior

samples from the joint posterior distribution of all unknowns,

including the main and epistatic effects, given the observed data

(Yi et al. 2007). Using this approach, Yi and colleagues detected
Figure 1. Effect sizes (expressed as odds ratios) in human genome-wide
association studies. Data are from http://www.genome.gov/gwastudies/.
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several epistatic QTL that were not found by frequentist methods

(Ankra-Badu et al. 2009). However, this should not lead to the

conclusion that epistasis is universal. In some circumstances, de-

spite an extensive search, little evidence for epistasis emerges, as,

for example, in the case of fear-related behavior in mice (Flint et al.

2004).

In these examples drawn from model organisms, using ex-

perimental resources that reduce genetic heterogeneity, the im-

portance of epistasis has to be placed within the genetic context in

which it is measured. The power to detect epistasis between two

loci depends on the frequency of the rarest genotype, usually the

double homozygous genotypes at both loci. In outbred pop-

ulations, the least common double homozygote genotype may be

rare or even absent if the minor allele frequency at both loci is low.

Epistasis between two loci is easier to detect in inbred strain

crosses, because the double homozygotes at both loci are present

in ;12.5% of the individuals of an F2 population and 25% of the

individuals in a population of RI lines. Methods that further

simplify genetic backgrounds, such as the use of chromosome

substitution strains (CSS) or genome-tagged mice (GTM), further

enhance the ability to detect epistatic interactions in model

organisms.

CSS have one chromosome derived from one inbred parental

strain and the remainder derived from a second inbred strain;

a CSS panel of mice is created by a laborious process of back-

crossing so as to replace each chromosome from a host strain with

its corresponding partner from a donor strain (Singer et al. 2004).

Genetic differences between a panel member and the host arise

from differences on the one chromosome they do not share,

thereby allowing a relatively quick and simple test or the location

of a QTL. Isolating each chromosome also permits a sensitive test

of epistasis, and mapping of 90 traits revealed almost half to have

significant deviation from an additive model, strong evidence for

epistasis (Shao et al. 2008).

GTM are a panel of over 60 strains, each harboring an ;50

Mb donor segment on a uniform background. Thus, like the CSS,

GTM represent a considerable reduction in genetic complexity

from a cross between two inbred strains, and the relative contri-

bution of each genetic variant is magnified. Smith and colleagues

mapped 97 loci for a variety of behavioral traits, including hy-

peractivity, anxiety, prepulse inhibition, avoidance, and condi-

tioned freezing (Gale et al. 2008). There was evidence for epistasis

at about 60% of the QTLs they identified.

There are two senses in which one can discuss epistatic

effects: in reference to the contribution of epistasis to the

mean differences between genotypes (‘‘physiological’’ epistasis)

(Cheverud and Routman 1995), or in reference to the contribution

of epistatic interactions to the population genetic variance (‘‘sta-

tistical’’ epistasis) (Falconer and Mackay 1996). All of the model

organism studies measured the contribution of epistasis in the

former sense. Epistatic variance, like other components of genetic

variance, depends on both effects and allele frequencies. There-

fore, large effects on the mean difference between genotypes may

not translate to large effects on the variance, if allele frequencies

are low. We cannot compute the expected contributions of the

epistasis observed from studies of mutations and QTLs in model

organisms to the population genetic variance without knowledge

of the allele frequencies in natural populations.

The remarkably large contribution of epistasis in some ex-

perimental designs (such as CSS and GTM) stands in stark contrast

to the findings from human genome-wide association studies in

which, to date, despite the success of finding main effects, there

have been no replicated findings of interactions. We should be

clear that this does not mean epistasis does not exist (see, e.g., the

triallelic inheritance that gives rise to Bardet-Biedel syndrome

[Katsanis et al. 2001] and the requirement for mutations at both

RET and additional loci to bring about Hirschsprung disease

[Emison et al. 2005]). It means, rather, that given the small

main effects, the detection of epistasis in complex phenotypes in

our own species will require astronomically large numbers of

individuals.

Identical arguments apply to the detection of genotype by

environment interactions. Again, it is abundantly clear from the

model organism work that these context-dependent genetic

effects are pervasive. In mice, quantitative analyses indicate that

genotype by environment interaction (GEI) effects occur for all

phenotypes, and often makes as large, or larger, contribution to

the phenotypic variation than the environmental effects (Valdar

et al. 2006b). In flies, whenever QTLs have been mapped in dif-

ferent environments, GEI has been observed: for numbers of

sensory bristles (Gurganus et al. 1998, 1999; Dilda and Mackay

2002; Geiger-Thornsberry and Mackay 2002), longevity (Leips and

Mackay 2000, 2002; Vieira et al. 2000), competitive fitness (Fry

et al. 1998), and immune response to different bacteria (Lazzaro

et al. 2006). GEI is mostly attributable to environment-specific

expression of QTL alleles, with few cases of opposite effects in

different environments (Vieira et al. 2000).

On the face of it, human studies would appear to be one step

ahead in having identified a number of variants involved in gen-

es by environment interaction on behavioral phenotypes. One

highly cited example is the effect of a functional variant in the

promoter of the serotonin transporter gene (SLC6A4 [also known

as 5-HTT ]) that is only, or primarily, manifest in people who had

suffered stressful life events (such as the break-up of a long term

relationship) (Caspi et al. 2003). However, meta-analysis of at-

tempts at replication combined with a simulation study of the main

effects of genotype and environmental effect indicate that, if the

effect is real, it is much smaller than often claimed, and will again

need very large sample sizes to detect robustly (Munafo et al. 2009).

Genetic architecture: Pleiotropy
Studies of phenotypic covariance between quantitative traits have

long suggested the presence of pleiotropy, a finding supported by

artificial selection experiments in which a direct response is fre-

quently accompanied by changes in many genetically correlated

traits (Wright 1977; Falconer and Mackay 1996). While strong

genetic correlations are to be expected from directional pleiotropic

effects among functionally related traits such as body weight and

length, pleiotropic effects are also found for loci affecting traits

that are less obviously functionally related. The importance of

genes having pleiotropic effects on multiple quantitative traits is

largely unappreciated and has emerged from the study of model

organisms.

In flies, evidence for pleiotropic effects of subtle mutations on

multiple quantitative traits comes from evaluating the effects of

new P-transposable element mutations in a common inbred ge-

netic background (single genetically engineered P-elements can be

induced to hop into new genomic locations by simple crosses to

a stock containing a chromosomally stable source of transposase)

(Venken and Bellen 2005). In mice, similar observations come

from studies of effects of alleles created more onerously by targeted

deletion of genes (Austin et al. 2004) or by chemical mutagenesis

(Hrabe de Angelis et al. 2000; Nolan et al. 2000).

Flint and Mackay
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Analyses of effects of P-element mutations on quantitative

traits have revealed that many genes that play a major role in early

development also affect adult quantitative traits. Mutations in the

developmental loci neuralized, Semaphorin-5c, and Calreticulin af-

fect numbers of sensory bristles as well as olfactory behavior

(Sambandan et al. 2006; Rollmann et al. 2007). Mutations in the

intergenic region between Tre1 (which affects transepithelial mi-

gration of germ cells) and Tre (a trehalose taste receptor also

known as Gr5a) affect not only trehalose sensitivity, but also life

span and resistance to starvation and heat stress (Rollmann et al.

2006). A mutation in muscleblind is associated with increased ag-

gression (Edwards et al. 2006) and increased resistance to the in-

ebriating effects of ethanol (Morozova et al. 2007), but reduced

locomotor startle response (Jordan et al. 2007). Independent evi-

dence for pervasive pleiotropy comes from the substantial overlap

of transcripts for which there are correlated responses in expres-

sion to selection from the same base population for copulation

latency, aggressive behavior, locomotor startle response, and eth-

anol resistance (Mackay et al. 2005; Edwards et al. 2006; Jordan

et al. 2007; Morozova et al. 2007).

In mice, projects to deliver engineered knockouts for every

gene in the genome (Collins et al. 2007) are beginning to provide

new insights regarding the extent of pleiotropy. Phenotypic data

from 250 knockout strains acquired by the knockout project from

two companies (Deltagen and Lexicon) are publicly available from

the MGI database (http://www.informatics.jax.org/external/ko/).

Although not an unbiased selection of mutants, the data are the

only instance where a large number of knockouts have been

subjected to a broad range of measurements. Table 1, summarizing

results for 12 phenotypes, shows that about 7% of mutants have

an abnormal phenotype. There seems no reason to expect this

figure to be any less for any of the hundreds of other traits that

could, and eventually will be examined. If so, pleiotropy will be

the rule, not the exception.

Demonstrating pleiotropy in QTL studies in mice and flies is

more difficult since QTLs typically contain multiple genes: Dis-

entangling coincidence of location from pleiotropic action is hard.

In flies, this problem can be overcome by using genetic associa-

tion. The structure of linkage disequilibrium in Drosophila is ex-

ceptionally fine grained and decays rapidly in regions of normal

recombination; so rapidly, in fact, that polymorphic sites adjacent

to each other can be in linkage equilibrium (Carbone et al. 2006).

This makes it possible to differentiate the effects of single-

nucleotide polymorphisms within the same gene. Several studies

have evaluated associations of polymorphisms in candidate genes

with more than one quantitative trait: the achaete-scute complex

(Mackay and Langley 1990; Long et al. 2000), scabrous (Lai et al.

1994; Lyman et al. 1999), Delta (Long et al. 1998), and hairy (Robin

et al. 2002) for abdominal and sternopleural bristle number; the

epidermal growth factor receptor for wing shape (Palsson and

Gibson 2004) and cryptic variation for photoreceptor deter-

mination (Dworkin et al. 2003); Dopa decarboxylase for longevity

(De Luca et al. 2003) and locomotor startle response (Jordan et al.

2006); and Catecholamines up for locomotor behavior, longevity,

starvation resistance, and abdominal and sternopleural bristle

number (Carbone et al. 2006). In each case different polymorphic

sites were independently associated with the different traits. These

observations indicate that pervasive pleiotropy does not neces-

sarily impose evolutionary constraints in the form of strong

genetic correlations between traits.

Equivalent high-resolution association methodologies are

not available in mice. Instead, statistical approaches have been

applied to inbred cross data and typically find evidence for plei-

otropy, for example, as in studies of weight and morphometry

(Brockmann et al. 2000; Leamy et al. 2002; Wolf et al. 2005, 2006;

Pavlicev et al. 2008). However, these methods leave open the

possibility that pleiotropy at a locus is attributable to multiple

genes of different function that happen to reside next to each on

the genome.

In human genetic association studies, relatively low linkage

disequilibrium makes it possible to argue that pleiotropy is due to

the presence of a single gene influencing multiple conditions. In

some cases, pleiotropy involves diseases, or physiological pro-

cesses that have common features. For instance, type 1 diabetes

and celiac disease share risk regions (Hunt et al. 2008; Smyth et al.

2008) and polymorphisms in IL23R contribute to susceptibility to

three autoimmune disorders: psoriasis, Crohn’s disease, and an-

kylosing spondylitis (Duerr et al. 2006; Burton et al. 2007; Cargill

et al. 2007), and a SNP within the intron of CDKAL1 has been

associated with type 2 diabetes (T2D) and insulin secretion defects

(Gudmundsson et al. 2007; Scott et al. 2007; Zeggini et al. 2007,

2008). In other cases, genetic relationships are beginning to

emerge between traits that had not previously been associated:

a SNP in HNF1B is associated with protection from type 2 diabetes

(Winckler et al. 2007) and for prostate cancer (Gudmundsson et al.

2007); SNPs in TCF7L2 are associated with both type 2 diabetes

(Grant et al. 2006) and colon cancer (Slattery et al. 2008); SNPs

in JAZF1 are associated with both type 2 diabetes (Zeggini et al.

2008) and prostate cancer (Thomas et al. 2008).

How much does genetic architecture vary between
phenotypes?
Evidence from model organisms strongly argues that the distri-

bution of effect size of common variants is the same for all phe-

notypes. Figure 2 shows a summary of the effect sizes for 98

phenotypes mapped in 2000 heterogeneous stock mice (Valdar

et al. 2006a). The phenotypes are classified into six categories:

behavior, biochemistry, hematology, immunology, metabolism,

and respiratory physiology (as measured in a plethysmograph).

There is no significant variation among the categories (F = 1.8, df =

5, P = 0.109). Mapping multiple traits in chromosome substitution

strains in mice gives a similar picture of the genetic architecture

of quantitative phenotypes (Shao et al. 2008). CSS studies of 90

traits in a mouse panel and 54 traits in a rat panel identified

multiple QTLs for each phenotype (Shao et al. 2008). The average

Table 1. Percentage of abnormal phenotypes (at P < 0.05) for 250
mouse knockouts

Phenotype Percent

Open field activity 18.9
Albumin 7.1
Alkaline phosphatase 7.1
Blood urea nitrogen 9.1
Calcium 6.3
Cholesterol 10.2
Glucose 3.9
Hemoglobin 4.5
Phosphorous 7.1
Platelets 5.8
Triglycerides 6.7
White blood cells 6.2

Data are taken from http://www.informatics.jax.org/external/ko/.
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phenotypic effects for a CSS were similar across all phenotypes in

both mouse and rat panels.

One of the surprises of the Wellcome Trust Case Control

Consortium analysis of seven common diseases (Wellcome Trust

Case Control Consortium 2007) was that although the same

number of individuals was used for each disease (2000) and

a common set of controls (3000), the findings for each phenotype

varied. While for Crohn’s disease (an inflammatory bowel disor-

der), nine loci exceeded an association signal at P < 5310�7, only

one locus was found for coronary artery disease and bipolar dis-

ease. In part, the difference in detection can be blamed on ex-

perimental design. The WTCCC uses a set of common controls

that are not screened for disease. Consequently, for common dis-

orders, such as coronary artery disease, controls include a pro-

portion of affected individuals, and this misclassification will

reduce power to detect association (Wellcome Trust Case Control

Consortium 2007; McCarthy et al. 2008). But this does not

rule out the possibility that failure to detect effects might reflect

a different genetic architecture. It could be that the effect sizes of

common variants are much less in psychological measures than in

anthropometric traits.

It is also possible that the model organism gives an un-

representative picture. Almost all of the work carried out in mice

and flies on quantitative traits uses experimental designs that

detect common alleles, not rare variants. In populations derived

from crosses between inbred strains, there are a small number

of alleles (in most designs only two) at each locus, and the fre-

quencies are large and vary little (in an intercross, each allele

will have a frequency of about 0.5). In outbred populations

used by human geneticists, this is not the case. Genome-wide as-

sociation studies detect common variants, so the comparison with

the model organism results is probably fair. The impact of rare

variants on the genetic architecture of quantitative phenotypes

remains relatively unexplored in both model organisms and

humans. However, there are clear indications from resequencing

studies in humans that it will turn out to be important (Cohen

et al. 2004, 2005; Kotowski et al. 2006; Romeo et al. 2007; Ji et al.

2008).

Could the contribution of rare variants differ between phe-

notypes? There is some evidence from human studies to support

this view, coming from studies of the role of copy number variants

(CNVs). The extent and distribution of CNVs in the human ge-

nome is still being investigated: Current estimates indicate large-

scale (>50 kb) CNVs are rare, affecting <5% of the genome, but

about 1300 smaller CNVs have minor allele frequencies >1%

(McCarroll et al. 2008). Genome-wide association studies typically

use array-based methods that can also detect CNVs. Rare CNVs are

now known to be common in autism (Sebat et al. 2007) and

schizophrenia (International Schizophrenia Consortium 2008;

Stefansson et al. 2008; Walsh et al. 2008; Xu et al. 2008) than in

controls; in contrast, few common variants have been found in

schizophrenia and autism. A similar contribution of rare CNVs has

not been reported for other diseases, suggesting that there may be

important differences between some phenotypes. Possibly the

lower reproductive fitness of schizophrenia and autism have

contributed to the concentration of rare variants as a predisposing

cause of these psychiatric illnesses, a finding that implies that it

may be difficult to model these illnesses genetically using engi-

neered mice.

Are the same genes involved in the same phenotype
in different species?
Despite substantial advances in mapping QTLs, the identification

of the QTGs and ultimately the QTN sequence variants has proved

more difficult. Thus, our information on the overlap at the mo-

lecular level is relatively limited. But, the information that we have

indicates that sequence positions giving rise to phenotypic varia-

tion are not homologous between species. The relevant finding

here is from the human work, indicating that QTNs are likely to lie

in regulatory regions of the genome (Donnelly 2008), which has

implications for their conservation between species. QTNs typi-

cally lie outside genes, often very far outside genes: The associa-

tion signal on chromosome 9 between myocardial infarction and

T2D lies more than 100 kb from the nearest genes (CDKN2A and

CDKN2B) (Helgadottir et al. 2007; McPherson et al. 2007; Samani

et al. 2007); a locus associated with breast, colon, and prostate

cancer on the long arm of chromosome 8 is more than a quarter of

a megabase from the nearest known gene (Amundadottir et al.

2006; Freedman et al. 2006).

The importance of this finding is that, unlike coding regions,

many regulatory regions are not conserved between species. One

of the surprises of the Encyclopedia of DNA Elements (ENCODE)

Project, which set out to catalog functional elements in 1% of the

genome, was the excess of functional elements lying outside

regions of sequence conservation (The ENCODE Project Consor-

tium 2007).

In flies, the requirement for dense molecular marker geno-

types or, ideally, complete DNA sequence data, for alleles of can-

didate genes sampled from a natural population has limited the

number of association studies performed. However, in all studies

reported to date, both common and rare QTNs have been associ-

ated with quantitative traits and occur in presumed regulatory

regions, as well as nonsynonymous polymorphisms in coding

regions (Mackay and Langley 1990; Long et al. 2000; Robin et al.

2002; Palsson and Gibson 2004; Jordan et al. 2006). Although

the total number of studies is small, there is a tendency for less

common polymorphisms associated with quantitative traits to

Figure 2. Effect sizes (expressed as percentage of total variation
explained) for six categories of phenotype. Data are taken from analyses
of 97 phenotypes mapped in heterogeneous stock mice (Valdar et al.
2006a).
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occur in coding regions and have large effects, while intermediate

frequency polymorphisms often occur in presumed regulatory

regions (or synonymous SNPs in coding regions) and have smaller

effects. All types of polymorphisms have been associated with

variation in fly quantitative traits: SNPs, small insertions/dele-

tions, complex SNP/copy number variants, and transposable ele-

ments. A more comprehensive picture of the nature and extent of

polymorphisms associated with quantitative traits in the fly model

will emerge in the near future, when many traits are assessed for

a panel of 192 inbred strains for which complete sequences have

been determined.

If the position of the variant is not conserved, the gene may

well be. Claims that variation within the same gene could con-

tribute to phenotypic variation in both rodents and humans have

sustained attempts to map phenotypes in model organisms.

However, given the assumption that many physiological processes

are conserved between these species, and that, as we have shown,

a very large number of loci are likely to be contributing to human

phenotypic variation, it is surprising that so few examples of

common QTLs have been reported.

One of the earliest examples is the detection of a locus that

modifies the severity of cystic fibrosis. A locus was identified on

mouse chromosome 7 that modified intestinal disease in homo-

zygous mutant mice (Rozmahel et al. 1996) and subsequently

a similar modifier was mapped to human chromosome 19, in the

region syntenic to the mouse locus (Zielenski et al. 1999). Un-

fortunately, the gene involved remains unknown. Polymorphisms

in the same gene, cytotoxic T-lymphocyte-associated protein 4

gene (CTLA4), have been shown to contribute to autoimmune

disorders in humans and mice (Ueda et al. 2003). A noncoding 39

region of CTLA4 increases risk of the Graves’ disease, autoimmune

hypothyroidism, and type 1 diabetes; in a mouse model of type 1

diabetes, susceptibility is associated with variation in Ctla4 gene

splicing with reduced production of one splice form. Finally, QTL

mapping identified the same susceptibility gene (Fcgr3) contrib-

uting to immunologically mediated glomerulonephritis in hu-

mans and rats (Aitman et al. 2006). Remarkably, in both rats and

humans, copy number variation in the homologous gene was

associated with the disease, suggesting that copy number variation

may be a conserved molecular mechanism underlying complex

and quantitative phenotypes.

A number of other genes have been identified in rodents and

then tested by association in humans, but results have often been

equivocal. For example, evidence from QTL mapping and ana-

lyses of knockouts implicates Tnfsf4 in diet-induced atheroscle-

rosis in mice (Wang et al. 2005b); however, genetic association

studies have not provided consistent evidence for its involvement

in humans (Koch et al. 2008). Similar difficulties are found for

the involvement of type II SH2 domain-containing inositol

5-phosphatase in the metabolic syndrome (Kaisaki et al. 2004;

Marcano et al. 2007) and regulators of G protein signaling in

anxiety (Fullerton et al. 2008).

The more general question, of the extent of overlap between

QTLs identified in different species, remains unclear. Data from

mouse QTL and human linkage studies were used by Paigen and

colleagues to show that more than half of human atherosclerosis

QTLs are located in regions homologous to mouse QTLs (Wang

et al. 2005a). Human linkage results are, however, notoriously

unreliable and, as Risch and colleagues pointed out, concordance

is unlikely given that the genetic effect in humans depends on

disease allele frequencies and such allele frequencies are un-

predictable (Risch et al. 1993).

The more recent GWAS data present a new opportunity to

revisit this question. The relatively large number of genes now

identified in humans, and progress in mapping QTLs at high res-

olution in mice (Valdar et al. 2006a) should allow comparisons of

the extent of overlap. These analyses have yet to be reported.

Overlaps between mammals and Drosophila at a QTL level

have not been reported. At a mechanistic level there are examples

of genes involved in similar processes, including learning and

memory (Dubnau and Tully 1998). More intriguing is the possi-

bility that, at a systems level, there may be commonalities. Could

networks of coregulated genes, representing physiological pro-

cesses, be common between species, and networks accessed by

their genetic determinants? A recent study of liver and adipose

gene expression in human and mouse tissue suggested that this

could be the case: A common macrophage-enriched network was

found (Chen et al. 2008; Emilsson et al. 2008). While it is not clear

to what extent this may simply reflect common histological

characteristics of fatty liver infiltrated by macrophages, the idea of

searching for commonality at the systems level is intriguing. As

transcriptomic data become more widely available, it will become

possible to explore this idea.

Conclusions
Our review of the genetic architecture of quantitative traits has

highlighted considerable agreement between analyses carried out

in flies, rodents, and our own species. A picture emerges of large

numbers of loci of small effect, although the distribution of allelic

effects is not consistent with the ‘‘infinitesimal’’ model of quan-

titative genetic variation (Falconer and Mackay 1996; Lynch and

Walsh 1998). Discrepant findings between species are largely at-

tributable to differences in experimental design. For example,

geneticists working with model organisms frequently exploit the

opportunities provided to analyze inbred strains or derived

crosses, while human geneticists are restricted to working with

outbred populations. Differences in the number and frequencies

of alleles segregating in outbred populations, compared with those

in crosses between inbred strains, contribute to differences in

inferred quantitative genetic architecture.

Systematic measures of the extent of context-dependent

effects in human populations are still lacking, despite robust evi-

dence from model organisms of their importance. Again, extrap-

olating findings from one species to another is problematic: We

cannot compute the expected contributions of the epistasis ob-

served from studies of mutations and QTLs in model organisms to

the population genetic variance without knowledge of the allele

frequencies in natural populations. To restate, epistatic variance

depends on both the size of genetic effects and allele frequencies.

Large effects on the mean difference between genotypes may not

translate to large effects on the variance if allele frequencies are

low. The same arguments apply to studies of genes by environ-

ment interaction.

We have highlighted what we believe to be the largely un-

appreciated importance of pleiotropy. We do not refer here to the

expected correlation of genetic effects between related phenotypes,

such as height, weight, or morphology. Nor do we refer to pleiot-

ropy consequent upon linkage, that is to say, when mapping of two

apparently unrelated traits identifies the same genetic locus because

of the close proximity on the genome of two genes that have sep-

arate and independent functions. We refer, rather, to the observa-

tion from studies of mutations in flies and mice, and now,

increasingly, from high-resolution mapping studies in humans,
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that one gene may have a role in two or more phenotypes pre-

viously thought to be unrelated. An appreciation of pleiotropy, of

its extent, and how it works, will be critical for interpretations of the

functional analysis of every gene in the vertebrate genome, acces-

sible through the creation of a complete set of mouse knockouts.

Finally, when we consider the molecular basis of quantitative

traits, we find an important role for noncoding DNA. Many

quantitative trait nucleotides lie in what are assumed to be regu-

latory regions of the genome, though whether this is necessarily

the regulation of gene expression or of other features of genome

function remains unknown. Given the differences in gene func-

tion and population structure between the organisms studied, it is

not surprising that there is little evidence for conservation of the

position of QTLs between species; however, there has been no

thorough search for such loci, largely because until recently the

necessary resources of high-resolution high-quality QTL maps

were not present. Finally, as more data accumulate and, particu-

larly, with access to whole-genome sequences of multiple indi-

viduals in any species, the coming years will undoubtedly see

remarkable advances in our understanding of the molecular basis

of the genetic architecture of quantitative traits.
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