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Abstract
Schizophrenia is a devastating neuropsychiatric disorder of unknown etiology. There is general
agreement in the scientific community that schizophrenia is a disorder of neurodevelopmental
origin in which both genes and environmental factors come together to produce a schizophrenia
phenotype later in life. The challenging questions have been which genes and what environmental
factors? Although there is evidence that different chromosome loci and several genes impart
susceptibility for schizophrenia; and epidemiological studies point to broad aspects of the
environment, only recently there has been an interest in studying gene × environment interactions.
Recent evidence of a potential association between prenatal lead (Pb2+) exposure and
schizophrenia precipitated the search for plausible neurobiological connections. The most
promising connection is that in schizophrenia and in developmental Pb2+ exposure there is strong
evidence for hypoactivity of the N-methyl-d-aspartate (NMDA) subtype of excitatory amino acid
receptors as an underlying neurobiological mechanism in both conditions. A hypofunction of the
NMDA receptor (NMDAR) complex during critical periods of development may alter
neurobiological processes that are essential for brain growth and wiring, synaptic plasticity and
cognitive and behavioral outcomes associated with schizophrenia. We also describe on-going
proof of concept gene-environment interaction studies of early life Pb2+ exposure in mice
expressing the human mutant form of the disrupted in schizophrenia 1 (DISC-1) gene, a gene that
is strongly associated with schizophrenia and allied mental disorders.
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Introduction
Schizophrenia is a severe neuropsychiatric disorder affecting approximately 1% of the
world's population (Bromet and Fenning, 1999; McGrath et al., 2004). The symptoms
typically begin in late adolescence or early adulthood, whereupon lifelong disability
typically ensues. Its onset is defined by the emergence of psychosis in the setting of
deteriorating function and other symptoms. Before psychosis onset, during a prodromal
period of several weeks to years, nonspecific and variable subtle abnormalities worsen and
coalesce into the classic disease features. These include alterations in the perception of
reality, changes in the form and content of thoughts and speech, and social and emotional
deficits including a disturbed sense of self, social dysfunction, apathy, and peculiar
behavior. The symptoms of schizophrenia are often grouped into positive and negative
subtypes, although there is substantial diversity in the pathophysiology of the symptoms
within these groups. Positive symptoms include hallucinations and delusions, disorganized
thinking or behavior, so denoted because these phenomena occur in addition to usual
experiences. Negative symptoms are those that arise from the absence of normal behaviors
or experiences, including affective flattening, alogia (impoverish thinking manifested by
diminished speech output or content), apathy, avolition (lack of energy and drive), and
social withdraw. In addition, schizophrenia patients express a pattern of cognitive
dysfunction that represents a core feature of the disorder.

Genes and Environment: Etiological factors in Schizophrenia
The etiology of schizophrenia is not currently known, although there is strong evidence that
genetic and environmental factors contribute to the expression of the disease (Tsuang, 2000;
van Os et al., 2010; Brown, 2011). The identification of specific genes that cause
schizophrenia has been less than satisfactory; although a number of genes associated with
schizophrenia have been identified that together may contribute to the schizophrenia
phenotype (Lewis and Lieberman 2000; Tsuang 2000; Horvath and Mirmics 2009;
Nieratschker et al, 2010). Environmental risk factors have also been implicated to play a role
in schizophrenia. These include birth in an urban environment, season of birth, viral
infection during the prenatal or perinatal period, complications during pregnancy and
delivery, nutritional and social factors (Bromet and Fenning, 1999; Tsuang, 2000; vanOs et
al., 2010; Brown, 2011). It is generally thought that exposures to an environmental insult
that damages or disrupts the development of the central nervous system may be associated
with schizophrenia and allied mental disorders (Murray et al., 1992; Weinberger, 1996). To
date, maternal exposures during the mid- to late-gestational period have been implicated.
There are several reasons to suspect that chemical agents, in general, and particularly those
associated with industrialization, may increase the risk of schizophrenia. Studies further
suggest that some feature of urban environment may elevate the risk of schizophrenia
(Pedersen et al., 2004; Pedersen and Mortensen, 2006). This may be due to chemicals or
environmental agents that are more prevalent in urban settings, possibly ambient pollutants
(Marcelis et al., 1998).

Are Specific Environmental Toxins Involved?
An environmental risk factor that has not been considered until recently is the possibility of
early life exposure to a developmental neurotoxicant(s) pervasive in the global environment.
This possibility has been brought to light by two recent studies by Opler and colleagues
(2004; 2008). They showed a potential association between prenatal Pb2+ exposure and the
increased likelihood of expressing a schizophrenic phenotype later in life. To our knowledge
this is the first time that prenatal exposure to a specific environmental agent has been
associated with schizophrenia. Lead (Pb2+) has been known as a developmental neurotoxin
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in the medical literature since the early part of the 20th century. It has been associated with
psychosis following acute exposure in adults, and more recently, with deficits in
intelligence, impaired attention and executive function, and juvenile delinquency following
prenatal and perinatal exposure (Needleman et al., 1979; Dietrich et al., 2001; Kaneshiro-
Olympio et al, 2009). While some studies have followed samples with perinatal exposure
into adolescence (Ris et al., 2004), there is limited information on long-term effects of Pb2+

exposure, particularly on the subsequent risk of mental disorders in adulthood.

Relationships between early life exposure to Pb2+ and neuropsychological abnormalities
have been observed from infancy to adolescence (Bellinger et al., 1991; Pocock et al., 1994;
Kim et al., 1995). For example, the Yugoslavia Prospective Study reported that Pb2+

exposure during mid-pregnancy was associated with deficits in neuropsychiatric function at
24 months of age (Factor-Litvak et al., 1999). Further assessments of this cohort identified
persistent decrements in measures of attention, cognition, and verbal comprehension at ages
4, 7, 10, and 12 (Wasserman et al., 2000).

Studies by Needleman and colleagues found associations between dentine Pb2+ levels
measured in deciduous teeth (ages 6-8) and failure to graduate from high school (Needleman
et al., 1990) and other studies have found poor end-of-grade performance in Pb2+-exposed
children (Miranda et al, 2007). In a prospective study conducted in Cincinnati, prenatal
childhood blood Pb2+ concentrations were reported to be associated with increased
delinquent behavior later in life (Dietrich et al., 2001). Nevin (2007) has found a very strong
association between preschool blood Pb2+ and subsequent crime rate trends over several
decades in various countries. This suggests that prenatal Pb2+ exposure may be a risk factor
for other adolescent and adult-onset outcomes, possibly psychiatric disorders. Schizophrenia
is one plausible candidate, as some of its premorbid features such as reduced attention,
neurocognitive impairment, and diminished educational attainment (Jones et al., 1993)
strongly resembles the behavioral deficits associated with Pb2+ exposure.

Prenatal Lead Exposure and Schizophrenia
Opler and colleagues (2004; 2008) have conducted studies on prenatal cohorts to assess the
risk of schizophrenia following Pb2+ exposure. The principle technique for assessing Pb2+

exposure is through direct measurement of Pb2+ in maternal blood. They used stored sera,
not whole blood containing the Pb2+-sequestering erythrocytes required for direct analysis.
A biological marker of Pb2+ exposure, δ-aminolevulinic acid (δ-ALA) can be detected in
urine, plasma and serum. Feasibility studies were conducted to assess the utility of this
marker in small volumes of stored maternal serum. It was determined that the second
trimester serum was likely to be the best indicator of prenatal Pb2+ exposure, as both Pb2+

and corresponding δ-ALA levels are believed to be relatively stable at mid-pregnancy. A
single aliquot of second trimester samples was made available for each subject and a cutoff
value (15 μg/dL) was used to categorize the samples by Pb2+ exposure. Samples were coded
and blinded with respect to case status. Using this approach, Pb2+ exposure as measured by
elevated δ-ALA was associated with about a two-fold increase in risk of schizophrenia
spectrum disorders in these studies (OR=2.3, 95% CI: 1.0-4.3; p=0.05). Because these
studies used a biological marker of exposure, serum δ-ALA, rather than direct measure of
Pb2+, an increase in risk in schizophrenia cannot be directly ascribed to Pb2+ exposure.
Nevertheless, these findings illustrate how prenatal cohorts with archived specimens can
take a leap forward in terms of defining and ascertaining exposure status and timing. At the
very least, they allow researchers to say with more certainty than before that certain classes
of exposure (e.g. infectious agents and/or environmental toxins) are risk factors that merit
more detailed investigations. Although the studies by Opler and colleagues (2004; 2008)
have certain limitations, it brings to light the possibility that prenatal Pb2+ exposure may be

Guilarte et al. Page 3

Neurotoxicology. Author manuscript; available in PMC 2013 June 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



a putative risk factor for the expression of schizophrenia later in life. This potentially
important connection between schizophrenia and exposure to a known developmental
neurotoxicant should be re-examined using a larger cohort of subjects in which Pb2+

concentrations are directly measured in biological samples. Nevertheless, the potential link
of expressing a schizophrenia phenotype as a result of prenatal exposure to a known
developmental neurotoxicant that has been present in the global environment since antiquity
deserves closer examination. Although impossible to do in a single document, the goal of
this review is to examine the current understanding of the behavioral, anatomical,
biochemical and neuropathological endpoints in schizophrenia and those resulting from
developmental Pb2+ exposure. Despite the fact that research in these two arenas have
occurred independently, there is a great deal of overlap in behavioral outcomes and
neurochemical systems affected.

Behavioral manifestations in Schizophrenia and early life Pb2+ exposure
As previously noted, the clinical diagnosis of schizophrenia is based on behavioral
observations and self-reported abnormal mental experiences (Pearlson, 2000). Symptoms of
schizophrenia are divided into “positive” and “negative” types (Kay and Opler, 1987).
Positive symptoms are usually defined as the presence of intrusive or abnormal
neurobehavioral phenomenon, such as delusions (presence of false beliefs), hallucinations
(including visual, auditory, olfactory, tactile, and gustatory modalities), formal thought
disorder and unusual motoric and social behaviors. Negative symptoms are conceptualized
as the absence of normal functions, including blunted affect, social withdrawal, apathy, poor
initiative and motivation, difficulty in planning, impaired problem solving and abstract
reasoning. Impairments in cognitive functions include those related to attention, executive
functions and working memory. Keeping these symptoms in mind, there is evidence that
some of these same behavioral and cognitive alterations have been described as a result of
early life Pb2+ intoxication.

The effects of childhood Pb2+ intoxication on the central nervous system have been
documented since the early part of the 20th century. In the classic paper by Byers and Lord
(1943) it was recognized that Pb2+ intoxication in children produces mental retardation with
cognitive impairments and maladaptive behaviors. In this classic paper, a series of 20
children exposed to Pb2+ from infancy (although it is highly likely that in utero exposure
also occurred) were described as expressing “intellectual difficulties and sensorimotor
deficits”. Behavioral difficulties were common in all children including “unreliable
impulsive behavior”, “cruel impulsive behavior” and “short attention span”. It is interesting
to quote some of the descriptions given for the Pb2+-intoxicated children: “It made several
of the children friendless and difficult at home and in school. Three were excluded from
school based on behavior, one for setting fires in the school, another for repeatedly getting
up and dancing on the desks and other furniture and the third for sticking a fork into
another's child face”. Another example provided was about a girl at 11 years of age that
upon medical examination was described as “sullen, withdrawn and insecure”. A previous
examination of the same girl at age of 5 did not find any signs of psychological difficulties.
These observations suggest a developmental trajectory for the expression of the
psychological symptoms. Based on this limited information it is difficult to classify any of
these children as schizophrenics but clearly some of these behaviors can be categorized
within the range of “positive” or “negative” symptoms of schizophrenia. Other cardinal
features of schizophrenia were also described such as a child having “enlarged ventricles
upon pneumoencephalographic examination at 12 years of age”.

The more recent human literature at Pb2+ exposures levels lower that those during the times
of Byers and Lord (1943) confirms and extends the effects of childhood Pb2+ intoxication on
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behavioral and cognitive outcomes. Epidemilogical studies clearly show that besides the
well-documented effects of Pb2+ on IQ (Bellinger et al 1991; Needleman et al 1979;
Wasserman et al., 2000; Canfield et al 2003), children exposed to Pb2+ also perform poorly
on tests of working memory, attentional flexibility, and planning and problem solving
(Canfield et al., 2004). As these authors point out, the effects of early life Pb2+ exposure is
not restricted to global indexes of general intellectual functioning, but executive processes
may be at particular risk in Pb2+ intoxicated children (Canfield et al 2004). School children
with elevated blood Pb2+ levels are also more likely to display antisocial behavior (Bellinger
et al., 1994; Needleman et al., 1996; Roy et al., 2009) and perform poorly in end of grade
examination (Miranda et al, 2007). These behavioral and cognitive problems are persistent
even after cessation of Pb2+ exposure in early life (White et al., 2007). Prenatal and/or
childhood Pb2+ exposure has also been associated with delinquent behavior at adolescense
(Dietrich et al., 2001). They resemble endophenotypes described in schizophrenia in which
poor performance on attentional, working memory, and executive functioning and increased
incidence of violent behavior are observed (Pearlson, 2000; Ross et al., 2006).

Neuroimaging Studies of Brain Volume and Chemistry
Major advances in neuroimaging technologies such as Magnetic Resonance Imaging (MRI),
Magnetic Resonance Spectroscopy (MRS) and Diffusion Tensor Imaging (DTI) during the
last two decades have provided important clinical tools to probe the anatomical and
biochemical bases of neurological and mental disease. Studies performed with these
techniques in schizophrenia patients have provided valuable information that previously was
only possible from post-mortem studies. The emerging evidence is that a common finding in
schizophrenia patients is enlargement of the ventricles and decreased cerebral cortex volume
especially in frontal and temporal lobes (Woods et al., 1996; Harrison, 1999; Pearlson, 2000;
Andreasen et al., 2011; Horga et al., 2011). Reductions in the volume of the hippocampus,
basal ganglia, thalamus and amygdala have also been documented (Harrison 1999; Horga et
al., 2011). The loss of neurons or neuronal elements such as axons and dendrites has been
demonstrated in vivo in the brain of schizophrenia patients by the use of MRS in which
reductions in the levels of N-acetylaspartate (NAA)/creatine (Cr) ratios have been measured.
The loss of the NAA signal has been associated with frank neuronal loss or reductions in
brain neuropil in a number of neurodegenerative disorders (Ross et al., 1997; Block et al.,
2002; Stork and Renshaw, 2005). At a different level of analysis, post-mortem studies have
revealed abnormalities in neuronal architecture in many of these brain regions with
alterations in neuronal density and reductions in the size of neurons (Arnold and
Trajanowski, 1996; Cannon, 1996). Importantly, it appears that these changes in neuronal
mass and size are present in the absence of gliosis suggesting that schizophrenia may not be
due to an active neurodegenerative process but rather the result of an earlier developmental
insult (Harrison, 1997; 1999; Schnieder and Dwork, 2011).

Relative to schizophrenia, there is a paucity of data on the neuroanatomical and brain
chemistry changes in humans resulting from prenatal or perinatal Pb2+ exposure despite the
fact that a high percentage of children and adults have been and continue to be exposed to
this neurotoxicant in the United States and throughout the world. This is largely due to the
fact that most human studies on the effects of Pb2+ exposure have been epidemiological in
nature with little or no use of state-of-the-art neuroimaging techniques to examine brain
structure and function. However, in the last decade, there are a growing number of research
groups that are begining to utilize neuroimaging techniques in their studies and are
providing valuable information on the effects of early life Pb2+ exposure and alterations in
brain volume and chemistry.
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The first literature reports were in small groups of Pb2+-exposed children (Trope et al.,
1998; 2001) and one report on adult monozygotic twins with Pb2+ poisoning (Weisskopf et
al., 2004). A more extensive series of studies in a larger cohort of Pb2+-exposed children has
been reported by the Cincinnati group (Cecil et al., 2008; Brubaker et al., 2009; 2010). The
two reports by Trope and colleagues in children used MRS to examine regional brain
metabolite levels such as N-acetylaspartate (NAA), choline (Cho), myoInositol (mI) and
creatine (Cr). In the first report, a 10 years old child with documented blood Pb2+ levels of
51 μg/dL at 38 months and 44 μg/dL at 41 months was compared to a 9 year-old cousin.
Both children lived in the same household and shared the same socioeconomic background
and home environment but one was exposed to Pb2+ during stays at his grandmother's
house. The Pb2+-exposed child exhibited significant performance deficits in a number of
neuropsychological and cognitive tests while his cousin's performance was in the normal
range. The MRS results indicated a significantly lower NAA/Cr ratio in grey matter in the
frontal cortex of the Pb2+-exposed child relative to his normal cousin. There were no
apparent differences in the Cho/Cr ratio, but interestingly there was a significant decrease in
the mI/Cr ratio in the Pb2+-exposed child. This latter observation is important because the
mI peak consists of 70% mI, but 15% of the peak signal is also contributed by glycine an
amino acid that is decreased in schizophrenia patients (Sumiyoshi et al., 2004). The MRI
studies did not find any apparent structural abnormalities. In summary, this study indicates
the possibility of neuronal loss or dysfunction in the absence of gliosis in the frontal cortex
of a 10 year-old Pb2+-exposed child with decline in intellectual functioning.

In a second larger study of Pb2+-exposed children with blood Pb2+ levels in the 23-65 μg/dL
range, the same group of investigators were able to confirm the Pb2+-induced decrease in
NAA/Cr ratio in the grey matter relative to non-exposed controls (Trope et al., 2001). Thus,
from these studies it appears that one consequence of early life Pb2+ exposure is the possible
loss of neurons or neuronal elements such as axons and dendrites in the brain. The decrease
in the NAA signal in the brain of Pb2+-exposed children is consistent with what is observed
in the brain of schizophrenia subjects (Deicken et al., 1997; Bertolino et al., 1998). Although
no apparent structural abnormalities were present in the brain of these Pb2+-exposed
children, it may have been too early in the developmental process for measurable changes to
occur in brain size and it is possible that at a latter age structural abnormalities may be
apparent [See studies below].

Weisskopf and colleagues (2004) have presented a case report in which seventy-one year old
monozygotic twins with Pb2+ poisoning were examined with MRI and MRS. Both brothers
had elevated blood and bone Pb2+ concentrations relative to the general population of the
same age and one brother had much higher levels than his sibling. Neurocognitive tests
indicated that working memory/executive function were below expectations and the brother
with the higher Pb2+ burden performed dramatically worse in tests of short-term memory
indicative of frontal lobe dysfunction. Hippocampal dysfunction was also worse in the
brother with higher Pb2+ levels. Importantly, the brother with the lower scores in the
neurocognitive test battery and with a higher Pb2+ burden had a lower NAA/Cr ratio in the
hippocampus, frontal cortex and midbrain. This finding is consistent with the previous two
studies in children indicating that neuronal loss or dysfunction (based on decreased NAA/Cr
ratio) is a consequence of Pb2+ exposure. Thus, one known aspect that is similar to
schizophrenia is the decrease in NAA/Cr ratio in the hippocampus and cerebral cortex.

The most comprehensive series of studies on the effects of childhood Pb2+ exposure in brain
chemistry changes in young adults comes from the Cincinnati group headed by Cecil and
colleagues. In their first study (Cecil et al., 2008) using a total of 157 participants from the
Cincinnati Lead Study ranging in age from 19 to 24 years of age with average blood Pb2+

levels of 13.3 μg/dL, they found significant decreases in grey matter volume in brain
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structures associated with executive function, mood regulation and decision-making. These
included the anterior cingulate cortex, postcentral gyrus, inferior parietal lobe, medial frontal
gyrus, and paracentral gyrus. Interestingly, they find that the loss in brain volume was
greater in males than females independent of sex-related differences in blood Pb2+

concentrations and other demographic factors. This study provides neuroanatomical
evidence that childhood Pb2+ exposure results in the loss of brain volume in regions affected
in schizophrenia patients. It shows decreased brain volume in young adults with previous
childhood Pb2+ exposure.

In a subsequent study from the same group using the same cohort of Pb2+-exposed subjects,
they performed diffusion tensor imaging (DTI) to examine white matter effects (Brubaker et
al., 2009). They found significant and persistent effects on white matter microstructure with
evidence of axonal injury and myelin damage. Finally, in the most recent study, they find
inverse associations between gray matter volume loss and yearly mean blood Pb2+

measurements that are most pronounced in the frontal lobes of males than females
(Brubacker et al., 2011). These series of studies provide compelling evidence of the
widespread impact of childhood Pb2+ exposure on brain volume loss in young adults and in
particular the frontal cortex and hippocampus.

A series of reports from Schwartz and colleagues have found highly significant effects of
previous Pb2+ exposure and longitudinal declines in cognitive function and loss of brain
volume in aging. These studies made used of two population groups: 1) former organo-lead
manufacturing workers, and 2) 50-70 year old Baltimore residents with environmental Pb2+

exposure. They find that previous exposure to Pb2+ results in longitudinal declines in
cognitive function (Schwartz et al., 2000; Shih et al., 2006; Stewart and Schwartz, 2007;
Bandeen-Roche et al., 2009) independent of socio-economic status and despite the fact that
exposure to Pb2+ had stopped. They also show that previous cumulative Pb2+ dose was
associated with persistent brain lesions, in particular, higher tibia Pb2+ levels was negatively
associated with smaller total brain volume, frontal and total gray matter volume and parietal
white matter volume (Stewart et al., 2006). Together, the MRI/MRS/DTI neuroimaging
studies strongly suggest an association of cumulative Pb2+ exposure earlier in life and the
loss of brain volume in young adults and in aging and these structural changes have been
associated with cognitive decline.

Post-mortem studies
There is a lack of information on the effects of Pb2+ exposure on the human brain from post-
mortem studies. The limited number of human brain samples from children that expressed
Pb2+ encephalopathy were perform more than 25 years ago and they lacked the use of
current advances in neuroanatomical methods such as unbiased stereological counting of cell
number and size. Nevertheless, examination of the literature indicates that upon
neuropathological examination, a common feature of the Pb2+-exposed brain in children is
the presence of small brain infarcts (Winder et al., 1983). A common pathological
abnormality present in the brain of patients with schizophrenia, are small infarcts that may
be suggestive of vascular impairments (Harrison, 1999). Analysis of the same human brain
samples from the Pb2+-exposed children did indicate gliosis, a condition that it does not
appear to be an active event in the brain of schizophrenia patients (Harrison, 1999;
Schnieder and Dwork, 2011).

Most of the knowledge base on the effects of Pb2+ exposure on brain pathology is provided
by studies on experimental animals. Based on the Pb2+ dose given and time of exposure,
studies have found some of the same features expressed in the brain of schizophrenia
patients. These include: 1) reduction in brain weight, 2) reduced forebrain weight, 3)
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reduced cortical thickness, 4) reduced neuronal size, 5) increased neuronal packing density,
6) decreased synapse per neuron and decreased dendritic spine density (Krigman et al.,
1974; Petit and LeBoutillier, 1979; Winder et al., 1983). The hippocampus is a brain
structure with documented abnormalities as a result of early life Pb2+ exposure. For
example, a number of studies have documented the loss of dendritic arborization and
reductions in dendritic spines in the hippocampus of Pb2+-exposed rats (Alfano and Petit,
1982; Campbell et al., 1982; Kiraly and Jones, 1982; Petit et al., 1983). Similar changes
have also been documented in the brain of schizophrenia patients (Harrison, 1999; Pearlson,
2000).

A more recent observation related to the hippocampus is that Pb2+-exposed rats exhibit
reductions in mossy fiber innervation to the CA3 region of the hippocampus (Verina et al.,
2007), a finding that has been documented in the brain of schizophrenia subjects (Kolomeets
et al., 2005). The mossy fiber pathway is essential for sensory gating and memory and
learning.

Behavioral findings in Animal Models of Schizophrenia and Developmental
Pb2+ Exposure

One of the difficulties in developing animal models of schizophrenia is the complexity of
the symptoms. Therefore, animal models of schizophrenia have for the most part attempted
to model specific aspects of the disorder and there are many reviews on the topic (Marcotte
et al., 2001; Boksa 2004; Lipska 2004; Ayhan et al., 2009; Inta et al., 2010). Schizophrenia
patients have deficits in attention and sensory information processing such as prepulse
inhibition (PPI). Prepulse inhibition is a model of sensorimotor gating mechanism in the
brain that has been used in animals to study basic neuronal mechanisms in schizophrenia
research (Weiss and Feldon, 2001; Van den Buuse et al., 2003). Prepulse inhibition of the
acoustic response is the normal suppression of a startle response to a strong acoustic
stimulus when it is preceded by a weak sound stimulus or prepulse. Alterations in PPI are
commonly found in neurodevelopmental models of schizophrenia (Weiss and Feldon, 2001;
Van den Buuse et al., 2003) and in rodents that have been exposed to Pb2+ during
development (Commissaris et al., 2000).

Another common behavioral outcome in animal models of schizophrenia is increased
locomotion or “hyperactivity” in response to a low dose of amphetamine (Snyder, 1972,
Boksa, 2004) or to a novel environment (Kvajo et al., 2011). The response of increased
locomotion to a low dose of amphetamine is used in rodents as a behavioral read out of
activity of the dopaminergic system. Importantly, one of the well-documented effects of
developmental Pb2+ exposure is hyperactivity (Winneke et al., 1977; Petit and Alfano, 1979;
Burdette and Goldstein, 1986; Moreira et al., 2001), an effect that is believe to be mediated
via a hyperactive mesolimbic dopaminergic system (Zuch et al., 1998).

Alterations in other behaviors that have been measured in animal models believed to be
relevant to schizophrenia are deficits in social interaction, working memory, and spatial
learning (Boksa 2004; Kvajo et al., 2011). Many of these same behaviors are also affected in
developing animals exposed to Pb2+ (Brockel and Cory-Slechta, 1998, 1999; Nihei et al.,
2000; Moreira et al., 2001). For example, several laboratories including our own have
extensively documented the effects of developmental Pb2+ exposure on spatial learning
(Nihei et al., 2000; Guilarte et al., 2003), a behavioral task that is mediated by the
hippocampus.

Guilarte et al. Page 8

Neurotoxicology. Author manuscript; available in PMC 2013 June 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



The “dopaminergic” hypothesis of schizophrenia
The original hypothesis underlying the neurochemical abnormalities in schizophrenia was
based on the use of antipsychotics as the first effective treatment (Carlsson and Lindqvist,
1963). Subsequent studies showed that the therapeutic value of antipsychotic drugs was
mediated by blocking D2-dopamine receptors (Seeman and Lee, 1975; Creese et al., 1976;
Snyder, 1981). Experimental evidence suggests that dysregulation of dopamine function
plays an important role in the expression of positive symptoms in schizophrenia (Snyder,
1972, 1981; Lieberman et al 1987). PET studies in schizophrenia subjects and animal
models of schizophrenia have provided evidence of hyperactivity of the dopaminergic
system, with an apparent selectivity to the mesolimbic and mesocortical pathways (Laurelle
et al., 1996; Abi-Dargham et al., 1998; Harrison, 1999; Lindstram et al., 1999; Pearlson,
2000; Thaker and Carpenter, 2001). In a similar fashion, the dopaminergic system is also
affected by Pb2+ neurotoxicity. Seminal studies by Cory-Slechta and colleagues have shown
that exposure to Pb2+ in early life results in hyperactivity of the dopaminergic system (Zuch
et al., 1998; Pokora et al., 1996; Cory-Slechta et al., 2002; Bauter et al., 2003).

An important study by Cory-Slechta and colleagues (1997) is related to the modulation of
dopaminergic drugs on the effects of Pb2+ exposure on NMDAR levels. They showed that
Pb2+ exposure started at weaning resulted in significant increases (short term exposure) and
decreases (long-term exposures) on NMDAR levels in the frontal cortex, nucleus accumbens
and dorsal striatum. These Pb2+-induced changes in NMDAR levels as measured by [3H]-
MK-801 binding could be abrogated by the administration of the D2-dopamine receptor
agonist apomorphine, but not by the D1-receptor agonist SKF-82958. These findings clearly
implicate interplay between the glutamatergic and dopaminergic systems in the Pb2+-
exposed brain similar to what has been found in schizophrenia (Simpsom et al., 2010).
However, despite the years of research on the involvement of the dopaminergic system in
the pathophysiology of schizophrenia, it has become clear that dysregulation of the
dopaminergic system alone does not explain the negative symptoms and cognitive
dysfunction in schizophrenia and alterations of the glutamatergic system has emerged as a
viable hypothesis.

The “glutamatergic” hypothesis of schizophrenia
The glutamatergic hypothesis of schizophrenia originated from the observations that
administration of N-methyl-D-aspartate receptor (NMDAR) non-competitive antagonists
such as phencyclidine (PCP) or ketamine exacerbates psychotic symptoms in schizophrenia
patients and produces schizophrenia symptoms in normal subjects (Javitt and Zukin, 1991;
Lahti et al., 1995; Thaker and Carpenter, 2001; Coyle et al., 2003). Compared to
dopaminergic agents, NMDAR antagonists induce negative and cognitive symptoms of
schizophrenia as well as positive symptoms. Thus, convergent evidence has accumulated to
support a primary role of glutamatergic NMDAR hypofunction in schizophrenia (Marek et
al., 2010; Javitt, 2010). Consistent with this notion, clinical trials with the NMDAR co-
agonists glycine, d-serine and glycine transporter inhibitors that enhance endogenous
glycine levels have provided encouraging reports in the treatment of schizophrenia (Javitt et
al., 1994; Huresco-Levy et al., 1999; Lin et al., 2011).

The NMDAR is an excitatory amino acid receptor subtype that is known to play an essential
role in neuronal development, synaptic plasticity and in learning and memory (Guilarte,
1998). The administration of PCP or other NMDA receptor antagonists to experimental
animals, models certain aspects of the disease (Kilts, 2001). Further, genetic manipulation of
the NMDAR to down regulate NR1 and NR2A subunit expression (Mohn et al., 1999;
Miyamoto et al., 2001) or its selective deletion in the frontal cortex of mice (Belforte et al.,
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2010) results in behavioral manifestations consistent with those in schizophrenia providing
further support to the important role of NMDAR hypoactivity in the pathophysiology of
schizophrenia. In humans, a microsatellite repeat in the promoter of the NR2A subunit gene
that represses transcriptional activity correlates with chronic outcomes in schizophrenia
(Itokawa et al., 2003) indicating the importance of the NR2A subunit of the NMDAR in
schizophrenia.

From an etiological perspective, NMDAR antagonists such as PCP, ketamine and MK-801
are drugs of abuse or anesthetic agents that are used to model schizophrenia symptoms, and
humans are unlikely to be exposed at a global scale, although ketamine is still used as a
pediatric anesthetic agent. This raises the question, is it possible that a chemical or classes of
chemicals that are NMDAR antagonist and are ubiquitous in the global environment can
result in widespread human exposures and be a risk factor for schizophrenia? The heavy
metal lead (Pb2+) fits all of these characteristics. That is, Pb2+ is not only a well-recognized
ubiquitous, global environmental and developmental neurotoxicant, but it is also a potent
NMDAR antagonist. Since the early 1990s, there is experimental evidence that Pb2+ is a
potent and selective non-competitive antagonist of the NMDAR (Alkondon et al., 1990;
Guilarte and Miceli, 1992) and disrupts neuronal processes that are mediated via NMDAR
activation.

A substantial body of evidence has shown that exposure to Pb2+ during development, in the
same concentration range as implied in the work by Opler et al., (2004; 2008), alters gene
and protein expression of NMDAR subunits in the developing and young adult rat
hippocampus (Table 1). The hippocampus is part of the limbic system involved in learning
and memory and it is a principal brain region affected in schizophrenia (Tsai and Coyle,
2002; Konradi and Heckers, 2003) and in Pb2+ neurotoxicity (Krigman et al 1974; Petit and
LeBoutillier, 1979; Winder et al 1983; Guilarte and McGlothan, 1998; Nihei et al 2000).

A consistent change in NMDAR subunits expression observed in Pb2+-exposed animals is
alterations in the expression of the NR1 and NR2A subunits (See Tables 1 and 2). Guilarte
and McGlothan (1998) have shown that developmental Pb2+ exposure increases the gene
expression of the NR1 subunit but decreases NR2A subunit expression with no change in
NR2B subunit in the hippocampus during early postnatal life. A subsequent study showed
that Pb2+ exposure decreased both NR1 and NR2A subunit gene expression in several
hippocampal regions in post adolescent rats (Nihei et al., 2000). Further, NR2B subunit
expression was either not changed or slightly increased, but only in the CA3 region of the
hippocampus (Nihei et al., 2000). Thus, there are age-dependent changes in the expression
of the NR1, NR2A and NR2B subunit genes as a result of developmental Pb2+ exposure
(Toscano and Guilarte, 2005). These findings resemble some of the changes in NMDAR
subunit expression described in the brain of schizophrenia patients (Tsai and Coyle, 2002;
Konradi and Heckers, 2003; Meador-Woodruff et al., 2003; Nudmamud-Thanoi and
Reynolds, 2004; See Tables 1 and 2) and in the frontal cortex of rodents exposed to a sub-
chronic administration of the NMDAR antagonist MK-801 (Xi et al., 2009). In the latter
study they show that NMDAR subunit expression is dynamically regulated based on
MK-801 dose. Together these studies suggest that based on the dose, timing of dose and
chronicity of NMDAR antagonist dosing, NMDAR subunit expression are likely to be up or
down regulated differentially.

It should be noted that a number of studies have shown that Pb2+ exposure decreases NR2A
subunit gene and protein expression (Tables 1 and 2) and this effect results in a greater
proportion of NR2B-NMDAR complexes. This is a relevant observation in the Pb2+

exposure/schizophrenia hypoglutamatergic hypothesis because NR2A-containing NMDAR
complexes are responsible for the maintenance of paravalbumin (PV) and glutamic acid
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decarboxylase 67 (GAD67) positive interneurons (Kinney et al., 2006) and there is a
selective decrease in these cortical GABAergic interneurons co-expressing the NR2A
subunit (Woo et al., 2004) in the brain from schizophrenia patients. Further, Kocsis (2011)
has demonstrated that the increase in aberrant gamma oscillations in the cerebral cortex that
are associated with schizophrenia related behavioral and prepulse inhibition abnormalities
was due to antagonist of NR2A-containing NMDAR complexes but not those containing the
NR2B, NR2C, or NR2D subunits.

NR1 subunit splice variants mRNA expression in the brain of schizophrenia subjects
showed a decrease in NR1 variants containing the C2 cassette (Clinton et al., 2003; Meador-
Woodruff et al., 2003), a finding that is also observed in the brain of Pb2+-exposed rats
(Guilarte et al., 2000; Guilarte and McGlothan, 2003). These Pb2+-induced changes in
NMDAR subunit expression result in NMDAR complexes with different subunit
composition (Toscano et al., 2002), synaptic expression (Guilarte and McGlothan, 2003) and
alterations in calcium signaling downstream from the NMDA receptor (Toscano et al.,
2002).

Examination of studies using tritiated-ligand binding to the NMDAR indicates similarities
between the brain from schizophrenia subjects and brain tissue from Pb2+-exposed rats. For
example, using the NR1/NR2B specific ligand [3H]-ifenprodil, there is increase levels of
[3H]-ifenprodil binding in the cerebral cortex of both schizophrenia subjects and adult rats
exposed to Pb2+ during development (See Table 2). Similarly, there is increased [3H]-
MK-801 binding in the cerebral cortex of both schizophrenia subjects and adult rats exposed
to Pb2+ during development (Table 2). These findings suggest that at least in the cerebral
cortex binding studies provide evidence of an increase in the expression of NR1/NR2B-
NMDAR receptors suggesting that out of the total pool of NMDAR, there is a greater
proportion of receptors that express the NR2B subunit and a lower proportion of those
containing the NR2A subunit.

Recent studies have also implicated NMDAR-dependent dysregulation of BDNF signaling
and protein levels in the detrimental effects of Pb2+ on synaptic function (Neal et al., 2010;
Neal and Guilarte, 2010). BDNF is a neurotrophin that is altered in the brain of
schizophrenia patients (Weickert et al., 2003; Rizos et al., 2011; Buckley, 2011). A recent
study has shown that BDNF exon IV mutant mice exhibit significant deficits in PV-positive
GABAergic interneurons in the prefrontal cortex, an interneuron subtype that has been
implicated in working memory/executive function impairment in schizophrenia (Sakata et
al., 2009). These mice express impaired inhibitory transmission and abnormal appearance of
spike-timing-dependent synaptic potentiation (Sakata et al., 2009). BDNF exon IV
transcripts are decreased in the cerebral cortex of patients with schizophrenia with no history
of anti-depressant treatment (Wong et al., 2010). This is particularly relevant to our work
with Pb2+ exposure because we have recently shown a specific decrease of BDNF exon IV
transcripts in neuronal cultures during synapse formation (Stansfield et al., 2011).

Consistent with the alterations in NMDAR function, several laboratories including our own
have shown that developmental Pb2+ exposure produces deficits in NMDAR-dependent
long-term potentiation in the hippocampus and impairments in spatial learning in young
adult rats (Nihei et al., 2000; Nihei and Guilarte, 2001). Long-term potentiation is thought to
represent a cellular correlate of learning and memory in the mammalian brain that is
NMDAR dependent. Thus, young adult rats exposed to environmentally relevant levels of
Pb2+ during development express some of the same neurobiological and behavioral deficits
seen in animal models of schizophrenia (Tsai and Coyle, 2002; Konradi and Heckers, 2003).
The common mechanism that links both conditions is dysregulation of the glutamatergic
system and specifically hypoactivity of the NMDAR complex.

Guilarte et al. Page 11

Neurotoxicology. Author manuscript; available in PMC 2013 June 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



The glycine site of the NMDAR complex: a common molecular target?
Research in the molecular mechanisms associated with developmental Pb2+ exposure and
schizophrenia have been performed independently, however, there is compelling evidence
for a common molecular target, the glycine modulatory site of the NMDAR. The NMDAR
is activated by the co-agonists glutamate and glycine in coincidence with depolarization of
the neuronal membrane. This results in the removal of the magnesium block at the NMDAR
channel and allows calcium entry into the cell. A proposed mechanism by which Pb2+

inhibits NMDAR function is by binding to a divalent cation site associated with the glycine
site (Hashemzadeh-Gargari and Guilarte, 1999). The “antagonistic” effect of Pb2+ at the
glycine site of the NMDA receptor is most effective at sub-saturating concentrations of
glycine (Hashemzadeh-Gargari and Guilarte, 1999). This molecular interaction of Pb2+ at
the glycine site is physiologically relevant since the glycine site of the NMDAR is not
saturated under physiological conditions (Berger et al., 1998). Similar to the inhibitory effect
of Pb2+ at the glycine site of the NMDA receptor, “negative” modulation of the glycine
regulatory site of the NMDAR by putative endogenous antagonists has been proposed as a
principal feature in the pathophysiology of schizophrenia (Coyle et al., 2003; Coyle and
Tsai, 2003; 2004).

The significance of the antagonistic action of Pb2+ at the glycine site of the NMDAR to
schizophrenia is that a potentially effective therapy that helps to ameliorate the negative
symptoms and cognitive disability in schizophrenics is the activation of this site (Coyle and
Tsai, 2003). The use of NMDAR glycine site agonists such as glycine, D-serine or D-
cycloserine in clinical trials has demonstrated some degree of efficacy in ameliorating the
negative symptoms and cognitive disabilities in schizophrenia subjects (Tsai and Coyle,
2002; Coyle and Tsai, 2004). Consistent with an important role of the glycine site of the
NMDAR with the pathophysiology of schizophrenia, a recent animal model expressing an
NMDAR complex with reduced glycine affinity produces some of the negative and
cognitive symptoms of schizophrenia (Labrie et al., 2008). This and other evidence support
the hypothesis that NMDAR hypofunction in schizophrenia is part of a complex
pathophysiological network of neuronal systems that are affected in schizophrenia. For
example, several schizophrenia risk genes such as DISC1, neuregulin and dysbindin interact
with NMDAR to affect synaptic transmission, neuronal maturation and plasticity (Hayashi-
Takagi et al., 2010; Geddes et al., 2011; Ramsey et al., 2011).

Another potential effect of Pb2+ exposure on the glycine regulatory site of the NMDAR is
by modulating D-serine levels released from glial cells. Recent studies have shown that D-
serine is synthesized in astrocytes and it is released to control NMDAR activity by being a
co-agonist at the glycine site (Panatier et al., 2006; Oliet and Mothet, 2009). Since Pb2+ is
actively taken up by astrocytes (Tiffany-Castiglion and Qian, 2001), it could potentially alter
D-serine synthesis and release. Consistent with this hypothesis, Sun et al (2007) have shown
that the addition of D-serine to hippocampal slices was able to reverse the Pb2+-induced
impairment in CA1 long-term potentiation produced by in vivo Pb2+ exposure.

Testable hypothesis
Does exposure to Pb2+ alter D-serine synthetic and metabolic enzymes in astrocytes and/or
D-serine release to modulate NMDAR activity. If dysregulation of D-serine metabolism or
release are operational in Pb2+ exposed animals, then D-serine regulation of NMDAR
complexes can be altered implicating another pathway for dysregulation of NMDAR activity
by Pb2+.
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NMDAR Antagonist-Induced Apoptosis in Early Life: A plausible
mechanism for the loss of Brain Volume in Schizophrenia

It has been noted that schizophrenia is a neurodevelopmental disorder in which an early life
event results in the loss of neurons without apparent glial cell activation suggestive of
apoptotic cell death (Benes, 2004; Jarskog et al., 2004; 2005). It is possible that an early life
event that causes apoptotic cell death could potentially explain the reductions in brain
volume in schizophrenia in the absence of gliosis. Neuropathological examination of the
brain from schizophrenia subjects has shown a relative lack of widespread neuron loss
(Jarskog et al., 2004; 2005). However, other studies have shown selective reductions of
neurons in discrete cortical layers and in other brain regions (Jarskog et al., 2004; 2005).
Studies in rodents have shown that in the neonatal brain during a very specific window of
vulnerability, the administration of NMDAR antagonists such as phencyclidine (PCP),
ketamine, and MK-801 triggers apoptosis in multiple brain regions (Ikonomidou et al., 1999;
Anastasio et al., 2009; Soriano et al., 2010) causing long-term behavioral deficits
(Fredriksson and Archer, 2004; Yuede et al, 2010). Some of these same drugs have also
been shown to produce similar apoptotic cell death in the developing primate brain (Slikker
et al., 2007; Zou et al., 2009) and long-lasting cognitive deficits (Paule et al., 2011). Thus,
they are likely to be relevant to the human condition. These drugs are the same types of
NMDAR antagonists (PCP, ketamine, MK-801) that have been used to mimic schizophrenia
symptoms in normal subjects and exacerbate symptoms in schizophrenia subjects that led to
the glutamatergic hypothesis of schizophrenia. Now, a report by Dribben and colleagues
(2011) shows that exposure of the neonatal mouse brain to Pb2+ during this same period of
vulnerability reproduces the same pattern of apoptotic cell death as the other NMDAR
antagonists noted above. This is an important finding because: 1) it provides additional
support that in vivo, Pb2+ behaves as a potent NMDAR antagonist, and 2) it shows that Pb2+

exposure in early life enhances apoptotic cell death and this effect may help explain the loss
in brain volume documented in Pb2+-exposed children later in life (Cecil et al., 2008). The
brain regions affected by NMDAR antagonist (including Pb2+)-induced apoptosis in early
life are some of the same brain regions in which neuronal cell loss has been documented in
selected cortical layers in the schizophrenia brain (Jarskog et al., 2004). This includes layer
II of the frontal cortex and layers II and IV of the cingulate cortex as well as striatum and
hippocampal pyramidal cell layer (Ikonomidou et al., 1999; Jarskog et al., 2004; Dribben et
al 2011). Consistent with the possibility of apoptotic cell death being an important part of
the pathology of schizophrenia and as a result of early life Pb2+ exposure, the ratio of the
pro-apoptotic Bax to the anti-apoptotic Bcl-2 protein has been shown to be increased in the
brain of schizophrenia subjects (Jarskog et al., 2004; 2005), a phenomenon that has also
been described in the Pb2+-exposed brain (Sharifi et al, 2002; 2010) and in PC12 cells
exposed to Pb2+ (Xu et al., 2006). Other studies have shown that the ratio of Bax to Bcl-XL
(a member of the anti-apoptotic Bcl-2 gene family) is increased in the neonatal rat cortex
following NMDAR antagonist administration (Wang et al., 2001). These observations have
important implications for the glutamatergic hypothesis of schizophrenia and suggest that
enhancement of NMDAR antagonist-induced apoptotic cell death greater than it occurs
naturally during brain development may be operational in schizophrenia. It could potentially
explain the brain volume loss documented in schizophrenia and as a result of early life Pb2+

exposure. Alternatively, apoptosis has also been noted to occur in synaptic terminals in the
absence of effects at the level of the soma (Mattson et al., 1998; Gliman and Mattson, 2002;
Glantz et al., 2006). Such an event occurring in early life could result in the loss of brain
neuropil and contribute to the loss of brain volume observed in schizophrenia and as a result
of early life Pb2+ exposure.
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Testable Hypothesis
An intriguing question is the possibility that mutations in schizophrenia susceptibility genes
may impart an increased sensitivity of the neonatal brain to NMDAR-antagonist induced
cellular or synaptic apoptosis. This is a testable hypothesis that could provide novel
information about gene-environment interactions in the pathophysiology of schizophrenia.

The GABAergic hypothesis of Schizophrenia
Experimental and pathological evidence indicates that besides dysregulation of the
dopaminergic and glutamatergic neuronal systems, other neurotransmitter systems are also
affected in schizophrenia. Most prominently amongst these is the inhibitory neurotransmitter
gamma-aminobutyric acid (GABA). Postmortem brain samples from schizophrenia patients
suggest that dysfunction of cortical GABAergic interneurons, in particular those containing
the calcium-binding protein parvalbumin (PV), may be a core feature of the working
memory deficits in schizophrenia (Lewis et al., 2005; Uhlhaas and Singer, 2010). This is
supported by evidence from rodent and non-human primate studies that administration of
NMDAR antagonists decreases GAD67 and PV expression in cortical GABAergic
interneurons (Cochran et al., 2003; Behrens et al., 2007; Morrow et al., 2007). More
specifically the activity of NR2A subunit-containing NMDAR have been shown to have an
important role in the maintenance of PV and GAD67 protein levels in cultured interneurons
(Kinney et al., 2006). This is consistent with the selective loss of cortical GABAergic PV+
interneurons coexpressing the NR2A subunit in the schizophrenia brain (Woo et al., 2004).
The GABAergic-PV+ interneurons in the cerebral cortex are also important for oscillation
synchronization of pyramidal cells (Sohal et al., 2009).

Studies by Belforte and colleagues (2010) demonstrate that early postnatal ablation of the
NR1 subunit of the NMDAR in corticolimbic interneurons produces the emergence of an
schizophrenia phenotype and reductions in GAD67 and PV levels that was specific for
cortical interneurons with deletion of the NR1 subunit. On the other hand, deletion of the
NR1 subunit in corticolimbic neurons in postadolescence did not produce such abnormalities
providing strong evidence for a neurodevelopmental basis of schizophrenia. These studies
link GABAergic effects of NMDAR antagonists to pathological changes observed in
schizophrenia.

Relevant to the potential schizophrenia-early life Pb2+ exposure hypothesis, our laboratory
has previously shown that Pb2+ decreases NR2A-containing NMDAR (Tables 1 and 2). This
suggests that PV and GAD67 levels should be affected in the brain of Pb2+-exposed animals
since NR2A-containing NMDAR complex seems to regulate PV and GAD67 expression
levels.

While an understanding of the effect of Pb2+ on GABAergic interneurons is much more
limited, there is evidence that Pb2+ exposure decreases GAD protein levels and GABA
release from rat brain (Lasley et al., 1999; Struzynska and Sulkowski, 2004).
Electrophysiological studies by Albuquerque and colleagues have documented an inhibitory
effect of Pb2+ on GABAergic neurotransmission in the hippocampus (Braga et al., 1999).
This group of investigators also showed that Pb2+ increases spontaneous release of GABA
from hippocampal neurons (Braga et al., 1999a). Decreased levels of brain GABA have
been documented in Pb2+ intoxicated animals (Winder and Kitchen, 1984).

Testable hypothesis
If developmental Pb2+ exposure is an environmental risk factor for schizophrenia, then it
should be able to reproduce the dysfunction of cortical GABergic interneurons expressing
GAD67 and parvalbumin. This is a testable hypothesis that can be assessed by examining
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the developmental trajectory of parvalbumin and GAD67 expression in cortical GABAergic
neurons in Pb2+ exposed animals.

Other neurotransmitter systems: Nicotinic Cholinergic Receptors
Emerging evidence suggests involvement of nicotinic cholinergic receptors in
schizophrenia. Homomeric nicotinic cholinergic receptors composed of the α7 subunit and
those with a α4β2 composition are the most abundantly expressed in the brain and play an
important role in memory processes (Ripoll et al., 2004; Timofeeva and Levin, 2011).
Recent studies have implicated a linkage between sensory gating defect and a locus of
chromosome 15q14. This locus contains the gene encoding a α7 nicotinic cholinergic
receptor subunit that is involved in sensory gating (Thaker and Carpenter, 2001). Studies
have documented decreased levels of α7 nicotinic cholinergic receptors in thalamus,
hippocampus and cerebral cortex in schizophrenic patients (Ripoll et al., 2004). Further,
alterations in α4β2 nicotinic receptors have also been measured. In this instance, decreased
levels have been documented in the hippocampus and striatum with increased levels in
frontal and cingulate cortex (Ripoll et al., 2004). Therefore, it appears that alterations in
nicotinic cholinergic receptors may play an important role in the pathophysiology of
schizophrenia.

Studies have also shown that Pb2+ is a potent inhibitor of nicotinic cholinergic receptors in
dissociated neurons from rat hippocampus (Ishihara et al., 1995). The inhibitory action of
Pb2+ was dependent upon the subunit composition with α7 nicotinic receptors being the
most sensitive (Ishihara et al 1995; Mike et al., 2000). Further, a study by Jett et al (2002)
has shown that exposure to Pb2+ during brain development increases the levels of nicotinic
cholinergic receptors that are labeled by [3H]-epibatidine. [3H]-epibatidine labels α4β2
nicotinic cholinergic receptors with some degree of overlap with other non-α7 receptors. In
this study, α7 receptors were not measured, however, the increased levels of receptors
labeled by [3H]-epibatidine in the cerebral cortex and thalamus of Pb2+-exposed rats
suggests increased levels of α4β2 nicotinic cholinergic receptors in these brain structures.
This is similar to the increased levels of α4β2 nicotinic cholinergic receptors in the cerebral
cortex measured in schizophrenic patients (Ripoll et al., 2004).

Thus, consistent with the involvement of multiple neuronal systems in the pathophysiology
of schizophrenia, Pb2+ exposure in early life also alters some of the same neuronal systems.

Disrupted in Schizophrenia 1 (DISC1) and early life Pb2+ exposure: A proof
of concept gene-environment interaction study

There is evidence that understanding schizophrenia is likely to come from gene-environment
interaction studies (Moffitt et al., 2005; Van Os et al., 2008; Brandon and Sawa, 2011).
Schizophrenia is likely to be the result of complex interactions between many genes and
multiple environmental factors that on their own they may make a small contribution but
together contribute to an increased risk of schizophrenia. The main obstacle for mechanistic
studies of gene-environment interplay has been the paucity of appropriate models to
pinpoint the molecular mechanisms that mediate gene-environment interactions relevant to
schizophrenia. Recent advances in psychiatric genetics and a plethora of experimental data
from animal studies led us (TRG and MP) to suggest a new approach to gene-environment
interactions in schizophrenia. We propose that in vivo and in vitro models based on genetic
mutations with functional effects and measurable relevant environment factors will
significantly advance studies of the molecular underpinnings of gene-environment interplay
(Ayhan et al., 2009; Abazyan et al., 2010). Thus, we have initiated studies examining a
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potential interaction of early life Pb2+ exposure and mutant Disrupted in Schizophrenia 1
(DISC1).

Mutant DISC1 is the hypothetical protein product of a balanced chromosomal translocation
[t(1;11)] in a Scottish pedigree with high load of major mental disorders (LOD=7.1 for all
mental disorders and 3.6 for schizophrenia) [Millar et al., 2000a; Millar et al., 2001;
Brandon and Sawa, 2011]. The breakpoint is in the middle of the open reading frame for the
DISC1 gene, leading to truncation of the gene. Although expression of truncated proteins is
theoretically possible, expression of truncated protein has not been demonstrated [Millar et
al., 2000b]. The existence of a clear, identifiable mutation with the high LOD scores has put
DISC1 in a unique position in schizophrenia research. In addition to the familial mutation of
DISC1, multiple studies of associations of different DISC1 haplotypes or SNPs with mental
disorders have stimulated studying the biology of DISC1 (Porteous et al., 2006; Ross et al.,
2006; Mackie et al., 2007). Numerous investigations have implicated DISC1 and interacting
proteins in neuronal differentiation, migration, synaptogenesis and adult neurogenesis in the
hippocampus [Kamiya et al., 2005; Duan et al., 2007; Brandon, 2007; Faulkner et al., 2008;
Brandon et al., 2009]. Recently generated DISC1 mouse models have advanced our
understanding of the putative mechanisms whereby this protein and its interacting partners
may be involved in abnormal neurodevelopment relevant to schizophrenia (Derosse et al.,
2006; Koike et al., 2006; Li et al., 2007; Clapcote et al., 2007; Kvajo et al., 2008; Pletnikov
et al., 2008; Shen et al., 2008; Brandon and Sawa, 2011).

We have generated a mouse model of inducible expression of mutant human DISC1 in
forebrain neurons using the Tet-off system [Pletnikov et al., 2008]. In this model, expression
of mutant DISC1 is regulated by the CAMK-II promoter and can be turned off by adding
tetracycline or a related compound, doxycycline, to food or water. Similar to other DISC1
mouse models, expression of mutant DISC1 produced no gross developmental defects but
significantly increased spontaneous locomotor activity in male but not female mice,
decreased social interaction in male mice, enhanced their aggressive behavior and was
associated with poorer spatial memory in Morris water maze task in female mice. The
behavioral alterations have been accompanied by the enlargement of lateral ventricles in
adult mice, reduced dendritic arborization in primary cortical neurons and decreased
expression of a synaptic protein, SNAP-25, consistent with human post mortem studies that
show decreased dendritic length and dendritic arborization in frontal cortical areas. The
findings also suggest that binding of mutant human DISC1 to endogenous mouse DISC1
decreases expression of endogenous DISC1 and may disrupt its interactions with several
partners (Pletnikov et al., 2008; Ayhan et al., 2011). These molecular disturbances might
contribute to the observed neurobehavioral abnormalities.

An interesting feature of the model is that expression of mutant DISC1 is associated with
relatively mild neurobehavioral abnormalities, consistent with the hypothesis that a genetic
risk factor or a mutation is likely to interact with other genes and/or environmental factor(s)
for a full-blown disease to develop (Moffitt et al., 2005; Van Os et al., 2008; Brandon and
Sawa, 2011). In the context of the current review, another important aspect of the DISC1
model is that recent studies have shown that DISC1 interacts with several proteins of the
NMDAR complex (e.g., PDS-95; Kalirin-7), indicating an intriguing converging target for
molecular interactions between developmental Pb2+ exposure and mutant DISC1 (Hayashi-
Takagi et al., 2010; Namba et al., 2011; Ramsey et al., 2011).

Thus, we have been using a DISC1 model to evaluate the effects of early life Pb2+ exposure
on the neurobehavioral phenotype in mutant DISC1 mice. As our system is a double-
transgenic (Tg) mouse model, we breed single mutant DISC1 mice and single transgenic
tTA mice to produce double Tg animals that either express mutant DISC1 (mutants) or
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single Tg control mice that have the transgene in their genome but do not express mutant
protein (controls). In order to mimic developmental exposure of humans to environmental
Pb2+, we mated single tTA Tg female and single Tg mutant DISC1 male mice while they
were given either control food or food containing low levels of Pb2+ (750 ppm lead acetate
in the diet). Subsequently, pregnant dam and their male and female offspring were
maintained on the same types of food throughout their life and while being tested in a series
of behavioral tests relevant to aspects of a schizophrenia phenotype. We hypothesized that
mutant DISC1 and developmental Pb2+ exposure will synergistically interact to produce an
exaggerated or new phenotypic outcome in Tg mice.

Behavioral phenotyping included open field test to assess locomotor activity, elevated plus
maze test to assess anxiety (Graeff et al., 1990; File, 1990), Y maze test to examine spatial
working and recognition memory (Melnikova et al., 2006), pre-pulse inhibition (PPI) of the
acoustic startle to evaluate sensorimotor gating (Swerdlow and Geyer, 1998), context- and
cue-dependent fear conditioning to evaluate long-term hippocampus-dependent and
independent learning and memory (Gerlai, 2001; Maren, 2008) as well as the NMDAR
antagonist, MK-801 (0.3; mg/kg, ip),-induced locomotion to assess exacerbated responses to
psychostimulants (Carlsson and Carlsson, 1990; Deutsch et al., 1997; Amann et al., 2010).

Although Pb2+ exposure produced increased anxiety in the elevated plus maze in control and
mutant mice, significantly increased locomotor activity was found in Pb2+-exposed mutant
mice only, with female mutant mice being affected more than male mice. A similar gender-
related synergistic effect of Pb2+ and mutant DISC1 was observed in the forced swim test,
mimicking aspects of affective and negative symptoms in schizophrenia. We also observed
synergistic effects on impairment in pre-pulse inhibition of the acoustic startle and elevated
locomotor response to MK-801, consistent with impaired sensorimotor gating and
exacerbated responses to psychostimulants in schizophrenia patients. No synergistic effects
were found on spontaneous alternation or spatial recognition tests. Our preliminary data
suggest that developmental Pb2+ exposure and mutant DISC1 may synergistically interact in
producing schizophrenia-like behavioral alterations in mice. Our on-going experiments are
assessing the effect of interactions on cognitive and social behaviors, brain and lateral
ventricle volume as well as regional brain expression of presynaptic markers and NMDAR
expression.

Summary
Despite the fact that research efforts in schizophrenia and on the effects of developmental
Pb2+ exposure on the brain have occurred independently, there is a remarkable number of
similarities in outcomes between this neuropsychiatric disorder and exposure to Pb2+ in
early life. The similarities at the behavioral, anatomical, biochemical and neuropathological
level provides initial evidence that a neurobiological interaction may be plausible between a
ubiquitous and pervasive global environmental pollutant and developmental neurotoxicant
such as Pb2+ and the expression of schizophrenia later in life. Clearly, most of these putative
neurobiological connections need further exploration and confirmation in animal models and
in human studies. However, it is possible that individuals expressing mutations in certain
genes (genetic component) may be more susceptible to the dysregulation of developmental
processes produced by Pb2+ exposure (environmental trigger) alone or in combination with
other environmental factors during a critical period of fetal or neonatal life. It is interesting
to note that two environmental risk factors associated with schizophrenia may also be
associated with an increased likelihood of being exposed to Pb2+ in the environment. These
two factors are season of birth and living in an urban environment. It is widely recognized
that there is a greater likelihood of a pregnant mother or a child being exposed to Pb2+ in
urban environments. This is due to the high number of old housing units containing Pb2+-
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based paint as a continuing source of Pb2+ exposure in the United States and in many parts
of the world (Jacobs et al., 2002). Second, environmental levels of Pb2+ in homes and in
children's blood are highest during the summer months (July-August) (Yin, 2000). The latter
observation makes another potentially important temporal connection between Pb2+

exposure and schizophrenia. The incidence of individuals with schizophrenia increases if
born during the winter months (Torrey et al., 1997). For a child that is born during the
winter months, the summer months in which increased exposure of the mother to Pb2+ is
highly likely to occur in urban environments, places the exposure to the fetus during the
early part of the second trimester of fetal life. This is the same gestational time point as the
Pb2+ analysis in serum samples measured in the study by Opler et al., (2004; 2008) in which
an association was noted with schizophrenia later in life, and the trimester in which the
“insult” based on the neurodevelopmental hypothesis of schizophrenia is likely to occur
(Roberts, 1991; Bloom, 1993).

Finally, while this review has concentrated on Pb2+ as a prototypical environmental toxicant
and NMDAR antagonist that may be associated with schizophrenia, humans may be exposed
to other heavy metals or environmental toxins that target the same neurobiological systems.
For example, while Pb2+ is a potent NMDAR antagonist, another heavy metal manganese,
with relevant exposures in children is also an NMDAR antagonist, albeit a weaker one
(Guilarte and Chen, 2007). Nevertheless, several studies have recently shown that children
exposed to manganese in drinking water express neuropsychological and cognitive
abnormalities (Wasserman et al., 2006) and paranoid psychosis has been reported in humans
occupationally exposed to high levels of manganese (Donaldson, 1987; Verhoeven et al.,
2011).

Another class of environmental pollutant that has been shown to modulate NMDAR
function and subunit expression is the polycyclic aromatic hydrocarbons (PAHs). Seminal
studies by Hood and colleagues have shown that in utero exposure to Benzo(a)pyrene, a
member of the PAH family results in downregulation of the NR1 subunit of the NMDAR
and a subsequent impairment in hippocampal LTP (Wormley et al., 2004; Brown et al.,
2007; McCallister et al., 2008). Therefore, there is significant evidence that a number of
environmental anthropogenic pollutants are able to alter NMDAR function, a neuronal
system whose hypofunction has been strongly implicated in the pathophysiology of
schizophrenia.

While it is clear that genetics predispose humans to psychiatric disorders like schizophrenia,
it is also highly likely that specific environmental chemicals or classes of chemicals may
work in conjunction with genetic changes to facilitate full disease expression.
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