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Abstract
Transcription of eukaryotic cell is a multistep process tightly controlled by concerted action of
macromolecules. Nuclear receptors are ligand-activated sequence-specific transcription factors
that bind DNA and activate (or repress) transcription of specific sets of nuclear target genes.
Successful activation of transcription by nuclear receptors and most other transcription factors
requires “coregulators” of transcription. Coregulators make up a diverse family of proteins that
physically interact with and modulate the activity of transcription factors and other components of
the gene expression machinery via multiple biochemical mechanisms. The coregulators include
coactivators that accomplish reactions required for activation of transcription and corepressors that
suppress transcription. This review summarizes our current knowledge of nuclear receptor
coactivators with an emphasis on their biochemical mechanisms of action and means of
regulation.

Eukaryotic transcription is a tightly controlled multistep process that involves ordered action
of protein macromolecules and their conglomerates, acting as multisubunit complexes. The
precision and processivity of each step of transcription—from transcript initiation,
elongation, splicing, and termination to maturation and export from the nucleus—is ensured
by concerted actions of specific sets of such complexes. Typically, initiation of gene
expression in the context of a eukaryotic nucleus requires recognition of specific DNA
sequences by a diverse class of protein molecules, sequence-specific transcription factors
(TFs), which upon binding to DNA recruit chromatin-remodeling protein complexes to
“free” DNA from its tightly chromatinized state and to enable stable interactions with the
general transcriptional machinery (GTFs) and RNA polymerase. Transcription initiation,
elongation, RNA splicing, and transcription termination are controlled by separate specific
sets of factors.

Nuclear receptors (NR) comprise a large family of transcription factors characterized by
similarity in their modular structure and consisting of DNA-binding and ligand-binding
domains (1). With few exceptions, acquisition of ligand by the ligand-binding domain
causes conformational change leading to dimerization, nuclear import, and binding of
nuclear receptors to specific DNA sequences. This conformational change exposes
interaction surfaces for recruitment of transcription accessory factors termed coregulators of
transcription (CoRegs), without which the transcription factors are unable to efficiently
initiate gene expression (2,3). In addition to coactivators that enhance transcription, the
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coregulator family includes corepressors that repress transcription. Thus, two opposing
molecular forces emerge as absolute requirements for accurate and efficient regulation of
eukaryotic gene expression. Most known NR CoRegs function with other transcription
factors as well, indicating their universal requirement for successful gene expression. This
review will focus primarily on coactivators, their biochemical and structural properties, and
molecular mechanisms for regulation of their functions.

STRUCTURE OF COACTIVATORS
Coactivators make up a notoriously diverse group of molecules that lacks an overall
unifying structural determinant. This likely reflects the multitude of transcriptional steps in
which coactivators are involved, each requiring a specialized protein activity, e.g.,
enzymatic function, molecular chaperone, chromatin remodeling, etc. (Figure 1). This
diversity ensures both specificity and fine-tuning of transcriptional control. Nevertheless, a
handful of identifiable structural domains occur throughout the coactivator family. Table 1
provides examples of the most common domains in NR coactivators based on the current list
comprised by the Nuclear Receptor Signaling Atlas (NURSA, www.nursa.org).

Nuclear receptor coactivators frequently contain the so-called “NR box”, a Leu-rich stretch
of amino acids, LXXLL or FXXLF (where X is any amino acid). This motif has been shown
to be responsible for direct binding to nuclear receptors. However, approximately half of
currently known coactivators (http://www.nursa.org) do not possess this structural element,
although they still are able to bind NRs and other TFs. Certain coactivators associate with
NRs through other NR box-containing proteins; others utilize different motifs to bind to
NRs. For example, the PNRC coactivator is reported to interact with NRs through an SH3
domain (4).

All three members of the SRC family possess basic helix–loop–helix/PAS domains (bHLH/
PAS), receptor interaction domain(s) (RID), and two activation domains (AD1 and AD2)
responsible for binding other coregulators within an active coactivator complex. Each
domain in SRCs specializes in recruiting TFs, basic transcriptional machinery, or other
coregulators of transcription, including protein-modifying enzymes and chromatin
remodelers. Thus, SRCs serve as fundamental scaffolds for orchestrated transcriptional
action. The bHLH/PAS domain represents the most conserved portion among the three
coregulators and shares a high degree of similarity with bHLH motifs in other transcription
factors. In SRCs, this domain is responsible for TF binding, such as MEF2C (5) or TEF (6).
The RIDs contain several LXXLL motifs and are required for NR binding, while the AD
domains interact with cocoregulators, such as CBP and p300 (7, 8).

A large group of domains present in coactivators comprises chromatin-binding, -modifying,
and -remodeling moieties (see Table 1). These include SWI/SNF-type ATP-dependent heli-
cases, histone-recognizing domains such as bromo domains and chromo domains, and PHD
(plant homeodomain) Zn finger-containing motifs that recognize and bind
posttranslationally modified histone N-tails (sometimes called “chromatin readers”).
Additionally, chromatin-modifying activities such as acetyltransferase (MYST and KAT)
and methyltransferase domains (e.g., SET domains) also are frequently present in
coactivator molecules. Histone acetylation is a necessary early step in transcription initiation
as it marks active chromatin sites. Acetylated histone N-termini, particularly H4Lysl2 and
H3Lys9, attract bromo domain-containing transcriptional coactivators, which in turn recruit
general transcriptional machinery, including RNA polymerase and its accessory factors. The
most commonly utilized acetylating coactivators in NR-driven transcription are the two
closely related KATs, CBP and p300. These acetyltransferase coactivators are capable of
acetylating not only chromatin but also NRs and other coactivators. For example, ERR-α is
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acetylated by PCAF (9), and C-MYC protein is a substrate of two acetylating enzymes,
GCN5 and TIP60 (10). TIP60 is a part of the TRRAP and SAGA complexes (11) and is
capable of acetylating histones as well as the androgen receptor (12). In addition to
acetylation marks, methylations of H3Lys4 and H3Lys36 appear as important determinants
and targets for coactivator recruitment. These histone marks are recognized by chromo
domains and PHD finger domains (13,14). Coactivators possessing these domains are
recruited to active chromatin and in turn recruit other chromatin-remodeling and/or -
modifying enzymes. Importantly, there is a close cooperation among various chromatin-
modifying and “histone code reader” motifs and chromatin remodelers such as SWI/SNF
ATP-dependent factors (see below), even though these domains are not necessarily present
on the same protein. For example, the PHD domain of the JADE protein is required for
maximal histone acetylation by an HBOl coactivator (15,16).

An indispensable step of every transcriptional initiation event is ATP-dependent chromatin
remodeling that is managed by proteins possessing SWI/SNF-like DNA helicase domains. A
large group of coactivators, including SMARC proteins (SMARCA, SMARCB, SMARCD,
etc.) and BRG-like factors, contain this domain (Table 1). In addition to these ATP-
dependent DNA helicases, DNA kinking and bending domains such as the HMG-like
domains are not infrequent among coactivators. These proteins help bring together (“loop”)
enhancer and promoter regulatory DNA regions of genes to ensure maximal cooperation
between coactivator complexes at enhancers and the general transcriptional machinery
bound to the core promoters (Figure 1). Coactivator proteins include factors regulating not
only transcription activation but also RNA elongation and splicing/maturation; these
coactivators are characterized by the presence of DEAD box RNA helicase domains, as well
as RRM-RNA recognition motifs.

Finally, many NR coactivators possess enzymatic activities involved in posttranslational
protein modifications (PTMs). In addition to already mentioned acetyltransferases and
methyltransferases that can act on histones as well as NRs and coactivators themselves, a
number of phosphorylating, ubiquitylating, sumoylating, and even proline-isomerizing
enzymes have been shown to act on the coactivators themselves. The same applies to
enzymes reversing these modifications [e.g., demethylases, deu-biquitinylases (DUBs), and
phosphatases] and domains that specifically recognize these modifications (e.g., SH3
phosphoproline binding motifs, SIM-SUMO interaction modules, etc.). The PTMs imposed
by these enzymatic activities usually regulate coactivator stability or their intracellular
localization or their affinities for NRs or the general transcriptional machinery. The plethora
and diversity of the domains within coactivators described above reflect the complexity and
multistep nature of the transcriptional process. From transcriptional initiation to termination,
every entry and exit of coactivator complexes is controlled tightly, and likely coded by
sequential chromatin and transcription factor marking and demarking.

It recently became clear that coactivators act as metastable multi-meric protein
conglomerates that can be isolated by biochemical techniques (17, 18). In these coregulator
complexes, every protein serves a certain specific function in transcriptional regulation. For
example, in the well-studied MEDIATOR coactivator complex that consists of more than 20
subunits, MED14 directly binds the PPARγ nuclear receptor, while MED6 and MED8
subunits are responsible for stabilizing the MEDIATOR/PPARγ complex at the enhancer
(19). The INTEGRATOR complex is another example of a multisubunit coactivator
complex responsible for linking transcription and splicing (20). The ASCOM coactivator
complex consists of NCOA6, MLL3/4, PTIP, and ASH2 and combines NR binding
(NCOA6) with histoneH3Lys4 methyltransferase activities (MLL3) (21, 22). In a recent
study, the MLL3 SET domain has been shown to directly interact with the SWI/SNF
chromatin remodeling complex INI1; this interaction is crucial for establishing active gene
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transcription by ASCOM (23). Thus, individual coactivator complexes are capable of
coordinating several key reactions required for transcriptional regulation (Figure 1). It is
important to note, however, that not all coactivators form biochemically stable and invariant
protein complexes. For example, the pleiotropic SRC-3 protein has been shown to form
many transient interactions with NRs and a diversity of other coregulators, while no
“characteristic” steady-state complex has been found for this coactivator (24).

CLASSIFICATION OF COACTIVATORS
Structural diversity makes classification of coactivators a difficult task. A potential approach
is to organize coactivators by the functionality of their domains, e.g., PTM enzymes (HATs,
KMTs, KDMs, and Ub- and SUMO-ligases), ATP-dependent chromatin remodelers, RNA
helicases, DNA bending molecules, etc. However, such classification reveals little about a
coactivator’s role in transcription. Moreover, not all coactivators have characteristic
domains or assigned activities because many serve as bridging molecules between other
coactivators and transcription factors or enzymatic regulatory/accessory subunits. Finally,
there are examples in which well-characterized functional domains of coactivators are not
utilized for enzymatic activity and are dispensable for coactivational function [e.g., UBC9
(25)]. Another way to classify coregulators is by their involvement in certain steps of
transcription, e.g., initiation, elongation, termination, transcript maturation, etc. However,
many coactivators are involved in multiple substeps of transcription, because they are
components of larger multitasking complexes or integrate transcriptional events that control
many steps via multiple specialized interactions, e.g., TEFb (26) and SRC-3 (24) (Figure 2).
This difficulty in subclassification underlines the high connectivity of transcriptional
regulation. Classification by modes of action, as described below, takes into consideration
both coactivator molecular features (domain information) and the biochemical processes in
which coactivators take part.

Chromatin remodeling activities were shown to be important for NR-driven transcription in
a number of studies. SWI/SNF-like activities are involved in potentiating transcrition driven
by GR (27), RAR (28), AR (29), ER (30), etc. (for a review, see ref 31). Importantly, actions
of other coactivators also are tightly dependent on the activity and recruitment of the
chromatin remodeling machinery. For example, BRG-1 is required for ER coactivation by
SRC-1 and CBP(32).In turn, SWI/SNF modules often require additional bridging molecules
directing them to NR target genes. For example, the FLII coactivator recruits the BAF53-
SWI/SNF complex to ER-bound genes (33). SRC-1 binds another ATP-dependent
chromatin-remodeling complex (SRG3) for coactivation of AR (34). Interestingly, SRG3
function is independent of commonly utilized modules like BRG1/ BRM. AR can employ a
different SNF2-like chromatin-remodeling factor, ARIP4/RAD52L2 (35), indicating
remodeling complex variability and/or specificity.

Because a large group of NR coactivators act through the establishment of histone
modifications that mark actively transcribed chromatin and serve as affinity sites for other
transcriptional proteins, actions of these histone-modifying enzymes are tightly coordinated
with the actions of the chromatin remodelers described above. For example, coactivation of
estrogen receptor α by the BRG-1/BRM complex is dependent on histone acetylation (32).
Methyltransferases comprise the second common histone-modifying activity in the NR
coactivator family. These include MLL proteins that act almost exclusively on H3Lys4 (for
a review of MLL, see ref 36), as well as CARM1 and PRMT methyltransferases that can
methylate both histones and NRs as well as coactivators themselves (see below). For
example, methylation of H4Arg3 by PRMT1 is required for subsequent acetylation of
H3Lys4/9 in ER-driven activation of the pS2 target gene (37, 38). Importantly, a reversal of
activity, demethylation, also plays an essential role in coactivation. For example, LSD1
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demethylase promotes demethylation of H3K9 to activate AR transcription (39). PAD4
demethylase opposes the action of PRMT1 and CARM1 on histone Arg residues
(40).Interestingly, in retinoic acid signaling in embryonic cells, the demethylating activity of
H3Lys27 by the Jumonji-domain demethylase UTX is required for subsequent methylation
of H3Lys4 by MLL2/3 and activation of HOX genes (41). Of other important histone
modifications, phosphorylation and ubiquitination are worth mentioning with respect to
transcription. Phosphorylation of H3Ser10 that usually marks prometaphase chromosomes
also can be induced at the promoter. For example, H3S10 phosphorylation by ERK/Msk1
kinase directly recruited to the MMTV promoter by the progesterone receptor initiates a
whole cascade of further enzyme recruitments, including the recruitment of PCAF
acetyltransferase and chromatin remodeling complex BAF/BRG/BRM that prepares
chromatin for transcription (42). Deubiquitination of H2A/H2B by the TFTC/STAGA
complex also promotes NR-driven transcription (43). Importantly, the 2MDa STAGA
complex contains acetyltransferase GCN5, again reinforcing the importance of cooperative
actions of enzymatic protein-modifying activities in NR coactivation. In another example,
the TRRAP/TIP60/GCN5 complex together with Mediator/cdk8 takes this cooperation to
the extreme by directing a tandem phospho-acetylation of the same H3 molecule N-tail,
resulting in a doubly modified H3pS10/AcK14 which demarcates transcriptionally active
chromatin (44).

Perhaps one of the most diverse groups of NR coactivators is comprised of molecules that
catalyze posttranslational modifications on NRs and other coregulators and components of
the general transcriptional machinery. These PTM enzymes coactivate transcription by
either enhancing the DNA binding activity of NRs, their interaction with other coactivators
(or inhibiting interaction with corepressors), or affecting NR subcellular distribution. PTMs
induced by coactivators include methylation, acetylation, phosphorylation, sumoylation, and
ubiquitination. Phosphorylation is one of the most common activating NR modifications that
affects NR nuclear localization, enforces DNA binding, and stabilizes interactions with
coactivators. Kinases responsible for this modification either are directly recruited to
chromatin regions via direct interaction with NRs upon ligand stimulation, take part in a
coactivator complex, or phosphorylate target NRs and coactivators away from the promoter
(even in the cytoplasm), thus extending the NR coactivator function beyond the nuclear
compartment. For example, the Cdk2/cyclinA kinase complex is recruited by PR to its target
genes where it directly phosphorylates SRC-1 and enhances PR binding (45). This
phosphorylation event is necessary for subsequent histone H4 acetylation and activation of
transcription (for a review of the role of kinases in NR-driven transcription, see ref 46).
Phosphorylation of ERRα by PKA stimulates its interaction with SRC-2 (47), while
phosphorylation by PKCδ in response to EGF signaling increases its level of dimerization
and affects its recruitment and transactivation at a subset of target genes (48). PKCδ also
indirectly affects ERa nuclear localization by activating GSK3, which in turn directly binds
and phosphorylates ER at several Ser residues, causing its stabilization (49).
Phosphorylation also is a major activity trigger for coactivator molecules themselves, and
this function will be discussed in detail below as a way of regulating coactivator functions.

NR acetylation and methylation are the other two frequent PTM activities involved in NR
coactivation and commonly linked to regulation of protein-protein interactions. In the
context of NR transactivation, these modifications mainly control NR interaction balance
with corepressors and coactivators but also can affect NR DNA binding. For example,
PRMT1 methylates RUNX and potentiates transcription through disruption of RUNX-
SIN3A corepressor interaction (50), whereas methylation of HNF4A by PRMT1 increases
its DNA-binding activity. At the same time, PRMT1 recruited by HNF4A also methylates
H4Arg3, thereby establishing a bimodal coactivation mechanism (51). As mentioned above,
acetyltransferases, such as CBP, p300, and MYST family proteins, are integral components
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of almost every transcriptional complex assembled at the transcription initiation site.
Interestingly, while histone acetylation is considered as an activating modification
responsible for recruitment of coactivators and chromatin unwinding activities to acetylated
histones on the promoter, acetylation of NRs and coactivators themselves usually leads to
their dissociation from each other and/or dissociation from the promoter. For example,
acetylation of the ERRα DNA binding domain by PCAF decreases its DNA binding
capacity and in vivo promoter occupancy, while deacetylation by HDAC8 or SIRT1 causes
an opposite effect (9). Acetylation can also protect NRs from degradation, perhaps because
of direct competition with ubiquitination, because both PTMs target lysine residues. This
mechanism of protection has been described in the literature for some transcription factors,
including Smad7 (52) and SREBP (53).

A handful of sumoylating enzymes were shown to modify NRs or coactivators and affect
transcription. Sumoylation is a PTM closely related to ubiquitination, and it is characterized
by formation of a covalent link between protein and SUMO (small ubiquitin-like modifier)
molecules. Interestingly, while sumoylation of a few coactivators was thought to be
necessary for their coactivator function (see below), sumoylation of NRs has been shown
generally to be repressive (54–58). The recently described desumoylation of AR and PR by
SENP-1 (59, 60) highlights this enzyme as an important coactivator that opposes inhibitory
PTMs on these NRs. It is not known whether desumoylation plays a role in the function of
other NRs.

Numerous studies indicate important roles for ubiquitinating enzymes and proteasome
components as coactivators of NR transcription. Though commonly considered a negative
regulatory pathway for cellular proteins, NR ubiquitination and pro-teasome-dependent
degradation appear to make up an obligatory step for efficient progression of transcription.
For example, inhibition of 26S proteasome function impedes ER- and PR-driven
transcription in cells and results in failed promoter recruitment of PolII (61, 62).
Interestingly, SRC-3 coactivator recruitment was shown to be necessary for ER degradation
in concert with transactivation (63), indicating a tight cooperation between NR stability and
coactivator action. The seemingly contradictory requirement of transcription-associated
degradation for successful gene expression can be resolved by a “ubiquitin clock” concept
summarized in recent reviews (64, 65). According to this model, transcriptional activity at
the promoter is “timed” by the amount of ubiquitination that accumulates at NRs and
coactivators. Every round of transcription adds one more ubiquitin monomer, until the
ubiquitin chain is sufficiently long (approximately five) to be recognized by proteasomal
components and targeted for degradation. Accordingly, a growing list of ubiquitinating
enzymes was shown to be involved in coactivation of transcription. E6-AP E3 ubiquitin
ligase was shown to be important for ER activity (66). ARA54/RNF14 was identified as an
AR-interacting protein and an E3 ligase for AR (67). In addition to E3 ligases, E2 enzymes
such as UBCH7 also were shown to coactivate NR-driven transcription, further reinforcing
the idea that active proteasome turnover is required for successful transcription activation
(68). Thus, proteasomal turnover aids in maintaining the natural “off” state of the
mammalian genome by making sure the activated TFs and CoRegs are not allowed to
remain at transcriptional sites beyond their immediate requirements.

A significant fraction of NR coactivator proteins do not carry any intrinsic enzymatic
activity or specialized structural motifs. Rather, they serve as linkers and/or bridging factors
between NRs and other coactivators or among coactivators as part of larger transcriptional
complexes (Figure 1). For example, TIF1a stabilizes CARM1-SRC-2 interaction (69);
human SPT6 protein coactivates ER (70) via binding the polII CTD, and RNA capping/
export factor REF1/Aly acts similarly through another adaptor, hIws1, thus bridging
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elongation and RNA export (71). These coactivators can exert their functions through
protein–protein interaction motifs, such as Zn fingers, WD40 domains, etc.

It is now clear that coactivation of transcription is not limited to the synthesis of RNA
transcripts. A handful of coactivators have been shown to act through downstream events,
such as RNA splicing, maturation, and export (reviewed in refs 72 and 73). Examples of NR
coactivators that regulate splicing include CoAA (74, 75), NONO/p54nrf (76), CAPERβ and
CAPERα (77), and SKIP (78). These coactivators typically are characterized by RNA-
binding RRM motifs that allow them to directly bind nascent RNA transcripts. By bridging
both NRs and RNA polymerase, either directly (79, 80) or through accessory molecules
(81), this group of coactivators links two important sequential steps of gene expression.
Several coactivators such as SRC-3, p-TEFb, and PCBP1 were shown to participate in all
stages of gene expression, including initiation through interaction with NRs, termination and
transcript splicing through recruitment of CAPER and other splicing coactivators, and even
mRNA translation through direct sequence-specific interactions with UTR regions of
mRNAs (26, 82, 83).

Finally, although they are beyond the scope of this review, RNA molecules can act as
coactivators (84). These are large noncoding RNAs (ncRNA), and the best-studied example
is steroid receptor activator RNA (SRA) (85). SRA acts as a scaffold for the assembly of
other coactivator/NR complexes such as ER and SRC-1 and is necessary for transcriptional
activation of a subset of ERa genes (86). Among other examples, Evf-1 and Evf-2 play
critical roles in neuronal differentiation by regulating enhancer activity of homeodomain Dlx
genes (87, 88). Finally, very recent studies indicate that transcriptional control by ncRNAs is
more widespread than initially anticipated, and that a whole collection of long intergenic
conserved ncRNAs (lincRNA) is intimately involved in transcriptional control, both
activation and repression (89–91).

REGULATION OF COACTIVATOR FUNCTION
Early studies of NR-driven transcription and the role of coactivators indicated that
coactivator levels are tightly controlled and are in fact limiting in the cell. When multiple
nuclear receptors or transcription factors are overexpressed together, they can compete for
the same coactivator and “squelch” each other’s transcriptional activity (3). In turn,
overexpression of the shared coactivator can relieve the squelching effect. This phenomenon
initially served as an identifying property of a transcriptional coactivator (67, 92). Later,
numerous examples of naturally occurring physiological squelching were discovered,
whereby activation of one receptor by physiological stimuli causes inhibition of another
transcriptional pathway that is controlled by a different TF but utilizes the same coactivator.
For example, competition between CAR (constitutive androstane receptor) and HNF-4a for
SRC2/GRIP1 and PGC1α binding underlies the inhibitory effect of xenobiotic compounds
(CAR ligands) on hepatic bile acid synthesis and gluconeogenesis (93). Retinoic acid-
stimulated RXR sequesters PGC1α and other coactivators away from the serum response
factor (SRF), which may contribute to the antiproliferative action of retinoids (94).
Importantly, because liganded NRs can bind coactivators and corepressors dependent on
their expression levels (95, 96), the tightly controlled ratio between the two classes of
coregulators is the defining factor in the cellular transcriptional response to physiological
stimuli. Although this review focuses on regulation of coactivators, similar rules and means
of regulation exist for corepressors, ensuring coordination of these opposing forces in the
physiological control of gene expression.

Coactivators are regulated at several levels, including their gene expression, alternative
splicing, and protein posttranslational modifications (PTMs) that influence their binding to
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NRs and the general transcriptional machinery, as well as their sub-cellular localization and
stability.

Although not frequent under normal physiological conditions in differentiated cells,
regulation of NR coactivators can occur via effects on their gene expression levels. This is
particularly true in tumorigenesis, when a “growth” coactivator gene amplification or
transcriptional overexpression provides a selective advantage for cancer cell proliferation
through increased levels of this limiting transcriptional helper. In breast cancer, examples
include SRC-3 (also known as AIB1) and ASC-2 (AIB3), two major mediators of estrogen
proliferative signaling (97–99). SRC-3 coactivator is notorious for its overexpression in
many cancers (see ref 97 for a review), including hepatocellular carcinoma (100), non-small
cell lung cancer (101), uterine cancer (102), nasopharyngeal carcinoma (103), esophageal
squamous cell carcinoma (104), gastric cancers (105), etc. In addition to being an authentic
oncogene itself, SRC-3 also can exaggerate the tumorigenic potential of other regulators,
such as HER2. Co-overexpression of SRC3 and HER2 in human breast cancers highly
correlates with poor prognosis and early resistance to tamoxifen therapy (106). Another
reported example is the transcriptional upregulation via promoter hypomethylation of the
AR coactivator MAGE-11 in prostate cancer (107).

Transcriptional regulation of coactivators also can be a part of the normal physiological
control of their action. The best-studied example is PGC1α, the cold-inducible coactivator
whose expression is tightly linked to adaptive thermogenesis in brown fat (108). PGC1α
expression is highly upregulated in brown adipocytes (BAT) in response to cold exposure,
which in turn causes enhanced expression of the UCP-1 gene through coactivation of PPAR
by PGC1α. UCP-1 stimulates heat production by uncoupling ATP production by the
mitochondrial respiratory chain and increasing mitochondrial content in BAT. PGC1α
expression can be regulated in response to other altered metabolic states, such as fasting or
exercise. In response to fasting, rising glucagon levels cause activation of the TORC2
transcriptional coactivator that cooperates with the CREB transcription factor in induction of
PGC1α expression; in turn, PGC1α associates with GR and HNF-4A to induce key
gluconeogenic genes such as PCK1 and G6 Pase to enhance hepatic glucose production
(109). Interestingly, the opposing, inhibitory effect of insulin signaling on PGC1α is
managed through posttranslational regulation, namely, the phosphorylation and degradation
of both PGC1α and TORC2 (110, 111). This example reveals an interesting paradigm of
regulation, in which a boost in levels of an important molecule is achieved through
transcription, while rapid down-regulation is preferentially controlled through protein
degradation. PGC1α mRNA expression levels in muscle are regulated by free fatty acids
(112), and a recent report indicates that this regulation may be controlled through non-CpG
island methylation of the PGC1α gene by DNMT3B DNA methyltransferase (113). For
more about the metabolic regulation of PGC1α, see a recent review (114).

Gene expression and mRNA levels of NR coactivators can be controlled by hormone
signaling through positive feedback loop mechanisms. Several AR coactivators are induced
in response to androgen treatment in prostate cells (115), including SRC-3, CBP, and MAK.
Expression of another AR coactivator, MAGE-11, is regulated cyclically in endometrium
during the menstrual cycle through the negative action of estrogen and the activating action
of cAMP, with MAGE11 levels being the highest during uterine receptivity to embryo
implantation, when AR transcriptional action is required (116). SRC-3 mRNA levels are
increased by low-dose tamoxifen treatment (117) in breast cancer cells but downregulated in
response to estrogen or TGF-β (118). Down-regulation of SRC-3 gene expression by
estradiol indicates that SRC-3 functional activation upon estrogen exposure emanates from
posttranscriptional regulation to fulfill its role as a major mediator of estrogen/ER signaling.
Interestingly, SRC-3 can activate its own promoter through coactivation with non-NR
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transcription factors Sp1 and E2F1 (119). Nonhormonal stimuli also can affect coactivator
mRNA expression levels. For example, tumor necrosis factor α (TNFa) was shown to
repress SRC-1 and SRC-2 gene expression in smooth muscle uterine cells (120), suggesting
a mechanism for inhibition of inflammation upon hormone signaling.

Although not well studied, a few alternatively spliced isoforms of NR coactivators have
been shown to elicit activities differing from those of their full-length counterparts. In
perhaps the best example, the SRC3-δ4 splicing variant that lacks an N-terminal NLS is
shown to be associated with the cytoplasmic domain of membrane EGFR family members
and to participate in cell motility through functioning as an adaptor with focal adhesion
kinase (FAK) when phosphorylated by PAK1 (121). SRC-1 also has several splice isoforms
that were shown to differentially bind to GR and to demonstrate differing coactivator
potential (122) and differential promoter binding in neural tissues (123); the exact
physiological function and regulation of SRC-1 alternative splicing remain to be dissected.
CoAA (gene name RBM14) is a peculiar example of splicing regulation. It has several
splicing variants, including CoAR, CoAM (a dominant negative isoform), and two recently
discovered trans-splicing products with the mRNA of nuclear receptor corepressor RBM4,
termed CoAZ and ncCoAZ (124).During retinoic acid-induced embryonic stem cell
differentiation, CoAA expression undergoes a switch to CoAM (125), which negatively
regulates CoAA activity (125, 126). Interestingly, the cis-regulating sequence responsible
for this switch is frequently lost in cancers in which the CoAA gene is amplified, indicating
that selective oncogenic pressure favors the activating isoform. CoAZ and ncCoAZ also
participate in CoAA regulation, although, in contrast to CoAM, these isoforms promote
CoAA function (124). Interestingly, ncCoAZ does not encode a protein product and is
proposed to affect CoAA indirectly by competing with CoAA and RBM4 splicing factors,
because it shares some of the same splice sites (124). A number of other NR coactivators
recently were shown to have alternatively spliced counterparts, including the TIP60 β
isoform (127), PNRC isoforms (128), and NT-PGC1α (novel truncated PGC1α), a
nondegradable short isoform of PGC1α (129). In contrast to its full-length counterpart, NT-
PGC1α is primarily cytoplasmic because of active nuclear export mediatedbyCRM1. The
exact physiological significance of most of these alternative splice variants and their means
of regulation remain elusive.

The regulatory role of microRNA molecules (miRNAs) has gained much recent attention,
with the discovery of their participation in embryonic development and carcinogenesis.
MiRNAs inhibit protein synthesis through direct attenuation of translation of target mRNAs
and/or inducing mRNA degradation with the help of the RISC complex. Guided by
hybridization of miRNAs to complementary sequences contained in the 3′ UTRs of target
mRNAs, RISC binds and drives their degradation (for a review, see ref 130). The levels of
several NR coactivators can be regulated through the action of specific miRNAs. For
example, miR-17-5p inhibits SRC3 mRNA translation through direct interaction with its 3′
UTR (131), while miR-206 selectively targets SRC-1, SRC-3, and GATA-3 mRNAs for
degradation in breast cancer cells (132). Interestingly, EGF signaling increases miR-206
levels, whereas miR-17-5p is upregulated in response to estrogen, indicating an element of
specificity for miRNA regulation of coactivators. Several other miRNAs (miR-20b,
miR-19b, and miR-18a) are secondary targets of estrogen receptor transcriptional activity. In
response to estrogen, ER induces expression of oncogenic transcription factor C-MYC,
which in turn activates transcription of precursor (primary) miRNAs (pri-mir-17–92, pri-
mir-106a–363, and pri-mir-106a–363). Mature miRNAs derived from these precursors
directly bind and attenuate translation of ER, SRC-3, and cyclin D1 (133), thus generating
an autoregulatory loop of estrogen receptor signaling. Another example of a feedback loop
involving a miRNA is inhibition of PGC1α translation by miR-696 in response to
immobility. This miRNA is markedly dependent on muscle activity, and its levels correlate
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negatively with PGC1α and its target gene levels (134), indicating yet another control of
PGC1α by the metabolic state of the cell. Finally, hypoxia can trigger expression of a group
of miRNAs, and one of them (miR-205) silences the translation of MED1 mediator complex
subunit mRNA in trophoblasts exposed to hypoxia (135).

Extensive studies reveal that NR coactivators are relatively unstable proteins, with an
average protein half-life of ∼3–4 h. Regulation of protein stability through the ubiquitin-
proteasome system was demonstrated for SRC3 (136, 137), SRC2 (138), DDX5 and DDX17
(139), PGC1α (140), p300 (141), etc. Interestingly, and similar to the case for NRs,
coactivator ubiquitination can be initially activatory (as monoubiquitination) but eventually
targets coactivators for degradation upon accumulation of the polyubiquitin chain. This
observation supports the ubiquitin clock model of transcriptional regulation described above
(64, 65). Other evidence includes the dependence of SRC-3 degradation on the active
transcriptional process (142) and ligand-dependent recruitment of proteasomal components
and ubiquitination enzymes to the promoters of actively transcribed genes (143).
Noteworthy is the fact that ubiquitination at the promoter can promote corepressor-to-
coactivator exchange by inducing degradation of the corepressor (143). In addition to
ubiquitination, ubiquitin-independent degradation was shown to maintain homeostatic
cellular levels of “inactive” SRC-3, for example, by degradation by the 11S proteasomal
cap, REGγ (136). Coactivators p300 and HIPK2 can be protected from degradation
triggered by SCF ubiquitin ligase by sequestration in nuclear bodies through interactions
with PML (144).In contrast, the aberrant PML-RAR gene fusion product exerts an opposite
effect on coactivator stability by disrupting nuclear bodies.

Coactivators can be also sumoylated, acetylated, methylated, and phosphorylated. Earlier in
this review, a role for PTM enzymes as coactivators was discussed in relation to NR DNA
binding, stability, and interactions with coactivators and corepressors. The same is true for
PTMs imposed on coactivators themselves, which greatly affect coactivator-NR interaction,
recruitment of general transcription machinery, stability, and cellular localization. Several
recent reviews highlight the importance of PTMs for coactivator function (145, 146).
Recently, mass spectrometry emerged as an explosive technique for identifying endogenous
protein PTMs (147) and allowed for dramatic expansion of our knowledge of coactivator
PTMs in particular. Table 2 is constructed in part from information contained in http://
www.phosphosite.org, a new resource that combines curated mass spectrometric data
concerning various protein PTMs (see the website and ref 148). The plethora and diversity
of PTM sites on coactivators such as the SRC family or PGC1α suggest that they serve as
“hubs” for cellular signal transduction to the transcriptional machinery, and that the
specificity of the transcriptional response to physiological stimuli must be accomplished, at
least in part, by establishing a signal-specific PTM pattern on coactivators.

Sumoylation can play both activating and inhibiting roles in coactivator function. SRC-1
sumoylation at Lys732 and Lys774 is reported to potentiate its transactivation of AR (149)
and PR(150) by stabilizing the SRC1–NR interaction and increasing the level of SRC-1
nuclear retention. SRC-2 sumoylation by PIASx underlies their cooperation in AR
coactivation (149). Many sumoylated nuclear proteins become targeted to PML nuclear
bodies, nuclear regions characterized by a high concentration of sumoylating enzymes and
corepressors (151, 152). For example, sumoylation of the TR2 orphan nuclear receptor
causes its colocalization with PML bodies and enhanced interaction with the RIP140
corepressor (153). Similarly, sumoylation of PGC1α also stabilizes its binding to RIP140
and attenuates its activity (154). Sumoylaton of p68 (DDX5) prevents its ubiquitination,
increases its stability, and decreases its ER coactivation potential, while the same PTM
exerts opposite effects on the p72 (DDX17) splicing coactivator (139). Because both NRs
and coactivators are sumoylated in response to ligand signaling, it is not clear how opposing
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effects of this modification (inhibitory for NRs and activatory for certain coactivators) elicit
coordinated transcriptional activation. It is likely that, like those of other PTMs, the effect of
this modification is coactivator-specific. However, one intriguing possibility is that NR or
coactivator sumoylation is designed to bring them to PML bodies where the ratio between
local concentrations of corepressors (e.g., RIP140) and sumoylated coactivators determines
the transcriptional outcome.

Phosphorylation is the most common, abundant, and diversified of all coactivator PTMs
(Table 2). A single coactivator molecule usually possesses multiple phosphorylation sites,
which frequently are utilized in diverse signal-specific manners and can dictate coactivator
specificity toward NR and other coactivators. In fact, phosphorylations of coactivators affect
all aspects of their action, including NR binding, recruitment of RNA polymerase,
interactions with other coactivators, enzymatic activity, nuclear localization, and stability.
Often, phosphorylation resulting from a specific kinase cascade serves as a trigger for
subsequently induced PTMs, and this sequential cooperation generates a pool of coactivators
heavily laden with PTMs and “charged” for executing a variety of signal-specific functions.
For example, phosphorylation of MAGE11 at Thr360 by the MAPK pathway in response to
EGF accelerates its binding to AR and its bridging with TIF2, while concurrently enhancing
MAGE-11 ubiquitina-tion at Lys240 and Lys245 (155). T3-induced phosphorylation of
TRIP11 (TRIP230) causes its relocation from Golgi to the nucleus for coactivation of
transcription (156). Phosphorylation is perhaps the most rapidly observed PTM in response
to hormone or other growth factor stimuli. The result of coactivator phosphorylation is
usually nuclear accumulation and an increased level of interaction with NRs. For example,
phosphorylated SRC3 has a higher nuclear retention time (157), and casein kinase
phosphorylates Ser601 of SRC-3, which potentiates its interaction with ERa (158). Protein
kinase A stimulates the nuclear retention of the short isoform of PGC1α (NT-PGC1α)
through phosphorylations at Ser194, Ser241, and Thr256 that disrupt its interaction with
CRM nuclear exportin (159). Phosphorylation of Hsp27 causes its strengthened association
with AR, nuclear localization, and enhanced coactivator function (160). Phosphorylation is
also a potent regulator of coactivator stability. Interestingly, depending on the
phosphorylation site, a phospho-PTM(s) can stimulate or, vice versa, protect a coactivator
from degradation. For example, a required step in SRC3 activation and ubiquitination in
response to retinoic acid is its phosphorylation at Ser860 by p38MAPK (161). p38MAPK
phosphorylation also affects SRC-2/GRIP1 in promoting ER coactivation (162). At the same
time, phosphorylation of the SRC-3 acidic region by an atypical protein kinase C (aPKC)
stabilizes it through weakened binding to the P8 proteasome subunit (163), while
phosphorylation by GSK3 at Ser505 promotes SRC-3 ubiquitination and transactivation
(142). AKT can directly phosphorylate SRC-1 and SRC-2 and potentiate their activity with
ER (164); SRC-1 can be phosphorylated at multiple sites, most of which are ERK/MAPK
targets (Table 2). Ser1179 and Ser1185 phosphorylations of SRC1 are induced by cyclic
AMP and appear to be important for PR coactivation; mutations at these PTM sites do not
alter physical interactions with either PR or CBP but can affect the cooperativity of
coactivation at a PR-responsive promoter (165). Phosphorylation of SRC-2/ GRIP1 by PKA
was reported to induce its degradation and concurrently stimulate its ER transactivation
(166). Another example of opposing roles of phosphorylations is in PGC1α, which is
stabilized and activated through phosphorylations by p38 MAPK (167) and AMPK (168)
but destabilized by AKT-driven phosphorylation (111). In some cases, phosphorylation is
followed by proline isomerization driven by Pin1 prolyl isomerase. This comformational
change can alter SRC3 coactivator association with receptors as well as other coactivators
(169).

NR coactivators can participate in transcriptional activity of other transcription factors as
well as other processes such as DNA repair or nongenomic pathways. Phosphorylation
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sometimes serves as a switch between these activities. For example, phosphorylation of the
WSTF (gene name BAZ1B) SWI/SNF chromatin-remodeling complex by p38/MAPK
induces the switch between transcriptional coactivation complexes and DNA damage-
specific complexes formed by this molecule (170). TNFa stimulates phosphorylation of
SRC-3 at Ser857 and S867, its translocation to the nucleus, and NFkB transactivation, while
estrogen and EGF treatments induce Ser543 and Ser860 phosphorylation that specifically
potentiates ER binding (171). Phosphorylation also can inhibit coactivator function, either
by affecting protein–protein interactions or by altering coactivator subcellular localization.
Phosphorylation of PGC1α at S570 by the angiotensin-induced AKT pathway stimulates
acetylation by GCN5, and together, this PTM cascade inhibits PGC1α function by
weakening its interaction with the FOXO1 transcription factor (172). In another example,
the phosphorylated form of ING-1 is sequestered in the cytoplasm through a strengthened
interaction with 14-3-3 proteins (173).

Acetylation and methylation of coactivators are frequently responsible for disruption of
protein–protein interactions. Acetylation has been mentioned above as an important step for
chromatin activation by means of histone N-tail acetylation and recruitment of bromo
domain-containing transcriptional coactivators. In contrast, when imposed on coactivator
molecules themselves, acetylation often forces release of a coactivator from its
transcriptional complex, through disruption of its interaction with NRs and/or other
coactivators or histones. For example, acetylation of HMG-17 reduces its affinity for
nucleosomes (174), while acetylation of PGC1β by GCN5 inhibits its transcriptional activity
through sequestration to nuclear foci away from promoters (175). In contrast, SIRT1
deacetylase removes this PTM and stimulates PGC1 activity. Being an NAD+-dependent
enzyme and thus a sensor of cell redox potential and metabolic state, SIRT1 emerges as a
master regulator of PGC1α function (for a review, see ref 114). Noteworthy is the fact that
some acetylations occur at Lys residues identical or very close to ubiquitination and
sumoylation sites (see Table 1, marked bold or italic, respectively) and thus may directly
infuence coactivator stability (52, 53). Several reports indicate competition between
sumoylation and acetylation, as well (176). Examples of activating acetylations usually
include a requirement for autoacetylation by acetyltransferases, many of which act as
coactivators. Autoacetylation is required for TIP60 and PCAF action, and reversals of these
autoacetylations by HDAC3 (177) and SIRT1 (178) inhibit coactivator function.

While acetylation is usually an inhibitory PTM, methylation frequently potentiates
coactivator action. NR coactivators are usually methylated at Arg residues by the PRMT
family or CARM1 methyltransferases. For example, PRMT1 methylates and activates
PGC1α (179), TAF15 (180), and PIAS1 (181), while SRC-3 is a target of CARM1 (182).
Interestingly, though, methylation of SRC-3 weakens its association with ER and CARM1,
thus terminating the round of coactivation and highlighting the importance of intracomplex
methylation for dynamic transcriptional cycling.

CONCLUDING REMARKS
More than a decade of studies of nuclear receptor coregulators (coactivators and
corepressors) have led to the discovery of more than 350 proteins with transcriptional
regulation potential, and this list continues to grow (http://www.nursa.org). The diversity in
structure and biochemical functions of NR coactivators reflects the complexity of
transcriptional control and highlights the ability of coactivators to regulate transcription at
all stages. Such multifunctionality is achieved at least in part through assembly of
coactivators into multisubunit protein complexes. The intersubunit interactions within these
complexes and their composition and associations with NR and general transcriptional
machinery are regulated through the management of coactivator levels and posttranslational
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modifications. Coactivator concentrations in the cell are highly controlled through
coactivator gene transcription, RNA translation, and protein stability. Each coactivator has
several mechanisms of regulation, and the multitude of posttranslational protein
modifications play a very important part by altering coactivator localization, stability, or
protein–protein interactions. Moreover, PTMs also serve to transduce physiological
information to coactivator molecules through the establishment of specific PTM landscapes
on coactivators as a result of environmental signal-specific cascades. Diverse exogenous
stimuli initiate specific kinase-driven phosphorylation pathways that trigger further PTMs,
including acetylation, methylation, and ubiquitination and resulting in a complex signal-
dependent PTM “coding” of coactivators, which in turn drive signal-dependent coactivator
functions. Because one coactivator can participate in multiple transcriptional processes
(including extra-nuclear activities), such control ensures coordination of multiple steps
required in the global response to exogenous stimuli. Thus, coactivators serve as “hubs” for
physiological regulation of transcription by coordinating intracellular signaling cascades.
Further research is needed to delineate specific cross-talk between PTMs and other cellular
signaling pathways and to determine the roles of the multitude of PTMs identified to date on
coactivators. Understanding this cross-talk is particularly important in pathologies such as
cancer, in which cross-activation of kinase cascade signaling leads to an outgrowth of cells
that bypass conventional, one-pathway-based therapy.
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Figure 1.
Multiple activities of NR coactivators are coordinated for transcriptional activation.
Abbreviations: NR, nuclear receptor; NRE, NR-responsive element; TSS, transcription start
site; P, phosphorylation; Me, methylation; Ac, acetylation; GTFs, general transcription
factors; CoAct, coactivator; RRM, RNA recognition motif (also see the text). NR binding to
NRE is followed by sequential recruitment and action of coactivator complexes with
specialized activities. PTM enzymes (HMT, kinases, and KAT) prepare chromatin for
transcription by marking histones, while looping CoActs bring the promoter and enhancer
together. Chromatin marks are recognized by coactivating chromatin “readers” (e.g., via
chromo and bromo domains) and cause recruitment of chromatin remodelers (SWI/SNF).
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This allows for stable binding of polII and GTFs for transcription initiation and elongation
with the help of elongation coactivators (e.g., MEDIATOR). CoActs also take part in
subsequent steps, including mRNA splicing, export, and translation. The consecutive
replacement of coactivator complexes is tightly controlled by proteasomal turnover.
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Figure 2.
Diverse actions of coactivator SRC-3 are dictated by specific PTMs. Dependent on the site
and identity of PTM, SRC-3 can participate in different biological processes, such as
signaling adaptor, translationar repressor, splicing coactivator, or transcription initiation
together with other coactivators. Abbreviations: P, phosphorylation; Ac, acetylation; Me,
methylation. Different positions of phosphorylation indicate different phosphorylation sites
on the coactivator molecule.
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Table 1

Examples of Functional Motifs and Domains Found in NR Coactivatorsa

domain name PFAM/IPR entry description examples

RNA/DNA-binding

  RRM_1 PF00076 RNA recognition motif (also known as RRM,
RBD, or
RNP domain)

C14orfl56, FUS, NCL, NONO, PPARGC1A,
PPARGC1B, PPRC1, RBM14, RBM23,
RBM39,
RBM9, SAFB, SAFB2, SART3, SFPQ,
SPEN

  DEAD PF00270 DEAD/DEAH box helicase DDX17, DDX20, DDX5, DDX54, DHX30

  SAP PF02037 SAP domain CCAR1, PIAS1, PIAS2, PIAS3, PIAS4,
XRCC6

  HLH PF00010 helix–loop–helix DNA-binding domain HEY1, NCOA1, NCOA3, TCF21

  homeobox PF00046 homeobox domain ISL1, POU4F2, SIX3, TGIF1

  ARID PF01388 ARID/BRIGHT DNA-binding domain ARID1A, ARID1B, ARID5A

  SPRY PF00622 SPRY domain HNRNPU, RANBP9

  bZIP_l PF00170 bZIP transcription factor CREB3, JUN

  bZIP_2 PF07716 basic region leucine zipper JDP2, XBP1

  HMG_box PF00505 HMG (high-mobility group) box HMGB1, HMGB2, MLL2, SMARCE1,
SOX3

PTM enzymes

  Pkinase PF00069 protein kinase domain AKT1, CDK5, CDK7, CDK9, DCLK1,
HIPK3,
LATS2, MAK, MAK, PAK6, PDPK1,
PRKCD

  Hist_deacetyl PF00850 histone deacetylase domain HDAC1, HDAC2, HDAC3, HDAC4

  JmjC PF02373 JmjC domain HR, JMJD1A, JMJD1C

  SET IPR001214 SET EHMT2, MLL2, NSD1

  Amino_oxidase PF01593 flavin-containing amine oxidoreductase AOF2

  SIR2 PF02146 Sir2 family SIRT1

  PAD PF03068 protein-arginine deiminase (PAD) PADI4

  Peptidase_C48 PF02902 Ulp1 protease family, C-terminal catalytic
domain

SENP1

  PrmA PF06325 ribosomal protein L11 methyltransferase
(PrmA)

CARM1

  PP2C PF00481 protein phosphatase 2C PPM1D

Zn finger

  zf-C2H2 PF00096 zinc finger, C2H2 type BCL11A, BCL11B, KLF9, PLAGL1,
PRDM2,
RREB1, TRERF1, ZFPM2, ZNF335,
ZNF366,
ZNF461, ZNF653

  zf-C3HC4 PF00097 zinc finger, C3HC4 type (RING finger) BRCA1, MNAT1, RCHY1, RNF14, RNF4,
RNF8,
TRIM24, TRIM25, TRIM28

  LIM PF00412 LIM domain FHL2, TGFB1I1, TRIP6

  zf-MIZ PF02891 MIZ/SP-RING zinc finger ZMIZ1,ZMIZ2

  zf-C2HC PF01530 zinc finger, C2HC type MYST2

  zf-HIT PF04438 HIT zinc finger ZNHIT3

protein interaction
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domain name PFAM/IPR entry description examples

  WD40 PF00400 WD domain, G-β repeat GEMIN5, GNB2L1, IQWD1, MED16,
RBBP4,
RBBP7, TBL1X, TBL1XR1, TLE1, WDR77

  ARM IPRO16024 armadillo-type fold MMS19, TRIP12, TRRAP, TSC2

  LRR_1 PF00560 leucine-rich repeat ANP32A, FLII, PRAME

  Ank PF00023 ankyrin repeat ANKRD11, BCL3, EHMT2

  PAS IPR013767 PAS fold NCOA2, NCOA3

PTM-binding

  bromo domain PF00439 bromo domain BAZ1A, BAZ1B, BRD8, CREBBP, EP300,
PCAF

  PHD PF00628 PHD finger ING1,JARID1A, NSD1

  SH3_1 PF00018 SH3 domain PRMT2, SORBS3, TRIP10

  SH2 PF00017 SH2 domain STAT3, VAV3

chromatin-remodeling

  SNF2_N PF00176 SNF2 family N-terminal domain RAD54L2, SMARCA2, SMARCA4

ubiquitin-proteasome

  AAA PF00004 ATPase family associated with various
cellular activities (AAA)

PSMC3, PSMC4, PSMC5, TRIP13

  ubiquitin PF00240 ubiquitin family BAG1, SF3A1, SUMOl

  UQ_con PF00179 ubiquitin-conjugating enzyme UBE2I, UBE2L3

  HECT PF00632 HECT domain (ubiquitin transferase) TRIP12,UBE3A,UBR5

  UBX PF00789 UBX domain FAF1

  UCH PF00443 ubiquitin carboxyl-terminal hydrolase USP22

  UIM PF02809 ubiquitin interaction motif UIMC1

  proteasome PF00227 proteasome A-type and B-type PSMB9

  UBA IPR009060 UBA-like SQSTM1

a
Domain information was extracted by linking the current coactivator list (www.nursa.org) and iproclass dataset from the Protein Information

Resource [PIR (183)], as well as InterPro database (184).
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