Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2013 Apr 20;69(Pt 5):m271–m272. doi: 10.1107/S1600536813010234

Di-μ-cyanido-tetra­cyanido(5,5,7,12,12,14-hexa­methyl-1,4,8,11-tetra­aza­cyclo­tetra­decane)[N-(quinolin-8-yl)quinoline-2-carboxamidato]diiron(III)nickel(II) 2.07-hydrate

Yuqi Yang a, Hongbo Zhou a, Xiaoping Shen a,*
PMCID: PMC3647811  PMID: 23723777

Abstract

The asymmetric unit of the title complex, [Fe2Ni(C19H12N3O)2(CN)6(C16H36N4)]·2.07H2O, contains one [Fe(qcq)(CN)3] anion, half a [Ni(teta)]2+ cation and two partially occupied inter­stitial water mol­ecules [qcq is the N-(quinolin-8-yl)quinoline-2-carboxamidate anion and teta is 5,5,7,12,12,14-hexa­methyl-1,4,8,11-tetra­aza­cyclo­tetra­deca­ne]. In the complex mol­ecule, two [Fe(qcq)(CN)3] anions additionally coordinate the central [Ni(teta)]2+ cation through cyanide groups in a trans mode, resulting in a trinuclear structure with the Ni2+ cation lying on an inversion centre. The two inter­stitial water mol­ecules are partially occupied, with occupancy factors of 0.528 (10) and 0.506 (9). O—H⋯O and O—H⋯N hydrogen bonding involving the two lattice water molecules and the carbonyl function and a teta N atom in an adjacent cluster leads to the formation of layers extending parallel to (010).

Related literature  

For the synthesis and background to low-dimensional systems based on modified hexa­cyanido­metalates, see: Liu et al. (2010); Kim et al. (2009); Curtis et al. (1964). For related structures, see: Li et al. (2012); Panja et al. (2012).graphic file with name e-69-0m271-scheme1.jpg

Experimental  

Crystal data  

  • [Fe2Ni(C19H12N3O)2(CN)6(C16H36N4)]·2.07H2O

  • M r = 1244.89

  • Monoclinic, Inline graphic

  • a = 9.4145 (13) Å

  • b = 15.7309 (17) Å

  • c = 20.590 (2) Å

  • β = 101.781 (3)°

  • V = 2985.1 (6) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.85 mm−1

  • T = 291 K

  • 0.28 × 0.24 × 0.22 mm

Data collection  

  • Rigaku Saturn 724 CCD diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995) T min = 0.796, T max = 0.835

  • 12764 measured reflections

  • 5722 independent reflections

  • 4078 reflections with I > 2σ(I)

  • R int = 0.022

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.057

  • wR(F 2) = 0.156

  • S = 0.97

  • 5722 reflections

  • 402 parameters

  • 7 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.42 e Å−3

  • Δρmin = −0.42 e Å−3

Data collection: CrystalClear (Rigaku, 2008); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXS97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2006); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536813010234/zl2544sup1.cif

e-69-0m271-sup1.cif (30.4KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536813010234/zl2544Isup2.hkl

e-69-0m271-Isup2.hkl (280.2KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O2W—H2WA⋯O1 0.82 (2) 2.14 (2) 2.882 (5) 151 (5)
O1W—H1WA⋯O2W 0.85 (2) 1.87 (7) 2.623 (8) 147 (11)
N8—H8A⋯O1W i 0.91 2.19 3.091 (7) 169

Symmetry code: (i) Inline graphic.

Acknowledgments

The authors thank the National Natural Science Foundation of China (No. 51072071) for financial support.

supplementary crystallographic information

Comment

Modified hexacyanometalates, [Fe(qcq)(CN)3]- (qcq- = 8-(2-quinoline-2-carboxamido)quinoline anion) have been shown to be effective building blocks that can be used instead of hexacyanometalates for the design of low dimensional assemblies (Liu et al., 2010). The capping ligand qcq- (Li et al., 2012) allows to limit oligomerization or polymerization effects by partially blocking the coordination sites around hexacyanometalates, and promotes the formation of low-dimensional structures. More importantly, it plays a crucial role in reducing the molecular symmetry, enhancing the anisotropy, and tuning the electronic, steric demand and solubility properties of derived complexes (Panja et al., 2012). However, to the best of our knowledge, low dimensional compounds based on [Fe(qcq)(CN)3]- as a ligand have been rarely explored and only a few related complexes have been reported so far. Therefore, the investigation of related low dimensional assemblies based on [Fe(qcq)(CN)3]- is of significance. Considering that the macrocyclic cation of [Ni(teta)]2+ (teta = 5,5,7,12,12,14-hexamethyl-1,4,8,11-tetraazacyclotetradecane) can behave as a good electron acceptor, our synthesis strategy is to employ [Fe(qcq)(CN)3]- and [Ni(teta)]2+ as precursors to construct low dimensional assemblies. Herein, the crystal structure of a new trinuclear complex, [{Ni(teta)}{Fe(qcq)(CN)3}2].2H2O is presented.

The molecular structure of the title complex is shown in Fig. 1. Within the neutral trinuclear clusters, two [Fe(qcq)(CN)3]- anions coordinate to the central [Ni(teta)]2+ cation in a trans-mode, resulting in a nearly linear and centrosymmetric structure, where the Ni atom lies on an inversion centre. For the moieties of [Fe(qcq)(CN)3]-, the central Fe ion is coordinated by three C atoms from cyanide groups (Fe—C(cyanide) bond lengths: 1.951 (4)–1.965 (4) Å) and three N atoms from qcq- (Fe—N(qcq) bond lengths: (1.970 (4)–2.146 (3) Å), affording a distorted octahedral coordination for the metal centre. The Fe—N (amide) bond length (1.970 (4) Å) is shorter than those for the Fe—N (aromatic rings) (2.045 (4)–2.146 (3) Å), which can be attributed to the strong σ-donor effect of the deprotonated amide. The bond angles of Fe1—C1—N1 and Fe1—C2—N3 remain almost linear (172.6 (3)–179.1 (4)°), while the Fe1—C3—N2 one deviates significantly from linearity (150.7 (5) °). The bond angle of Ni—N—C(cyanide) also deviates from linearity (161.1 (3)°), which is comparable to values observed in many other cyano-bridged bimetallic assemblies (Kim et al., 2009). For the structural unit of [Ni(teta)]2+, the equatorial sites of the central Ni ion are occupied by four nitrogen atoms from the macrocyclic ligand of teta (Ni—Nmacro bond lengths: 2.077 (3)–2.092 (3) Å), while the axial positions are occupied by Ncyanide from [Fe(qcq)(CN)3]- (Ni—Ncyanide bond lengths: 2.116 (3) Å). The intramolecular Fe···Ni distance is 5.101 (3) Å. For the intermolecular interactions, the interstitial water molecules are positioned between the clusters and linked to the nitrogen atom of teta and the oxygen atom of adjacent clusters via hydrogen bonds, further extending the dimensionality of the structure to a supramolecular network, as shown in Fig. 2.

Experimental

The complex was obtained as black block crystals by slow diffusion of a methanol solution (5 ml) of PPh4[Fe(qcq)(CN)3] (0.10 mmol) (Kim et al., 2009) and a water/DMF (v:v = 7:8) solution (15 ml) of [Ni(teta)](ClO4)2 (0.10 mmol) (Curtis et al., 1964) through a H-shaped tube at room temperature for about two weeks. The resulting crystals were collected, washed with H2O and CH3OH, respectively, and dried in air. Anal. found: C, 57.70; H, 5.23; N, 18.04; Fe, 8.92; Ni, 4.87%. Calcd for C60H64.14Fe2N16NiO4.07: C, 57.95; H, 5.19; N, 18.02; Fe, 8.98; Ni, 4.72%.

Refinement

All non-H atoms were refined with anisotropic thermal parameters. The C– and N-bound H atoms were placed in idealized positions and included in the refinement in a riding mode (C—H = 0.95 Å, N—H = 0.88 Å) with Uiso for H assigned as 1.2 or 1.5 times Ueq of the attached atoms. The oxygen atoms (O1W, O2W) of interstitial water molecules are refined with partial occupancy factors of 0.528 (10) for the water molecule of O1W and 0.506 (9) for that of O2W, respectively. The water H-atoms were located from difference maps and were refined with a O—H and H···H distance restraints of 0.82 (2) Å) and 1.36 (2) Å and with Uiso for H assigned as 1.5 times Ueq of the attached atoms. The H atom H2WA was further restrained to be 2.10 (2) Å from O1 to rationalize the hydrogen bonds interactions.

Figures

Fig. 1.

Fig. 1.

ORTEP diagram of the title complex with displacement ellipsoids drawn at the 30% probability level (The non-solvent H atoms have been omitted for clarity).

Fig. 2.

Fig. 2.

The packing and intermolecular interactions for the title complex (The dotted line represents the N—H···O and O—H···O hydrogen bonds).

Crystal data

[Fe2Ni(C19H12N3O)2(CN)6(C16H36N4)]·2.07H2O F(000) = 1297.4
Mr = 1244.89 Dx = 1.384 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 3735 reflections
a = 9.4145 (13) Å θ = 2.1–23.4°
b = 15.7309 (17) Å µ = 0.85 mm1
c = 20.590 (2) Å T = 291 K
β = 101.781 (3)° Block, black
V = 2985.1 (6) Å3 0.28 × 0.24 × 0.22 mm
Z = 2

Data collection

Rigaku Saturn 724 CCD diffractometer 5722 independent reflections
Radiation source: fine-focus sealed tube 4078 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.022
φ and ω scans θmax = 26.0°, θmin = 3.3°
Absorption correction: multi-scan (ABSCOR; Higashi, 1995) h = −11→11
Tmin = 0.796, Tmax = 0.835 k = 0→19
12764 measured reflections l = 0→25

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.057 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.156 H atoms treated by a mixture of independent and constrained refinement
S = 0.97 w = 1/[σ2(Fo2) + (0.095P)2] where P = (Fo2 + 2Fc2)/3
5722 reflections (Δ/σ)max < 0.001
402 parameters Δρmax = 0.42 e Å3
7 restraints Δρmin = −0.42 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. the restraints that were used for the refinement of the water H atoms are: DFIX 2.1 H2WA O1 DFIX 1.36 H1WA H1WB H2WA H2WB DFIX 0.82 O1W H1WA O1W H1WB O2W H2WA O2W H2WB

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
C1 0.6080 (3) 0.3867 (2) 0.85132 (16) 0.0385 (8)
C2 0.4738 (3) 0.1784 (2) 0.92238 (15) 0.0381 (8)
C3 0.6764 (4) 0.2943 (3) 0.9657 (2) 0.0603 (12)
C4 0.4671 (4) 0.3845 (2) 1.00163 (18) 0.0439 (8)
H4 0.5580 0.3678 1.0250 0.053*
C5 0.3788 (4) 0.4394 (3) 1.03091 (17) 0.0475 (10)
H5 0.4135 0.4595 1.0737 0.057*
C6 0.2454 (4) 0.4634 (3) 0.99820 (18) 0.0535 (10)
H6 0.1895 0.4999 1.0182 0.064*
C7 0.1919 (4) 0.4330 (3) 0.93380 (19) 0.0507 (10)
C8 0.0562 (4) 0.4568 (3) 0.89958 (18) 0.0479 (9)
H8 −0.0011 0.4932 0.9188 0.057*
C9 0.0051 (4) 0.4247 (3) 0.83428 (19) 0.0556 (11)
H9 −0.0875 0.4387 0.8113 0.067*
C10 0.0903 (4) 0.3742 (3) 0.80565 (18) 0.0480 (9)
H10 0.0570 0.3549 0.7626 0.058*
C11 0.2293 (4) 0.3504 (3) 0.84038 (18) 0.0492 (9)
C12 0.2803 (3) 0.3806 (3) 0.90398 (17) 0.0431 (8)
C13 0.3175 (4) 0.2439 (3) 0.76782 (19) 0.0531 (10)
C14 0.4306 (4) 0.2005 (3) 0.76050 (17) 0.0470 (9)
C15 0.4349 (4) 0.1491 (3) 0.70543 (19) 0.0535 (10)
H15 0.3499 0.1343 0.6759 0.064*
C16 0.5658 (4) 0.1213 (3) 0.6960 (2) 0.0601 (11)
H16 0.5689 0.0894 0.6583 0.072*
C17 0.6919 (4) 0.1378 (3) 0.73891 (19) 0.0549 (10)
C18 0.8243 (4) 0.1087 (3) 0.7271 (2) 0.0565 (11)
H18 0.8272 0.0769 0.6893 0.068*
C19 0.9535 (4) 0.1276 (3) 0.7727 (2) 0.0536 (10)
H19 1.0420 0.1080 0.7652 0.064*
C20 0.9488 (4) 0.1744 (3) 0.8271 (2) 0.0539 (10)
H20 1.0342 0.1857 0.8576 0.065*
C21 0.8156 (4) 0.2063 (3) 0.8384 (2) 0.0534 (10)
H21 0.8136 0.2406 0.8750 0.064*
C22 0.6895 (4) 0.1863 (3) 0.79498 (18) 0.0462 (9)
C23 0.3339 (3) −0.0867 (2) 0.86776 (16) 0.0393 (8)
C24 0.4859 (4) −0.1054 (3) 0.85829 (17) 0.0447 (9)
H24A 0.5204 −0.1545 0.8855 0.054*
H24B 0.4782 −0.1227 0.8125 0.054*
C25 0.6028 (4) −0.0390 (2) 0.87275 (16) 0.0393 (8)
H25 0.5618 0.0160 0.8561 0.047*
C26 0.7755 (4) 0.0258 (3) 0.96768 (17) 0.0453 (9)
H26A 0.7525 0.0793 0.9444 0.054*
H26B 0.8632 0.0035 0.9562 0.054*
C27 0.1984 (4) −0.0414 (3) 0.95781 (16) 0.0449 (9)
H27A 0.1243 −0.0845 0.9453 0.054*
H27B 0.1649 0.0106 0.9342 0.054*
C28 0.2337 (4) −0.1648 (3) 0.84162 (17) 0.0476 (9)
H28A 0.1373 −0.1542 0.8483 0.071*
H28B 0.2716 −0.2150 0.8655 0.071*
H28C 0.2312 −0.1728 0.7952 0.071*
C29 0.2665 (4) −0.0076 (3) 0.82503 (19) 0.0472 (9)
H29A 0.2796 0.0425 0.8522 0.071*
H29B 0.1648 −0.0171 0.8085 0.071*
H29C 0.3142 −0.0003 0.7884 0.071*
C30 0.7320 (4) −0.0618 (3) 0.83749 (18) 0.0462 (9)
H30A 0.7018 −0.1060 0.8054 0.069*
H30B 0.8137 −0.0811 0.8700 0.069*
H30C 0.7589 −0.0123 0.8156 0.069*
Ni1 0.5000 0.0000 1.0000 0.0353 (2)
Fe1 0.52931 (5) 0.28363 (4) 0.88333 (2) 0.04223 (18)
N1 0.6534 (3) 0.4476 (2) 0.83299 (14) 0.0454 (7)
N2 0.7764 (3) 0.2701 (3) 1.00090 (15) 0.0622 (10)
N3 0.4567 (3) 0.1146 (2) 0.94597 (14) 0.0420 (7)
N4 0.4158 (3) 0.3561 (2) 0.93779 (15) 0.0461 (8)
N5 0.3195 (3) 0.2951 (2) 0.81931 (14) 0.0445 (7)
N6 0.5568 (3) 0.2176 (2) 0.80568 (15) 0.0478 (8)
N7 0.3381 (3) −0.0703 (2) 0.93949 (14) 0.0412 (7)
H7 0.3509 −0.1232 0.9576 0.049*
N8 0.6599 (3) −0.0325 (2) 0.94730 (12) 0.0363 (6)
H8A 0.6936 −0.0848 0.9616 0.044*
O1 0.2120 (3) 0.2298 (2) 0.72506 (14) 0.0600 (8)
O1W 0.2133 (5) 0.2873 (4) 0.5217 (3) 0.066 (2) 0.528 (10)
H1WA 0.142 (7) 0.280 (7) 0.540 (4) 0.100* 0.528 (10)
H1WB 0.186 (9) 0.273 (8) 0.4823 (19) 0.100* 0.528 (10)
O2W 0.0492 (5) 0.2088 (4) 0.5914 (2) 0.059 (2) 0.506 (9)
H2WA 0.089 (9) 0.196 (3) 0.6296 (15) 0.088* 0.506 (9)
H2WB 0.051 (11) 0.177 (4) 0.562 (2) 0.088* 0.506 (9)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0440 (16) 0.032 (2) 0.0422 (18) 0.0046 (15) 0.0141 (14) 0.0035 (16)
C2 0.0486 (17) 0.040 (2) 0.0293 (16) 0.0066 (15) 0.0166 (13) 0.0102 (15)
C3 0.0380 (17) 0.065 (3) 0.071 (3) −0.0173 (17) −0.0054 (17) 0.033 (2)
C4 0.0407 (15) 0.039 (2) 0.053 (2) 0.0031 (16) 0.0106 (14) 0.0069 (17)
C5 0.0520 (18) 0.053 (3) 0.0423 (18) −0.0232 (17) 0.0210 (15) −0.0186 (18)
C6 0.064 (2) 0.053 (3) 0.050 (2) 0.013 (2) 0.0258 (18) 0.015 (2)
C7 0.0521 (19) 0.041 (2) 0.063 (2) 0.0119 (17) 0.0223 (17) 0.0165 (19)
C8 0.0507 (18) 0.049 (3) 0.049 (2) 0.0148 (17) 0.0218 (16) 0.0165 (19)
C9 0.0426 (17) 0.070 (3) 0.057 (2) 0.0203 (18) 0.0152 (16) 0.028 (2)
C10 0.0452 (17) 0.051 (3) 0.0476 (19) −0.0102 (17) 0.0088 (15) −0.0018 (18)
C11 0.0509 (18) 0.047 (3) 0.053 (2) 0.0161 (17) 0.0185 (16) 0.0152 (19)
C12 0.0443 (17) 0.043 (2) 0.0457 (19) 0.0084 (16) 0.0187 (15) 0.0112 (17)
C13 0.066 (2) 0.047 (3) 0.043 (2) −0.0011 (19) 0.0043 (18) −0.0028 (19)
C14 0.0513 (18) 0.052 (3) 0.0377 (18) −0.0157 (17) 0.0102 (14) −0.0001 (17)
C15 0.0537 (19) 0.054 (3) 0.054 (2) −0.0229 (18) 0.0128 (16) −0.017 (2)
C16 0.054 (2) 0.060 (3) 0.069 (3) −0.002 (2) 0.0193 (19) −0.004 (2)
C17 0.058 (2) 0.057 (3) 0.056 (2) −0.0156 (19) 0.0268 (18) −0.015 (2)
C18 0.062 (2) 0.059 (3) 0.056 (2) −0.009 (2) 0.0284 (19) −0.018 (2)
C19 0.0438 (18) 0.055 (3) 0.065 (2) 0.0123 (17) 0.0201 (17) 0.018 (2)
C20 0.0451 (17) 0.055 (3) 0.065 (2) 0.0106 (17) 0.0180 (17) 0.023 (2)
C21 0.0485 (18) 0.046 (3) 0.072 (3) 0.0142 (17) 0.0268 (18) 0.021 (2)
C22 0.0518 (19) 0.043 (2) 0.050 (2) −0.0107 (17) 0.0247 (16) −0.0084 (18)
C23 0.0411 (15) 0.035 (2) 0.0445 (18) 0.0026 (14) 0.0162 (14) 0.0054 (16)
C24 0.0525 (18) 0.044 (2) 0.0407 (18) 0.0126 (17) 0.0179 (15) −0.0069 (17)
C25 0.0500 (17) 0.036 (2) 0.0348 (16) 0.0095 (15) 0.0165 (14) 0.0013 (16)
C26 0.0458 (17) 0.044 (2) 0.050 (2) 0.0035 (16) 0.0183 (15) −0.0004 (18)
C27 0.0433 (16) 0.050 (3) 0.0411 (18) 0.0061 (16) 0.0088 (14) 0.0074 (18)
C28 0.0572 (19) 0.040 (2) 0.0416 (19) −0.0095 (17) 0.0016 (15) −0.0048 (17)
C29 0.0477 (19) 0.045 (3) 0.046 (2) −0.0012 (15) 0.0013 (16) 0.0163 (17)
C30 0.0503 (17) 0.043 (2) 0.049 (2) 0.0150 (16) 0.0192 (15) 0.0126 (18)
Ni1 0.0407 (3) 0.0359 (4) 0.0322 (3) 0.0059 (2) 0.0141 (3) 0.0083 (3)
Fe1 0.0481 (3) 0.0385 (4) 0.0415 (3) −0.0006 (2) 0.0123 (2) 0.0128 (2)
N1 0.0450 (14) 0.053 (2) 0.0410 (15) −0.0037 (14) 0.0156 (12) 0.0039 (15)
N2 0.0565 (18) 0.075 (3) 0.0459 (18) −0.0148 (18) −0.0120 (15) 0.0167 (18)
N3 0.0428 (14) 0.037 (2) 0.0476 (17) 0.0098 (13) 0.0120 (12) 0.0068 (15)
N4 0.0432 (13) 0.049 (2) 0.0480 (17) −0.0025 (14) 0.0137 (13) 0.0156 (16)
N5 0.0503 (15) 0.043 (2) 0.0461 (16) −0.0048 (14) 0.0225 (13) 0.0056 (14)
N6 0.0488 (15) 0.045 (2) 0.0516 (17) −0.0068 (14) 0.0159 (13) 0.0114 (15)
N7 0.0451 (14) 0.0350 (18) 0.0457 (16) 0.0004 (12) 0.0143 (12) 0.0065 (14)
N8 0.0425 (13) 0.0369 (18) 0.0326 (13) 0.0078 (12) 0.0145 (11) 0.0066 (13)
O1 0.0569 (15) 0.062 (2) 0.0602 (16) −0.0231 (14) 0.0095 (13) 0.0007 (15)
O1W 0.052 (3) 0.072 (5) 0.074 (4) −0.013 (3) 0.009 (3) −0.005 (3)
O2W 0.054 (3) 0.073 (5) 0.039 (3) −0.021 (3) −0.017 (2) −0.009 (3)

Geometric parameters (Å, º)

C1—N1 1.144 (5) C22—N6 1.401 (5)
C1—Fe1 1.952 (4) C23—N7 1.492 (4)
C2—N3 1.140 (5) C23—C24 1.513 (4)
C2—Fe1 1.958 (4) C23—C28 1.576 (5)
C3—N2 1.131 (5) C23—C29 1.579 (5)
C3—Fe1 1.965 (4) C24—C25 1.503 (5)
C4—N4 1.378 (5) C24—H24A 0.9700
C4—C5 1.416 (5) C24—H24B 0.9700
C4—H4 0.9300 C25—N8 1.523 (4)
C5—C6 1.353 (5) C25—C30 1.580 (4)
C5—H5 0.9300 C25—H25 0.9800
C6—C7 1.403 (6) C26—N8 1.420 (5)
C6—H6 0.9300 C26—C27i 1.523 (5)
C7—C8 1.378 (5) C26—H26A 0.9700
C7—C12 1.399 (5) C26—H26B 0.9700
C8—C9 1.424 (6) C27—N7 1.511 (4)
C8—H8 0.9300 C27—C26i 1.523 (5)
C9—C10 1.347 (6) C27—H27A 0.9700
C9—H9 0.9300 C27—H27B 0.9700
C10—C11 1.408 (5) C28—H28A 0.9600
C10—H10 0.9300 C28—H28B 0.9600
C11—N5 1.349 (5) C28—H28C 0.9600
C11—C12 1.384 (5) C29—H29A 0.9600
C12—N4 1.378 (4) C29—H29B 0.9600
C13—O1 1.206 (5) C29—H29C 0.9600
C13—C14 1.300 (6) C30—H30A 0.9600
C13—N5 1.328 (5) C30—H30B 0.9600
C14—N6 1.378 (5) C30—H30C 0.9600
C14—C15 1.400 (5) Ni1—N7i 2.079 (3)
C15—C16 1.359 (5) Ni1—N7 2.079 (3)
C15—H15 0.9300 Ni1—N8i 2.091 (2)
C16—C17 1.352 (6) Ni1—N8 2.091 (2)
C16—H16 0.9300 Ni1—N3i 2.114 (3)
C17—C22 1.388 (5) Ni1—N3 2.114 (3)
C17—C18 1.395 (5) Fe1—N6 1.967 (3)
C18—C19 1.409 (5) Fe1—N4 2.047 (3)
C18—H18 0.9300 Fe1—N5 2.147 (3)
C19—C20 1.349 (6) N7—H7 0.9100
C19—H19 0.9300 N8—H8A 0.9100
C20—C21 1.414 (5) O1W—H1WA 0.85 (2)
C20—H20 0.9300 O1W—H1WB 0.83 (2)
C21—C22 1.369 (5) O2W—H2WA 0.82 (2)
C21—H21 0.9300 O2W—H2WB 0.79 (2)
N1—C1—Fe1 179.3 (3) N8—C26—H26B 109.5
N3—C2—Fe1 172.6 (3) C27i—C26—H26B 109.5
N2—C3—Fe1 150.8 (5) H26A—C26—H26B 108.0
N4—C4—C5 118.8 (3) N7—C27—C26i 109.3 (3)
N4—C4—H4 120.6 N7—C27—H27A 109.8
C5—C4—H4 120.6 C26i—C27—H27A 109.8
C6—C5—C4 121.6 (3) N7—C27—H27B 109.8
C6—C5—H5 119.2 C26i—C27—H27B 109.8
C4—C5—H5 119.2 H27A—C27—H27B 108.3
C5—C6—C7 119.5 (4) C23—C28—H28A 109.5
C5—C6—H6 120.2 C23—C28—H28B 109.5
C7—C6—H6 120.2 H28A—C28—H28B 109.5
C8—C7—C12 120.5 (4) C23—C28—H28C 109.5
C8—C7—C6 120.4 (4) H28A—C28—H28C 109.5
C12—C7—C6 119.0 (3) H28B—C28—H28C 109.5
C7—C8—C9 119.1 (4) C23—C29—H29A 109.5
C7—C8—H8 120.5 C23—C29—H29B 109.5
C9—C8—H8 120.5 H29A—C29—H29B 109.5
C10—C9—C8 120.3 (3) C23—C29—H29C 109.5
C10—C9—H9 119.8 H29A—C29—H29C 109.5
C8—C9—H9 119.8 H29B—C29—H29C 109.5
C9—C10—C11 120.6 (4) C25—C30—H30A 109.5
C9—C10—H10 119.7 C25—C30—H30B 109.5
C11—C10—H10 119.7 H30A—C30—H30B 109.5
N5—C11—C12 114.0 (3) C25—C30—H30C 109.5
N5—C11—C10 126.1 (4) H30A—C30—H30C 109.5
C12—C11—C10 119.8 (3) H30B—C30—H30C 109.5
N4—C12—C11 119.3 (3) N7i—Ni1—N7 180.0
N4—C12—C7 121.0 (3) N7i—Ni1—N8i 94.38 (11)
C11—C12—C7 119.7 (3) N7—Ni1—N8i 85.62 (11)
O1—C13—C14 113.0 (4) N7i—Ni1—N8 85.62 (11)
O1—C13—N5 124.7 (4) N7—Ni1—N8 94.38 (11)
C14—C13—N5 122.2 (4) N8i—Ni1—N8 179.998 (1)
C13—C14—N6 115.6 (4) N7i—Ni1—N3i 95.69 (12)
C13—C14—C15 123.8 (4) N7—Ni1—N3i 84.31 (12)
N6—C14—C15 119.8 (3) N8i—Ni1—N3i 90.98 (11)
C16—C15—C14 118.6 (4) N8—Ni1—N3i 89.02 (11)
C16—C15—H15 120.7 N7i—Ni1—N3 84.31 (12)
C14—C15—H15 120.7 N7—Ni1—N3 95.69 (12)
C17—C16—C15 123.1 (4) N8i—Ni1—N3 89.02 (11)
C17—C16—H16 118.4 N8—Ni1—N3 90.98 (11)
C15—C16—H16 118.4 N3i—Ni1—N3 179.999 (1)
C16—C17—C22 119.2 (4) C1—Fe1—C2 173.01 (14)
C16—C17—C18 121.3 (4) C1—Fe1—C3 88.36 (15)
C22—C17—C18 119.5 (4) C2—Fe1—C3 85.30 (15)
C17—C18—C19 119.7 (4) C1—Fe1—N6 92.41 (13)
C17—C18—H18 120.2 C2—Fe1—N6 88.74 (13)
C19—C18—H18 120.2 C3—Fe1—N6 124.04 (17)
C20—C19—C18 119.9 (3) C1—Fe1—N4 89.92 (13)
C20—C19—H19 120.0 C2—Fe1—N4 91.90 (13)
C18—C19—H19 120.0 C3—Fe1—N4 80.47 (16)
C19—C20—C21 120.8 (4) N6—Fe1—N4 155.42 (12)
C19—C20—H20 119.6 C1—Fe1—N5 95.05 (13)
C21—C20—H20 119.6 C2—Fe1—N5 91.93 (13)
C22—C21—C20 119.4 (4) C3—Fe1—N5 157.02 (16)
C22—C21—H21 120.3 N6—Fe1—N5 78.60 (12)
C20—C21—H21 120.3 N4—Fe1—N5 76.82 (12)
C21—C22—C17 120.7 (3) C2—N3—Ni1 161.0 (3)
C21—C22—N6 119.9 (3) C12—N4—C4 119.9 (3)
C17—C22—N6 119.4 (3) C12—N4—Fe1 114.3 (2)
N7—C23—C24 109.1 (3) C4—N4—Fe1 125.6 (2)
N7—C23—C28 111.5 (3) C13—N5—C11 137.8 (3)
C24—C23—C28 108.6 (3) C13—N5—Fe1 107.5 (2)
N7—C23—C29 110.0 (3) C11—N5—Fe1 114.7 (2)
C24—C23—C29 111.4 (3) C14—N6—C22 119.9 (3)
C28—C23—C29 106.2 (3) C14—N6—Fe1 114.4 (2)
C25—C24—C23 120.8 (3) C22—N6—Fe1 125.6 (2)
C25—C24—H24A 107.1 C23—N7—C27 116.8 (2)
C23—C24—H24A 107.1 C23—N7—Ni1 123.6 (2)
C25—C24—H24B 107.1 C27—N7—Ni1 105.0 (2)
C23—C24—H24B 107.1 C23—N7—H7 102.8
H24A—C24—H24B 106.8 C27—N7—H7 102.8
C24—C25—N8 109.9 (3) Ni1—N7—H7 102.8
C24—C25—C30 110.6 (3) C26—N8—C25 115.7 (3)
N8—C25—C30 109.4 (3) C26—N8—Ni1 106.2 (2)
C24—C25—H25 109.0 C25—N8—Ni1 113.33 (18)
N8—C25—H25 109.0 C26—N8—H8A 107.1
C30—C25—H25 109.0 C25—N8—H8A 107.1
N8—C26—C27i 110.9 (3) Ni1—N8—H8A 107.1
N8—C26—H26A 109.5 H1WA—O1W—H1WB 106 (3)
C27i—C26—H26A 109.5 H2WA—O2W—H2WB 120 (4)
N4—C4—C5—C6 1.1 (6) N5—Fe1—N4—C4 176.8 (3)
C4—C5—C6—C7 0.4 (6) O1—C13—N5—C11 −7.4 (8)
C5—C6—C7—C8 −179.9 (4) C14—C13—N5—C11 175.9 (4)
C5—C6—C7—C12 −2.2 (6) O1—C13—N5—Fe1 173.8 (4)
C12—C7—C8—C9 2.3 (6) C14—C13—N5—Fe1 −3.0 (5)
C6—C7—C8—C9 180.0 (4) C12—C11—N5—C13 172.3 (4)
C7—C8—C9—C10 −2.2 (6) C10—C11—N5—C13 −3.6 (7)
C8—C9—C10—C11 1.7 (6) C12—C11—N5—Fe1 −8.9 (4)
C9—C10—C11—N5 174.3 (4) C10—C11—N5—Fe1 175.2 (3)
C9—C10—C11—C12 −1.4 (6) C1—Fe1—N5—C13 99.2 (3)
N5—C11—C12—N4 3.1 (5) C2—Fe1—N5—C13 −80.6 (3)
C10—C11—C12—N4 179.2 (3) C3—Fe1—N5—C13 −163.1 (4)
N5—C11—C12—C7 −174.7 (4) N6—Fe1—N5—C13 7.8 (3)
C10—C11—C12—C7 1.5 (6) N4—Fe1—N5—C13 −172.1 (3)
C8—C7—C12—N4 −179.7 (3) C1—Fe1—N5—C11 −80.0 (3)
C6—C7—C12—N4 2.6 (6) C2—Fe1—N5—C11 100.3 (3)
C8—C7—C12—C11 −2.0 (6) C3—Fe1—N5—C11 17.8 (5)
C6—C7—C12—C11 −179.7 (4) N6—Fe1—N5—C11 −171.4 (3)
O1—C13—C14—N6 176.3 (3) N4—Fe1—N5—C11 8.8 (3)
N5—C13—C14—N6 −6.6 (6) C13—C14—N6—C22 −168.2 (4)
O1—C13—C14—C15 6.0 (6) C15—C14—N6—C22 2.5 (5)
N5—C13—C14—C15 −176.9 (4) C13—C14—N6—Fe1 13.6 (5)
C13—C14—C15—C16 166.2 (4) C15—C14—N6—Fe1 −175.7 (3)
N6—C14—C15—C16 −3.7 (6) C21—C22—N6—C14 177.3 (4)
C14—C15—C16—C17 3.0 (7) C17—C22—N6—C14 −0.4 (6)
C15—C16—C17—C22 −0.9 (7) C21—C22—N6—Fe1 −4.8 (5)
C15—C16—C17—C18 −179.4 (4) C17—C22—N6—Fe1 177.6 (3)
C16—C17—C18—C19 179.6 (4) C1—Fe1—N6—C14 −106.1 (3)
C22—C17—C18—C19 1.1 (7) C2—Fe1—N6—C14 80.8 (3)
C17—C18—C19—C20 −0.6 (7) C3—Fe1—N6—C14 164.3 (3)
C18—C19—C20—C21 −1.4 (6) N4—Fe1—N6—C14 −11.0 (5)
C19—C20—C21—C22 2.9 (6) N5—Fe1—N6—C14 −11.4 (3)
C20—C21—C22—C17 −2.4 (6) C1—Fe1—N6—C22 75.9 (3)
C20—C21—C22—N6 −180.0 (3) C2—Fe1—N6—C22 −97.2 (3)
C16—C17—C22—C21 −178.1 (4) C3—Fe1—N6—C22 −13.7 (4)
C18—C17—C22—C21 0.5 (6) N4—Fe1—N6—C22 171.0 (3)
C16—C17—C22—N6 −0.5 (6) N5—Fe1—N6—C22 170.6 (3)
C18—C17—C22—N6 178.1 (4) C24—C23—N7—C27 173.9 (3)
N7—C23—C24—C25 −64.1 (4) C28—C23—N7—C27 −66.2 (4)
C28—C23—C24—C25 174.2 (3) C29—C23—N7—C27 51.4 (4)
C29—C23—C24—C25 57.5 (4) C24—C23—N7—Ni1 40.7 (4)
C23—C24—C25—N8 78.0 (4) C28—C23—N7—Ni1 160.7 (2)
C23—C24—C25—C30 −161.2 (3) C29—C23—N7—Ni1 −81.7 (3)
N2—C3—Fe1—C1 −113.9 (7) C26i—C27—N7—C23 −178.6 (3)
N2—C3—Fe1—C2 63.2 (7) C26i—C27—N7—Ni1 −37.6 (3)
N2—C3—Fe1—N6 −22.1 (7) N8i—Ni1—N7—C23 150.3 (3)
N2—C3—Fe1—N4 156.0 (7) N8—Ni1—N7—C23 −29.7 (3)
N2—C3—Fe1—N5 147.1 (6) N3i—Ni1—N7—C23 −118.2 (3)
N7i—Ni1—N3—C2 33.8 (8) N3—Ni1—N7—C23 61.8 (3)
N7—Ni1—N3—C2 −146.2 (8) N8i—Ni1—N7—C27 12.8 (2)
N8i—Ni1—N3—C2 128.3 (9) N8—Ni1—N7—C27 −167.2 (2)
N8—Ni1—N3—C2 −51.7 (9) N3i—Ni1—N7—C27 104.2 (2)
C11—C12—N4—C4 −178.9 (3) N3—Ni1—N7—C27 −75.8 (2)
C7—C12—N4—C4 −1.1 (5) C27i—C26—N8—C25 167.7 (3)
C11—C12—N4—Fe1 4.6 (4) C27i—C26—N8—Ni1 41.1 (3)
C7—C12—N4—Fe1 −177.7 (3) C24—C25—N8—C26 177.5 (3)
C5—C4—N4—C12 −0.7 (5) C30—C25—N8—C26 55.9 (4)
C5—C4—N4—Fe1 175.4 (3) C24—C25—N8—Ni1 −59.6 (3)
C1—Fe1—N4—C12 88.3 (3) C30—C25—N8—Ni1 178.8 (2)
C2—Fe1—N4—C12 −98.4 (3) N7i—Ni1—N8—C26 −15.4 (2)
C3—Fe1—N4—C12 176.7 (3) N7—Ni1—N8—C26 164.6 (2)
N6—Fe1—N4—C12 −7.3 (5) N3i—Ni1—N8—C26 −111.1 (2)
N5—Fe1—N4—C12 −6.9 (2) N3—Ni1—N8—C26 68.9 (2)
C1—Fe1—N4—C4 −88.0 (3) N7i—Ni1—N8—C25 −143.4 (2)
C2—Fe1—N4—C4 85.3 (3) N7—Ni1—N8—C25 36.6 (2)
C3—Fe1—N4—C4 0.4 (3) N3i—Ni1—N8—C25 120.8 (2)
N6—Fe1—N4—C4 176.4 (3) N3—Ni1—N8—C25 −59.2 (2)

Symmetry code: (i) −x+1, −y, −z+2.

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
O2W—H2WA···O1 0.82 (2) 2.14 (2) 2.882 (5) 151 (5)
O1W—H1WA···O2W 0.85 (2) 1.87 (7) 2.623 (8) 147 (11)
N8—H8A···O1Wii 0.91 2.19 3.091 (7) 169

Symmetry code: (ii) −x+1, y−1/2, −z+3/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: ZL2544).

References

  1. Brandenburg, K. (2006). DIAMOND Crystal Impact GbR, Bonn, Germany.
  2. Curtis, N. F. (1964). J. Chem. Soc. pp. 2644–2650.
  3. Higashi, T. (1995). ABSCOR Rigaku Coporation, Tokyo, Japan.
  4. Kim, J., Kwak, H. Y., Yoon, J. H., Ryu, D. W., Yoo, I. Y., Yang, N., Cho, B. K., Park, J. G., Lee, H. & Hong, C. S. (2009). Inorg. Chem. 48, 2956–2966. [DOI] [PubMed]
  5. Li, Y., Zhou, H. & Shen, X. (2012). Acta Cryst. E68, o1688. [DOI] [PMC free article] [PubMed]
  6. Liu, T., Zhang, Y. J., Kanegawa, S. & Sato, O. (2010). Angew. Chem. Int. Ed. 49, 8645–8648. [DOI] [PubMed]
  7. Panja, A., Guionneau, P., Jeon, I., Holmes, S. M., Clérac, R. & Mathonière, C. (2012). Inorg. Chem. 51, 12350–12359. [DOI] [PubMed]
  8. Rigaku (2008). CrystalClear Rigaku Corporation, Tokyo, Japan.
  9. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536813010234/zl2544sup1.cif

e-69-0m271-sup1.cif (30.4KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536813010234/zl2544Isup2.hkl

e-69-0m271-Isup2.hkl (280.2KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES